
The University of Texas at Austin
Department of Electrical and Computer Engineering

Real-Time Systems / Real-Time Operating Systems
EE445M/ECE380L.12, Spring 2022

Midterm Exam
Date: March 24, 2022

UT EID:

Printed Name:

Last, First

Your signature is your promise that you have not cheated and will not cheat on this exam, nor will
you help others to cheat on this exam:

Signature:

Instructions:

• Open book, open notes and open web.
• No electronic devices other than your laptop/PC (cell phones off and stowed away).
• You are allowed to access any resource on the internet, but no electronic communication

other than with instructors.
• Please be sure that your answers to all questions (and all supporting work that is required)

are contained in the space (boxes) provided.
• For all questions, unless otherwise stated, find the most efficient (time, resources) solution.

Problem 1 30

Problem 2 10

Problem 3 30

Problem 4 20

Problem 5 10+10

Total 100+10

EE445M/ECE380L.12, Spring 2022 Midterm 2
Name:

Problem 1 (30 points): Cooperative Context Switching
Given the following basic cooperative round-robin context switch implementation:

struct TCB {
 long *sp;
 struct TCB *next;
}

struct TCB *RunPt;

void OS_Suspend(void) {
 NVIC_INT_CTRL_R=0x10000000;
}

PendSV_Handler
 CPSID I
 PUSH {R4-R11}
 LDR R0, =RunPt
 LDR R1,[R0]
 STR SP,[R1]
 LDR R1,[R1,#4]
 STR R1,[R0]
 LDR SP,[R1]
 POP {R4-R11}
 CPSIE I
 BX LR

a) Is this implementation correct or does it have bugs? Show any needed bug fixes.

b) Assuming a given thread’s stack state right before calling OS_Suspend, show what additional
information is stored on the stack at the time when the first line of the PendSV_Handler is
executed and when the context switch to the next thread is complete.

At PendSV_Handler start:

…

After context switch:

… SP

EE445M/ECE380L.12, Spring 2022 Midterm 3
Name:

c) What will be the first instruction being executed by the next thread when the context switch is
complete, i.e. the PendSV_Handler exits?

d) The PendSV interrupt normally needs to have the lowest priority. Why is that? What happens
if the PendSV has a higher priority than another interrupt in the system?

e) Why does the PendSV_Handler disable interrupts during its execution? What would happen if
the CPSID/CPSIE instructions at the beginning and end of the handler were removed?

EE445M/ECE380L.12, Spring 2022 Midterm 4
Name:

Problem 2 (10 points): Preemptive Context Switching
Given the basic round-robin context switch implementation from Problem 1, a developer wants to
turn his cooperative OS into a preemptive one using the following SysTick implementation:

void SysTick_Handler(void) {
0x00000708 B510 PUSH {r4,lr}
 PendSV_Handler();
0x0000070A F7FFFDEE BL.W PendSV_Handler
} // end SysTick_Handler
0x0000070E BD10 POP {r4,pc}

Will this work? Why or why not? Assuming a given state of the stack at the time when a SysTick
interrupt is triggered, show the information on the stack when the first line of the PendSV_Handler
that is called from the SysTick_Handler is executed. Explain whether this stack state is a potential
problem or not, and under what conditions. If there are potential problems, is there a way to have
the SysTick_Handler call the PendSV_Handler directly that works under all conditions?

…
SP

EE445M/ECE380L.12, Spring 2022 Midterm 5
Name:

Problem 3 (30 points): Scheduling
You are given a system with 4 tasks listed below.

Task Execution Time Period
T1 0.25 ms – 1 ms 5 ms
T2 0.5 ms – 1 ms 6 ms
T3 1 ms – 2 ms 10 ms
T4 3 ms – 6 ms 15 ms

a) What is the best-case and worst-case CPU utilization running these tasks?

b) Is this task set schedulable using RMS? Show the worst-case RMS schedule at the critical
instant. If RMS is unable to meet any deadlines, specify which deadlines are missed.

 T1

 T2

 T3

 T4

Time

EE445M/ECE380L.12, Spring 2022 Midterm 6
Name:

c) Is this task set schedulable using EDF? Show the worst-case EDF schedule at the critical instant.
If EDF is unable to meet any deadlines, specify which deadlines are missed.

 T1

 T2

 T3

 T4

d) You profile your OS running the EDF schedule and find that the context switch overhead is
extremely high. What is the maximum overhead for the context switch that will still allow your
EDF schedule from c) to run? You can assume that context switch overhead is only incurred
when the OS actually switches to a different task.

Time

EE445M/ECE380L.12, Spring 2022 Midterm 7
Name:

Problem 4 (20 points): Synchronization and Deadlocks
a) Given a round-robin scheduler, if you want to minimize CPU utilization, what semaphore

implementation would you use? Why?

b) Given a round-robin scheduler, if you want to minimize jitter, what semaphore implementation
would you use? Why?

c) Assume a system that doesn’t have semaphores and only uses StartCritical() and EndCritical()
to protect critical sections, can this system ever have deadlocks?

d) Assuming we implement a deadlock detector that runs as lowest-priority task and checks
whether no other task is running or sleeping, i.e. all other tasks are waiting on semaphores, will
this detector be able to detect all deadlocks? Why or why not?

EE445M/ECE380L.12, Spring 2022 Midterm 8
Name:

Problem 5 (10+10 points): Bulk Synchronization
A bulk or barrier semaphore waits until all threads have reached a checkpoint before letting any
thread proceed. In other words, all threads must enter OS_WaitBulkSema before any thread is
allowed to leave the function. Given below is an implementation of a bulk semaphore that is cyclic,
i.e. can be used more than once (and OS_WaitBulkSema can be called multiple times per thread).
This implementation has several bugs. Identify all the bugs in the code and explain what erroneous
behavior will occur with the current implementation. Bonus points for providing fixes to the bugs.

struct bulk_sema = {
 sema_t mutex;
 sema_t barrier;
 int count; // Threads waiting
 int n; // total # of threads
 };
 typedef bulk_sema bsema_t;

OS_SignalMulti(sema_t *sema, int value)
{
 int i;
 for (i=0; i<value; i++)
 OS_Signal(sema);
}

void OS_InitBulkSema(bsema_t *sema,
 int n)
{
 // # of participating threads
 sema->n = n;

 // initialize barrier & mutex
 OS_InitSemaphore(&sema->barrier,
 0);
 OS_InitSemaphore(&sema->mutex,
 1);

 // no waiting threads yet
 sema->count = 0;

}

OS_WaitBulkSema(bsema_t *sema) {
 OS_bWait(&sema->mutex);

 // Increase # of waiting threads
 sema->count++;

 // All threads have reached?
 if (sema->count == sema->n)
 {
 // Let all threads progress
 OS_SignalMulti(&sema->barrier,
 sema->n);

 // And reset for next use
 sema->count = 0;
 }

 // Finally wait ourselves
 OS_Wait(&sema->barrier);

 OS_bSignal(&sema->mutex);
}

EE445M/ECE380L.12, Spring 2022 Midterm 9
Name:

	Problem 1 (30 points): Cooperative Context Switching
	Problem 2 (10 points): Preemptive Context Switching
	Problem 3 (30 points): Scheduling
	Problem 4 (20 points): Synchronization and Deadlocks
	Problem 5 (10+10 points): Bulk Synchronization

