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Problem 1 (30 points): Cooperative Context Switching 
Given the following basic cooperative round-robin context switch implementation: 
 
struct TCB { 
  long *sp; 
  struct TCB *next; 
} 
 
struct TCB *RunPt; 
 
 
void OS_Suspend(void) {  
  NVIC_INT_CTRL_R=0x10000000;  
} 
 

PendSV_Handler 
  CPSID   I 
  PUSH    {R4-R11}       
  LDR     R0, =RunPt     
  LDR     R1,[R0]       
  STR     SP,[R1]         
  LDR     R1,[R1,#4]  
  STR     R1,[R0]         
  LDR     SP,[R1]           
  POP     {R4-R11}          
  CPSIE   I 
  BX      LR 

a) Is this implementation correct or does it have bugs? Show any needed bug fixes.  

 

 

b) Assuming a given thread’s stack state right before calling OS_Suspend, show what additional 
information is stored on the stack at the time when the first line of the PendSV_Handler is 
executed and when the context switch to the next thread is complete.  

At PendSV_Handler start:  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

…  

After context switch: 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

…  SP 
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c) What will be the first instruction being executed by the next thread when the context switch is 
complete, i.e. the PendSV_Handler exits?   
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

d) The PendSV interrupt normally needs to have the lowest priority. Why is that? What happens 
if the PendSV has a higher priority than another interrupt in the system?  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

e) Why does the PendSV_Handler disable interrupts during its execution? What would happen if 
the CPSID/CPSIE instructions at the beginning and end of the handler were removed? 
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Problem 2 (10 points): Preemptive Context Switching 
Given the basic round-robin context switch implementation from Problem 1, a developer wants to 
turn his cooperative OS into a preemptive one using the following SysTick implementation:  
 
void SysTick_Handler(void) {  
0x00000708 B510      PUSH          {r4,lr} 
    PendSV_Handler(); 
0x0000070A F7FFFDEE  BL.W          PendSV_Handler 
} // end SysTick_Handler  
0x0000070E BD10      POP           {r4,pc} 
 

Will this work? Why or why not? Assuming a given state of the stack at the time when a SysTick 
interrupt is triggered, show the information on the stack when the first line of the PendSV_Handler 
that is called from the SysTick_Handler is executed. Explain whether this stack state is a potential 
problem or not, and under what conditions. If there are potential problems, is there a way to have 
the SysTick_Handler call the PendSV_Handler directly that works under all conditions? 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

…  
SP 
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Problem 3 (30 points): Scheduling 
You are given a system with 4 tasks listed below.  

Task Execution Time Period 
T1 0.25 ms – 1 ms 5 ms 
T2 0.5 ms – 1 ms 6 ms 
T3 1 ms – 2 ms 10 ms 
T4 3 ms – 6 ms 15 ms 

a) What is the best-case and worst-case CPU utilization running these tasks?  

 
 
 
 
 
 
 
 
 
 

b) Is this task set schedulable using RMS? Show the worst-case RMS schedule at the critical 
instant. If RMS is unable to meet any deadlines, specify which deadlines are missed. 

 
 
 
 
 
 
 
 
 
 
                                   
                                   
                                   
 T1                                  
                                   
 T2                                  
                                   
 T3                                  
                                   
 T4                                  
                                   
                                   
                                   

 

Time 
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c) Is this task set schedulable using EDF? Show the worst-case EDF schedule at the critical instant. 
If EDF is unable to meet any deadlines, specify which deadlines are missed. 

 
 
 
 
 
 
 
 
 
 
                                   
                                   
                                   
 T1                                  
                                   
 T2                                  
                                   
 T3                                  
                                   
 T4                                  
                                   
                                   
                                   

d) You profile your OS running the EDF schedule and find that the context switch overhead is 
extremely high. What is the maximum overhead for the context switch that will still allow your 
EDF schedule from c) to run? You can assume that context switch overhead is only incurred 
when the OS actually switches to a different task.  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

Time 
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Problem 4 (20 points): Synchronization and Deadlocks 
a) Given a round-robin scheduler, if you want to minimize CPU utilization, what semaphore 

implementation would you use? Why? 
 
 
 
 
 
 
 
 
 
 

b) Given a round-robin scheduler, if you want to minimize jitter, what semaphore implementation 
would you use? Why? 
 
 
 
 
 
 
 
 
 
 

c) Assume a system that doesn’t have semaphores and only uses StartCritical() and EndCritical() 
to protect critical sections, can this system ever have deadlocks?   
 
 
 
 
 
 
 
 
 
 

d) Assuming we implement a deadlock detector that runs as lowest-priority task and checks 
whether no other task is running or sleeping, i.e. all other tasks are waiting on semaphores, will 
this detector be able to detect all deadlocks? Why or why not?   
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Problem 5 (10+10 points): Bulk Synchronization 
A bulk or barrier semaphore waits until all threads have reached a checkpoint before letting any 
thread proceed. In other words, all threads must enter OS_WaitBulkSema before any thread is 
allowed to leave the function. Given below is an implementation of a bulk semaphore that is cyclic, 
i.e. can be used more than once (and OS_WaitBulkSema can be called multiple times per thread). 
This implementation has several bugs. Identify all the bugs in the code and explain what erroneous 
behavior will occur with the current implementation. Bonus points for providing fixes to the bugs.  

struct bulk_sema = { 
  sema_t mutex; 
  sema_t barrier;   
  int count; // Threads waiting  
  int n; // total # of threads 
 }; 
 typedef bulk_sema bsema_t; 

OS_SignalMulti(sema_t *sema, int value) 
{ 
  int i; 
  for (i=0; i<value; i++) 
    OS_Signal(sema); 
} 

void OS_InitBulkSema(bsema_t *sema,  
                     int n)  
{ 
  // # of participating threads 
  sema->n = n; 
 
  // initialize barrier & mutex 
  OS_InitSemaphore(&sema->barrier, 
                   0); 
  OS_InitSemaphore(&sema->mutex, 
                   1); 
 
  // no waiting threads yet 
  sema->count = 0; 
   
} 

OS_WaitBulkSema(bsema_t *sema) { 
  OS_bWait(&sema->mutex); 
 
  // Increase # of waiting threads 
  sema->count++; 
 
  // All threads have reached? 
  if (sema->count == sema->n)  
  { 
    // Let all threads progress 
    OS_SignalMulti(&sema->barrier, 
                   sema->n); 
 
    // And reset for next use 
    sema->count = 0; 
  } 
 
  // Finally wait ourselves 
  OS_Wait(&sema->barrier); 
 
  OS_bSignal(&sema->mutex); 
} 
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