
Multi-Core Cache Hierarchy Modeling for
Host-Compiled Performance Simulation

Parisa Razaghi and Andreas Gerstlauer
Electrical and Computer Engineering, The University of Texas at Austin

Email: parisa.r@utexas.edu, gerstl@ece.utexas.edu

Abstract—The need for early software evaluation has increased
interest in host-compiled or source-level simulation techniques.
For accurate real-time performance evaluation, dynamic cache
effects have to be considered in this process. However, in the
context of coarse-grained simulation, fast yet accurate modeling
of complex multi-core cache hierarchies poses several challenges.
In this paper, we present a novel generic multi-core cache
modeling approach that incorporates accurate reordering in the
presence of coarse-grained temporal decoupling. Our results
show that our reordering approach is as accurate as a fine-
grained simulation while maintaining almost the full performance
benefits of a temporally decoupled simulation.

I. INTRODUCTION

The increasing complexity of embedded systems has led a
large portion of applications to be implemented in software to
reduce development time and risk. In such systems, software
is coupled with hardware to tackle real-time performance
bottlenecks. In order to keep the development time short,
software needs to be evaluated at early design stages. With
traditional ISS-based approaches being either slow or inaccu-
rate, so-called host-compiled or source-level simulators have
recently emerged as a solution for rapid evaluation of complete
system. In such approaches, a faster simulation is achieved
by abstracting execution behavior at increased simulation
granularity.

However, existing source-level simulators often only focus
on application behavior running on a single core while ne-
glecting speed and accuracy effects of system-wide, multi-
processor and multi-core HW/SW interactions. This is es-
pecially the case in modern multi-core and multi-processor
system on chips (MCPSoCs) in which cores and processors
interact through shared last level caches (LLC). Due to the
significant effects of the system memory hierarchy on real-
time performance, fast and accurate modeling of the cache
hierarchy is essential for accurate design space explorations.

A large benefit of host-compiled simulators comes from
application of temporal decoupling technology. A temporally
decoupled simulation method allows threads go ahead of the
simulation kernel time by only incrementing a local time.
Instead, a global simulated time is updated whenever the
actual time is advanced by the simulation kernel. This method
thereby reduces the simulation context-switch overhead and
provides a faster simulation environment by coarse-grained
execution.

However in the presence of temporal decoupling, accu-
rate multi-core cache hierarchy modeling is challenging. The

Application

Interconnect Model

Abstract OS Model

High-Level Processor Model

I/O IF

OS API
I/O

Drivers

Host-Compiled Software Simulation Components

T1

CHT2 T3

System

Hardware

Components
Cache Model

Cache API

Fig. 1. Host-compile simulation platform.

reason is that memory references can be globally commit-
ted out-of-order, which leads to inaccurate cache behavior.
In this paper, we introduce a multi-core out-of-order cache
modeling approach, which incorporates a delayed reordering
of aggregated requests to provide an accurate cache hierarchy
simulation in the presence of temporal decoupling. Thus, we
propose a multi-core cache model that accurately maintain its
internal state at the speed of a fully decoupled simulation.

A. Host-Compiled Software Simulation

In Figure 1, the ingredients of a typical host-compiled
software simulator are shown. A host-compiled simulator is
composed out of high-level models of the software execution
environment. An abstract operating system (OS) at the core of
the simulator replicates a standard scheduler to manage the ex-
ecution order of concurrent tasks on a target processor model.
Similarly, a high-level processor model emulates HW/SW
interactions and supports necessary interfaces and facilities
for connecting software to the rest of the system. In order
to consider cache effects on real-time behavior, a high-level
cache model maintains the state of cache hierarchies. Abstract
models are integrated into a standard system level design
language (SLDL), which provides the required concurrency
and event handling infrastructure. Finally, a user-application
is captured as hierarchical, high-level processes which are
integrated into the simulator via a provided API.

Altogether, a fast functional simulation is achieved by

capturing system behavior at the source level and natively
compiling and executing on a host machine. Additionally,
timing-accurate results are obtained by instrumenting appli-
cation source codes with target-specific execution delays.

The remainder of this paper is organized as follows: the next
section gives an overview of existing full-system and high-
level cache simulators. Section II elaborates our multi-core
cache hierarchy modeling approach. Section III provides an
experimental evaluation of our simulator. Finally, Section IV
concludes and gives a summary of our work.

B. Related Work

Existing cache simulation techniques can be categorized
into two common approaches: trace-driven or execution-driven
simulations. Trace-driven cache simulators use a collected
stream of memory accesses of applications to replicate the
cache behavior [1]. This approach can be fast, but the
simulator needs to deal with large trace files and data. In
contrast, execution-driven simulators combine an executable
cache model and simulated application instructions to capture
memory accesses on-the-fly [2]. With the advent of MCPSoCs,
cache simulators have also focused on simulating cache co-
herency and cache hierarchies [3], [4].

In order to support wide range of studies, modern full-
system simulators support various architectures with different
processor models, flexible system components, and memory
and cache models at varying levels of detail and abstraction.
Simics [5] and gem5 [6] are well-know simulators, which
allow to model virtual prototypes of a complete system.
Although both simulators offer multi-core support including
processor models ranging from instruction-accurate models
to fully cycle-accurate micro-architectural ones, the need to
simulate cross-compiled applications running on top of the
complete binary of an operating system kernel makes these
simulators inefficient for fast and early integration and evalu-
ation of complete systems.

On the contrary, host-compiled simulators have received
widespread attention as a solution for fast and accurate system
evaluation at early design stages [7]. In such approaches, the
binary code of OS kernels and detailed processor models are
replaced by an abstract model of the OS [8] and a high-
level full-system software execution environment [9], [10],
respectively.

There have been several attempts for cache modeling in
host-compiled or source-level simulation. Pedram et al. [11]
present a high-level, search-based cache model integrated into
a TLM processor simulation platform. Pasadas et al. [12]
propose a faster approach by introducing a lookup table-based
data cache model. Both include approaches for instrumenting
application source code to update the cache state and adjust
the back-annotated delays. Stattelmann et al. [13] introduce
a hybrid source-level cache simulator, which uses application
binary codes to annotate memory accesses. However, all these
approaches suffer from a lack of multi-core cache hierarchy
modeling with associated speed and accuracy challenges.

Core 1

Application

Access List

(Addr, R/W, Time)

Last Level Cache (LLC)

First Level Cache (L1)

(Addr, R/W, Time)

Core 2

Application

Cache Interface &

Controller(Tag, Age)

Se
t

Line

Fig. 2. High-level cache hierarchy model.

II. MULTI-CORE CACHE MODELING

In this paper, we present a novel high-level, multi-core cache
hierarchy modeling approach, which accurately models cache
behavior of MCPSoCs, simulated by a temporally decoupled,
host-compiled simulator. In the following, we first present
an overview of our generic cache model and its integration
process into a host-compiled simulator. Next, we demonstrate
a novel memory access reordering technique, which is de-
signed for accurate cache behavior simulation in a temporally
decoupled execution context.

All models presented in this paper are implmented as
SystemC [14] modules or channels, and the host-compiled
simulator runs on top of the SystemC simulation kernel.

A. Base Approach

For accurate performance evaluation, we need to consider
performance penalties due to cache misses and update static
back-annotated delays during simulation. For this purpose, we
developed a high-level model of a cache channel that emulates
the system memory behavior by updating its internal states
on every memory access. Note that we only need to model
hit/miss behavior of the cache, i.e. we are not concerned about
the data that is stored in the cache. Instead, the simulation
host takes care of maintaining coherent data values. In our
cache model, each cache line is composed out of an address
tag, an age counter to implement a replacement policy, and a
coherency flag to store the current state of each line compared
to other cores’ caches (Figure 2). Associated with each core, an
access list stores locally ordered memory references reported
by the application running on that core. Each location in this
list contains a memory address, access mode (i.e Read or
Write), and an access time. Using this information, a cache
controller is able to manage the cache state updating process
and to report back total miss cycles. Accordingly, the simulator

int A[SIZE];

int sum = 0;

for (int i = 0; i < SIZE; i++) {

sum += A[i];

HCSim->time_wait(DELAY, taskID);

}

int A[SIZE];

int sum = 0;

for (int i = 0; i < SIZE; i++) {

sum += A[i];

}

int A[SIZE];

int sum = 0;

ACCESS_TYPE ac;

for (int i = 0; i < SIZE; i++) {

ac.Mode = READ;

ac.Addr = array_base + i * sizeof(int);

ac.TS = HCSim->get_local_time(coreID)

+ HCSim::get_global_time();

penalty = Cache::Update(ac, coreID);

sum += A[i];

HCSim->time_wait(DELAY+penalty, taskID);

}

Delay

back-annotation

process

Address

back-annotation

process

Fig. 3. Source code back-annotation example for cache simulation.

can internally adjust back-annotated task delays by adding
delay for extra memory cycles.

1) Source-code back-annotation: As mentioned before, a
user application is integrated into the simulator at the source
level. As such, low-level information including task execution
delays and memory references need to be back-annotated into
the source code. In this paper, we assume that designers use ex-
isting techniques to obtain task execution delays and accessed
memory addresses based on a selected target platform [12],
[15], [16]. Figure 3 shows source code instrumentation steps
to consider cache effects during host-compiled simulation. The
original application is a simple loop over an integer array.
The execution delay is given to the simulator by calling the
time wait() method of the simulator API (shown as HCSim).
In this way, the simulator internally advances simulated time
to model task and core execution times.

In the address back-annotation step, every memory access
is reported to the simulator by simply committing the access
information including a 3-tuple of (address, mode, time stamp)
into the cache. The time stamp is an absolute time, which
is determined as the sum of the global simulated time and
the core’s local time. Note that absolute time stamps are
required for temporal decoupling simulation and are used in
our reordering technique (see Section II-B). At the end, the
cache returns any miss penalties incurred during the access,
which are in turn added to the task’s execution delay.

2) Cache modeling: We have designed our cache model
such that a designer can easily explore a wide variety of cache
architectures and evaluate their effects on system performance.
Table I lists all configurable options that our cache model
offers. Primarily, the number of packages and cores per
package need to be defined to generate the overall structure
of the cache hierarchy. In addition, the number of levels of
the cache hierarchy and interconnections across these levels
are configurable. For example, the L2 can be defined a shared
cache between all cores on a package or as a core-private
cache. Furthermore, the structure of each cache including total
and set size, replacement and write policies are parametrizable.
By configuring the miss latency of all levels, the cache channel
can provide the total miss penalty on every cache update.
Finally, to keep the cache hierarchy coherent, a standard MSI-
based cache coherency protocol is implemented.

TABLE I
CACHE PARAMETERS

Parameters Description

Levels of hierarchy Core-private L1
Core-private L2,
or shared L2 within a package
Shared L3 within a package

Cache structure Cache size, Line size
Associativity
Write back,
Write through (write allocation)

Replacement policy LRU: default policy

Miss latency Number of cycles for
miss penalty of each level

B. Decoupling

Temporal decoupling is a widely-adopted mechanism to
improve the simulation speed by increasing the granularity
of simulation. In such an approach, which is only applicable
to parallel systems, each thread keeps a local time that defines
how far this thread has advanced in its execution related to the
global simulated time. In other words, a thread can go ahead
of the simulation kernel time without advancing global time.

A conventional host-compiled simulator advances the sim-
ulated time at every back-annotate delay using the underlying
SLDL primitives, which causes a simulation kernel context
switch. As a result, the simulation speed is defined by the
granularity of back-annotated delays. By contrast, a tempo-
rally decoupled simulator only advances time whenever the
simulation quantum expires or a local task switch or a global
synchronization is required. To follow this approach, a local
counter is associated with each core, which accumulates back-
annotated application delays. This counter defines the core’s
local time in relation to the global simulated time.

However, decoupling techniques may decrease the timing
accuracy due to the coarse-grained synchronization of parallel
threads. Especially in multi-core cache simulation, different
cores may commit their memory accesses to the cache globally
out-of-order. In the following, we introduce a delayed reorder-
ing technique that provides an accurate temporally decoupled

Core2

Local Time

Core1

Local Time

Simulated

Time

1

10

Sync(20)

wait(12)

wait(20)
12

20

Core1

Accesses

Core2

Accesses

Cache

Channel

(Addr2, ts2)

(Addr1, ts1)

(Addr3, ts3)

Sync(12)

(Addr4, ts4)

(Addr5, ts5)

2

12

20

Reordering

& Commit

Reordering

& Commit

0

Fig. 4. Cache reordering example.

cache hierarchy simulation.
To illustrate the general concept behind the reordering

technique, we show the execution sequence of a dual-core
platform in Figure 4. At the beginning of the simulation, core1
starts the execution of its application code and reports three
memory accesses at local times 1(ts1), 2(ts2), and 12(ts3).
At local time 12, core1 notified the simulator to consume the
accumulated delay. Accordingly, the host-compiled simulator
internally advances the simulated time by calling the underly-
ing SLDL wait(12) method. As such, core1 is suspended and
core2 gets a chance to run its application code, which reports
its two memory accesses at local times 10(ts4) and 20(ts5). As
can be seen, ts4 is reported after ts3, while to be committed
before ts3. When core2 request to consume the accumulated
delay in a similar way, the simulator internally advances the
global simulated time by 12 units and returns to core1. By this
time, all cores have already collected their memory accesses.
Hence, core1 calls a Sync(12) method to commit the out-of-
ordered accesses with their correct sequence into the cache
channel.

1) Cache Simulation: To enable delayed reordering, instead
of directly committing accesses to the cache as they occur,
each core keeps all referred memory addresses in an ordered
list. Although each access has a time stamp, which allows the
cache to detect the global sequence of all accesses, the simula-
tor needs to invoke the cache synchronization and reordering
method when all cores’ accesses have been collected and it
can be determined that they are safe to commit.

An efficient safe point for committing collected memory
accesses is after advancing the simulation time. In this way,
the underlying SLDL simulation kernel lets other cores run
their tasks and collect all memory accesses up to that point
in simulation time. Figure 5 shows the function that manages
the simulated time. Task delays are back-annotated into the
code via a call to this time wait() method. The current core
first updates its local time. If the accumulated delay is greater

Function: time wait(time t nsec)

1 cur core.local time += nsec
2 sync time = simulation quantum
3 while cur core.local time ≥ sync time do
4 SLDL::wait(sync time)
5 cur core.local time -= sync time
6 cache time = Cache::Sync(sync time, cur core)
7 cur core.local time += cache time
8 endwhile

Fig. 5. Simulation timing model.

Function: Sync(time t sync time, int cur core)

1 while true
2 for all cores do
3 min core = ArgMini(access list[i].first.ts)
4 if (access list[min core].first.ts > sync time) break
5 a = access list[min core].pop()
6 min core.local delay += Cache::Update(a, min core)
7 endfor
8 endwhile
9 return cur core.local delay

Fig. 6. Cache synchronization and reordering algorithm.

than the simulation quantum, the global simulated time is
advanced by the underlying SLDL wait primitive (line 4).
After advancing the simulation time, the Sync() function in
the cache is called (line 6). Finally, the local time is updated
by possible extra delays caused by cache miss penalties of
committed accesses (line 7).

2) Reordering mechanism: The pseudo code of our cache
synchronization and reordering technique is shown in Figure 6.
The reordering algorithm is divided into three steps: In the first
step, the core containing the access with the smallest time to
commit is determined by exploring all core access lists (line
3). In the second step, any corresponding memory access with
a time stamp smaller than or equal to the safe to commit time
(synchronization point) is used to update the cache state (line
4 and 5). Finally, based on the cache behavior, the core’s local
delay is updated to record extra delays related to miss penalties
(line 6). This loop continues until all accesses from all cores
with a time stamp smaller than the end time are committed to
the cache model.

III. EXPERIMENTAL RESULTS

We evaluated our cache modeling approach by simulating
parallel matrix multiplication tasks running on a dual-core
1.6 GHz Atom platform with a core-private 24K, 6-way set
associative L1 and a shared last level 512K, 8-way set asso-
ciative L2 cache. We executed our experiments under three
different simulation modes: a conventional simulation updates
the cache state at the fine granularity given by back-annotated
execution times, while the temporally decoupled (TD) ap-
proaches with and without reordering (RO) method commit
accumulated accesses only at simulation quantum boundaries.

TABLE II
CACHE ACCURACY RESULTS FOR MATRIX MULTIPLICATION SIMULATION ON A SINGLE-CORE PLATFORM

Naı̈ve Algorithm Cache-Aware Algorithm

Matrix Total L1 L1 Miss Rate L2 Miss Rate Total L1 L1 Miss Rate L2 Miss Rate

Size Accesses Board Sim. Error Board Sim. Error Accesses Board Sim. Error Board Sim. Error

16 9,306 - - - - - - 9,818 - - - - - -
32 69,802 - - - - - - 71,850 - - - - - -
64 539,918 0.20% 0.15% (-27.5%) - - - 633,996 0.23% 0.27% (16.9%) - - -
96 1,750,378 3.12% 3.17% (1.6%) - - - 2,140,519 0.19% 0.22% (17.3%) - - -
128 2,127,242 50.1% 50.6% (1.1%) - - - 5,071,702 0.27% 0.25% (-6.2%) - - -
192 7,067,470 50.6% 50.9% (0.7%) - - - 17,123,704 0.22% 0.26% (17.0%) - - -
256 16,898,250 50.0% 50.3% (0.6%) 0.05% 0.05% (-0.22%) 40,572,930 43.0% 50.2% (16.8%) 0.06% 0.06% (0.02%)
384 56,578,186 50.3% 50.5% (0.4%) 6.21% 6.21% (0.03%) 136,988,302 0.26% 0.28% (9.4%) 36.3% 38.9% (7.25%)

TABLE III
MEASURED AND SIMULATED EXECUTION TIME FOR MATRIX MULTIPLICATION ON SINGLE-CORE AND DUAL-CORE PLATFORMS

Single-Core Platform Dual-Core Platform

Naı̈ve Algorithm Cache-Aware Algorithm Naı̈ve Algorithm Cache-Aware Algorithm

Matrix Exe. Time Simulation Error Exe. Time Simulation Error Exe. Time Simulation Error Exe. Time Simulation Error

Size Board w/ cache w/o cache Board w/ cache w/o cache Board w/ cache w/o cache Board w/ cache w/o cache

16 25µs -6.2% -6.2% 24µs -5.0% -5.0% 25µs -7.5% -7.5% 25µs -7.5% -7.5%
32 180µs 2.6% 2.6% 179µs 3.3% 3.3% 183µs 1.4% 1.4% 183µs 1.4% 1.4%
64 1,472µs 1.0% 0.6% 1,563µs -4.5% -5.2% 1,492µs -0.3% -0.7% 1,569µs -4.8% -5.6%
96 5,484µs -0.5% -8.8% 5,200µs -3.2% -3.9% 5,329µs 2.4% -6.2% 5,179µs -2.8% -3.5%
128 29,631µs -1.6% -60.0% 12,335µs -3.2% -3.9% 29,638µs -1.6% -60.0% 12,320µs -3.1% -3.8%
192 101,630µs -2.9% -60.7% 41,156µs -2.1% -2.8% 101,597µs -2.4% -60.6% 41,082µs -0.5% -2.7%
256 247,855µs -6.0% -61.8% 259,449µs -8.7% -63.5% 248,944µs 8.1% -61.9% 259,352µs -7.5% -63.5%
384 1,235,815µs -10.9% -94.6% 419,768µs -20.4% -23.8% 1,270,051µs -8.5% -74.8% 419,905µs -20.4% -23.8%

TABLE IV
L2 MISS RATE AND ERRORS FOR CONVENTIONAL, RO, TD SIMULATION OF MATRIX MULTIPLICATION ON THE DUAL-CORE PLATFORM

Naı̈ve Algorithm Cache-Aware Algorithm

Matrix Total L2 Miss Rate Miss Rate Error Total L2 Miss Rate Miss Rate Error

Size Accesses Conv. TD(1µs) TD(1ms) RO(1µs) RO(1ms) Accesses Conv. TD(1µs) TD(1ms) RO(1µs) RO(1ms)

16 0 - - - - - - - - - - -
32 0 - - - - - - - - - - -
64 1,536 - - - - - 2,870 - - - - -
96 112,896 - - - - - 8,064 - - - - -
128 4,262,398 - - - - - 21,504 - - - - -
192 14,454,982 0.08% 0.00% -3.06% 0.00% 0.00% 76,200 17.3% 0.00% -0.34% 0.00% 0.00%
256 33,830,910 2.46% -73.3% -90.4% 0.00% 0.00% 34,765,822 0.25% 0.00% 1.54% 0.00% 0.00%
384 114,482,686 7.43% -16.0% -12.6% 0.00% 0.00% 663,552 39.8% 0.00% 1.36% 0.00% 0.00%

To analyze the effect of course-grain temporal decoupling on
cache simulation accuracy, we ran our experiments under two
different simulation quanta: 1µs and 1ms.

In order to evaluate the cache behavior under different
memory accesses patterns, we simulated two algorithms, a
typical naı̈ve matrix multiplication algorithm and a cache-
aware, blocked algorithm with fixed 32x32 blocks. For each
algorithm, we simulated a variety of matrix sizes ranging from
small size matrices that would fit entirely in the L1 cache to
large matrices that exceed the L2 size.

We first verified the accuracy of our cache hierarchy model
on a single-core execution. For this purpose, we compared
cache miss rates obtained from simulation with the actual
execution on a single-core Atom board. We used Valgrind [17]
to monitor the Atom cache behavior. Table II shows the total
number of accesses for the L1 cache and the L1 and L2 miss
rates on the Atom board and compares these with simulation

results. Residual errors are caused by the back-annotation
process, which does not instrument all memory accesses.
Overall, the results depict that our cache simulator follows the
reference cache behavior. Furthermore, low miss rates for large
matrices confirm that a cache-aware implementation achieves
a better performance.

We further compare the simulated execution times with the
reference execution on the board. In this experiment, we used
a cache-memory calibration tool [18] to measure L1 and L2
miss latency cycles and annotated our cache model accordingly
in order to accurately reflect the cache effects in the host-
compiled simulation. The measured and simulated execution
times for both the single-core and the dual-core platforms are
shown in Table III. Results show a significant improvement of
the cache model on the execution time accuracy for matrices
with high L1 or L2 miss rates. The average execution error in
the presence of cache modeling was -3.8%, while neglecting

0%

2%

4%

6%

8%

192 256 384

L
2

 M
is

s
 R

a
te

Matrix Size

Conventional

TD

RO

0%

10%

20%

30%

40%

192 256 384

L
2

 M
is

s
 R

a
te

Matrix Size

Conventional

TD

RO

(a) Naı̈ve algorithm. (b) Cache-aware algorithm.
Fig. 7. L2 miss rate for Conv, RO, and TD simulations, quantum(1ms).

0s

30s

60s

90s

0 100 200 300 400

S
im

u
la

ti
o

n
 T

im
e

Matrix Size

Conventional

TD

RO

0s

10s

20s

30s

0 100 200 300 400

S
im

u
la

ti
o

n
 T

im
e

Matrix Size

Conventional

TD

RO

(a) Naı̈ve algorithm. (b) Cache-aware algorithm.
Fig. 8. Simulation time for Conv, RO, and TD simulations, quantum(1ms).

the impact of cache behavior can generate up to 95% timing
error. Note that as shown in Table III, for a matrix size of 384
cache conflicts in the cache-aware algorithm lead to a high L2
miss rate which in turn results in a relatively high error, even
with our cache model. This is due to lack of accurate models
of system busses beyond the L2 in our setup.

Finally, to demonstrate the efficiency of our reordering
approach in a temporally decoupled simulation, we compare
L2 miss rates using different modeling setups. Table IV shows
the miss rates for TD and RO simulations. As expected, for
the RO approach, miss rates were constant under different
simulation quanta and were identical to the conventional sim-
ulation results. By contrast, the TD approach can exhibit large
deviations due to out-of-ordered cache updates. Note that for
the cache-aware algorithm, there is very little L2 interference
between cores. As such, the ordering of accesses does not play
a significant role and a naı̈vely decoupled simulation already
provides good results. However, such behavior is hard to
predict. By contrast, reordering approach provides consistently
good results.

To summarize, Figure 7 compares L2 miss rates reported
by different host-compiled simulation approaches. As can
be seen, temporally decoupled simulation without reordering
the memory accesses can result in large errors for some
configurations. Figure 8 plots the simulation time for the same
experiments. Altogether, the integrated RO model provides a
guaranteed accurate result while maintaining almost the full
performance benefits of a temporally decoupled simulation.

IV. SUMMARY AND CONCLUSIONS

In this paper, we presented a novel cache hierarchy simu-
lation technique, which provides an accurate multi-core cache
simulation for efficient system-level evaluation and explo-
ration. Our approach introduces a multi-core, out-of-order
cache model, which incorporates a delayed reordering of
aggregated requests to provide an accurate cache simulation in
the presence of temporal decoupling. We evaluated the accu-
racy of our models on a set of benchmarks. Our results show
that the highest possible accuracy is obtained by using our
reordering technique, while increased simulation performance
benefits from temporal decoupling.

ACKNOWLEDGMENT

This work has been partially supported by SRC Task 2317.
We also would like to thank Xinnian Zheng for developing
the initial code of the high-level cache model.

REFERENCES

[1] R. Hassan, A. Harris, N. Topham, A. Efthymiou, Synthetic Trace-Driven
Simulation of Cache Memory. AINAW, May 2007.

[2] Y. Chen, J. Cong, G. Reinman, HC-Sim: A fast and exact L1 cache sim-
ulator with scratchpad memory co-simulation support. CODES+ISSS,
Oct. 2011.

[3] A. Jaleel, R. S. Cohn, C. Luk, and B. Jacob. CMP$im: A Pin-based
on-the-fly multi-core cache simulator. MoBS, 2008

[4] M. S. Haque, R. G. Ragel, J. A. Ambrose, S. Radhakrishnan, S.
Parameswaran, DIMSim: a rapid two-level cache simulation approach
for deadline-based MPSoCs. CODES+ISSS, 2012.

[5] P. S. Magnusson, M. Christensson, J. Eskilson, D. Forsgren, G. Hllberg,
J. Hgberg, F. Larsson, A. Moestedt, and B. Werner. Simics: A Full
System Simulation Platform. Computer 35,February 2002.

[6] N. Binkert, B. Beckmann, G. Black, S. K. Reinhardt, A. Saidi, A. Basu,
J. Hestness, D. R. Hower, T. Krishna, S. Sardashti, R. Sen, K. Sewell,
M. Shoaib, N. Vaish, M. D. Hill, and D. A. Wood. The gem5 simulator.
SIGARCH Comput. Archit., August 2011.

[7] J. Ceng, W. Sheng, J. Castrillon, A. Stulova, R. Leupers, G. Ascheid,
H. Meyr. A high-level virtual platform for early MPSoC software
development. CODES+ISSS, September 2009.

[8] H. Posadas, J. A. Adamez, E. Villar, F. Blasco, F. Escuder. RTOS
modeling in SystemC for real-time embedded SW simulation: A POSIX
model. DAES, December 2005.

[9] A. Bouchhima, I. Bacivarov, W. Yousseff, M. Bonaciu, A. Jerraya.
Using abstract CPU subsystem simulation model for high level HW/SW
architecture exploration. ASPDAC, January 2005.

[10] G. Schirner, A. Gerstlauer, R. Dömer. Fast and Accurate Processor
Models for Efficient MPSoC Design. TODAES, February 2010

[11] A. Pedram, D. Craven, A. Gerstlauer. Modeling cache effects at the
transaction level. IESS, Sep. 2009.

[12] H. Posadas, L. Dı́az, E. Villar. Fast data-cache modeling for native co-
simulation. ASP-DAC, Jan. 2011.

[13] S. Stattelmann, G. Gebhard, C. Cullmann, O. Bringmann, W. Rosenstiel.
Hybrid source-level simulation of data caches using abstract cache
models. DATE, March 2012.

[14] F. Ghenassia. Transaction-Level Modeling with SystemC: TLM Concepts
and Aplications for Embedded Systems. Springer, 2005.

[15] Z. Wang, J.Henkel “Accurate source-level simulation of embedded
software with respect to compiler optimizations.” DATE, 2012.

[16] A. Bouchhima, P. Gerin, F. Ptrot “Automatic instrumentation of embed-
ded software for high level hardware/software co-simulation.” ASP-DAC,
2009.

[17] N. Nethercote, J. Seward. Valgrind: A Framework for Heavyweight
Dynamic Binary Instrumentation.

[18] A Cache-Memory and TLB Calibration Tool. Available online:
http://homepages.cwi.nl/∼manegold/Calibrator/.

