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Abstract

Communication design for SoCs poses the unique challenges in order to cover a wide range of architectures while offering
new opportunities for optimizations based on the application specific nature of system designs. In this report, we propose
automatic generation of communication topology from partitioned, scheduled architecture model where system components
communicate through message passing channels. Automatic model refinement for network topology enables rapid design
space exploration in order to achieve the required productivity gains. The experimental results show the benefits of our
methodology and demonstrate the effectiveness of our automatic model generation for communication design.
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Network Synthesis for SoC

Dongwan Shin, Andreas Gerstlauer and Daniel Gajski
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Abstract

Communication design for SoCs poses the unique chal-
lenges in order to cover a wide range of architectures while
offering new opportunities for optimizations based on the
application specific nature of system designs. In this report,
we propose automatic generation of communication topol-
ogy from partitioned, scheduled architecture model where
system components communicate through message passing
channels. Automatic model refinement for network topology
enables rapid design space exploration in order to achieve
the required productivity gains. The experimental results
show the benefits of our methodology and demonstrate the
effectiveness of our automatic model generation for com-
munication design.

1. Introduction

With the ever increasing complexity of system level de-
signs and the pressure of the time-to-market in the design
of System-on-Chip (SoC), communication between compo-
nents is becoming more and more important. Communica-
tion design for SoCs poses the unique challenges in order to
cover a wide range of architectures while offering new op-
portunities for optimizations based on the application spe-
cific nature of system designs.

We propose refinement-based communication design
methodology which is a set of models and transformations
between models that subdivide the design flow into smaller,
manageable steps as shown in Figure1. With each step, a
new model of the design is generated, where a model is a
description of design at certain level of abstraction, usually
captured in system level design languages. The abstraction
level of each model is defined by the amount of implemen-
tation detail in terms of structure or order.

In each of tasks, users can make design decisions manu-
ally by using an interactive graphical user interface (GUI),
for example, while transformations from one model into
another can be accomplished automatically by refinement
rules or model guidelines. After each refinement step in the
synthesis flow, a corresponding model of system is gener-

refinement

architecture model

modeln

modeln+1

bus functional model

GUI

analysis

decision-making

library
design decisions

Figure 1. Refinement-based communication design
methodology.

ated, which means that design decisions made in each de-
sign task are reflected in the generated models.

Finally, metrics estimation, designers have to simulate
generated model to verify the functionality and to estimate
design metrics. In general, the design metrics are not satis-
factory in the first trial. Therefore, many iterations of these
tasks may be needed for each design step.

Figure 2 shows the communication synthesis
flow [Ger03] which is divided into two tasks: net-
work synthesisandcommunication link synthesis. During
the network synthesis, the topology of communication
architecture is defined and abstract message passing
channels between system components are mapped into
communication between adjacent communication stations
(communicating system components, e.g. processing
elements, communication elements) of the system archi-
tecture. The network topology of communication stations
connected by logical link channels is defined, bridges and
other communication elements are allocated as necessary,
abstract message passing channels are routed over sets of
logical link channels. The result of the network synthesis
step is a refined communication link model of the system.
The communication link model represents the topology
of communication architecture where components and
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additional communication stations communicate with
logical link channels.

GUI

communication
link refinement

network
refinement

architecture model
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communication
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decision-making

network
protocol
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media
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bus allocation/
protocol selection/

connectivity/
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interrupt mapping/

arbitration

network design

communication
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Figure 2. Communication synthesis flow.

There have been some reasons that we have chosen com-
munication link model as an intermediate model in commu-
nication synthesis flow [Ger03]. First, designer would like
to see the topology of communication architecture and es-
timate the performance of a communication architecture at
early stage of communication synthesis. Secondly, the sim-
ulation speed of communication link model is almost same
as that of architecture model according to experimental re-
sult in [Ger03]. Finally, communication delay of communi-
cation link model is not as accurate as that of bus functional
model but the accuracy of communication delay in commu-
nication link model can be improved by efficient and accu-
rate estimation tools.

Communication link synthesisis followed by network
synthesis. Logical links channels between adjacent stations
are then grouped and implemented over an actual commu-
nication medium (e.g. system busses). During communica-
tion link synthesis, each group of logical link channels can
be grouped, and be implemented separately onto a commu-
nication medium with associated protocol. The parameters
such as addresses and interrupts for synchronization are as-
signed to each logical link channel.

As a result of the communication synthesis process, a
bus functional model of a system is generated. The bus
functional model is a fully structural model where compo-
nents are connected via pins and wires and communicate

in a cycle-accurate manner based on media protocol timing
specifications. In the backend process, behavioral descrip-
tions of computation and communication in each compo-
nent of the bus functional model are then synthesized into
targeted hardware or software implementations.

In this report, we will take closer look at network synthe-
sis. The rest of the report is organized as follows: Section2
gives an overview of related works. In Section3, we will
show the network synthesis flow. Section4 will present
tasks of network refinement followed by the experimental
results in Section5 and finally we will conclude the report
with a summary.

2. Related Works

Yen and Wolf [YW95] introduced an iterative approach
to generate communication architecture. From initial so-
lution, they find the possible reallocation of a process to
another processing element. They choose either a process
reallocation or a communication reallocation according to
sensitivity analysis during each iteration. When no reallo-
cation remains feasible, new bus is added into the design,
in addition to new processing element. These steps are re-
peated until no reallocation is possible. In this way, they can
address the problem of heterogeneous processors connected
via arbitrary bus topologies. However they only assume an
abstract protocol based on processor priorities.

Gasteier and Glesner [GG96] [GMG98] presented an ap-
proach to automatic generation of communication topolo-
gies on system-level. Given a set of processes communi-
cating via abstract send and receive functions and detailed
information about the communication requirements of each
process, they first perform a clustering of data transfers.
This results in groups of transfers suited to share a com-
mon bus. For each of these clusters, they execute a bus
generation algorithm which schedules bus accesses in order
to minimize the total communication costs. Other than pre-
vious approaches, they infer RAM, if necessary, and con-
sider data-dependencies as well as periodic execution of
processes.

Ortega and Borriello [OB98] introduced a communi-
cation synthesis algorithm focusing on implementing the
communication links between communicating processes in
distributed embedded systems. They started from a given
mapping of processes to execution units along with a map-
ping of port connections to busses. They generated the com-
munication patterns and a real-time operating system for
each processor. In their approach, an analysis of different
communication structures and process mapping are not per-
formed automatically.

Lahiri et al. [LRD00] automatically mapped the various
communications between system components onto a tar-
get communication architecture template and configures the
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communication protocols of each channel in the architec-
ture in order to optimize the system performance by taking
the bus conflict into account.

However, most of research work has been on automatic
decision-making on communication topology of system ar-
chitecture. There has been little attention paid to automatic
generation of network topology of communication architec-
ture from the partitioned, scheduled architecture model.

3. Refinement-based Network Synthesis

Within our SoC communication design framework, the
network synthesis implements end-to-end communication
semantics between system components which is mapped
into point-to-point communication between communication
stations of network architecture [Ger03]. The result of net-
work synthesis is a refined communication link model of the
system. In the communication link model, system compo-
nents and other communication stations communicate via
logical link channels that carry streams of bytes between
directly connected components.

The network synthesis task consists of implementa-
tions for presentation, session, transport, and network lay-
ers [Ger03]. The presentation layer is responsible for data
formatting. It converts abstract data types in the applica-
tion to blocks of ordered types as defined by the canonical
byte layout requirements of the lower layers. For example,
the presentation layer takes care of component-specific data
type conversions and endians (byte order) issues.

The session layer implements end-to-end synchroniza-
tion to provide synchronous communication as required
between system components in the application. Further-
more, it is responsible for multiplexing messages of differ-
ent channels into a number of end-to-end sequential mes-
sage streams.

The transport layer implements end-to-end flow control
and error correction to guarantee reliable transmission. In
standard bus-based SoC design, stations and links are reli-
able and then transport layer need not be implemented.

Finally, the network layer is responsible for routing and
multiplexing of end-to-end paths over individual point-to-
point logical links. As part of the network layer, additional
communication stations are introduced as necessary, e.g. to
bridge two different bus systems. The communication sta-
tions split the system of connected system components in
architecture model into several bus subsystems. Assuming
reliable stations and logical links, routing SoCs is usually
done statically, i.e. all packets of a channel take the same
fixed, pre-determined path through the system.

Network refinement tool takes three inputs: input archi-
tecture model, design decisions and network library. With
these inputs, the network refinement tool produces an out-
put model that reflects the topology of communication ar-

chitecture of the system. In the output model, the top level
of the design consists of system components and logical link
channels between communication stations. The logical link
channes themselves are refined to their bus implementation
during communication link synthesis.

3.1. Input Model: Architecture Model

The architecture model is the starting point for commu-
nication design and is the result of the architecture explo-
ration. In the architecture model, system components com-
municate via message-passing channels. The communica-
tion design process gradually implements these channels
and generates a new model for each layer of communica-
tion functionality inserted.

The architecture model follows certain pre-specified se-
mantics. It reflects the intended architecture of the system
with respect to the components that are present in the de-
sign. Each component executes a specific behavior in par-
allel with other components. Communication inside a com-
ponent takes place through local memory of that compo-
nent, and is thus not a concern for communication syn-
thesis. Inter-component communication is end-to-end and
takes place through abstract channels that supportsendand
receivemethods.

For each variable communicated between system com-
ponents, the model contains corresponding typed message-
passing channels. Communication between components
can be modeled via three schemes as shown in Figure3. In
the case of two way blocking communication as shown in
Figure3, both the sender and receiver must be blocked until
the transaction has completed. This mechanism is modeled
using events and blocking wait statements. As we can see,
the sender writes the data on a shared variable in the channel
and follows up by notifying the receiver. The receiver can
not read the data until it gets the sender’s notification. This
guarantees the safety of the transaction. Theackevent guar-
antees that the sender cannot rewrite on the channel until
the previous transaction has completed. Such a mechanism
is deterministic.

In Figure 3, the one way blocking mechanism is used
that ensures that the receiver cannot read the data until it
is written by the sender. However, there is no way to stop
the sender from re-writing that data in a subsequent itera-
tion. The non-blocking mechanism shown in Figure3 is
completely non-deterministic. These mechanisms are typi-
cally used in real time systems where a time out strategy is
employed. In the thesis, we will look only at refinement of
two way blocking communication because it is used for un-
buffered data transfer and can be implemented directly over
standard bus-based communication protocols. The other
two mechanisms can be implemented easily once we have
support for two way blocking communication [Pen04].
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Figure 3. Communication mechanisms in abstract
channels.

For example, the architecture model after architecture
exploration is shown in Figure4. During the architec-
ture exploration, the application has been mapped onto
a typical system architecture consisting of a processor
(DSP), a custom hardware (HW1), an FPGA (HW2) and
a system memory (MEM). Inside DSP, tasks are dynami-
cally scheduled under the control of an operating system
model [GYG03] [YGG03] that sits in an additional oper-
ating system shell of the processor (DSPOS). If a proces-
sor needs no operating system, the operating system shell is
empty.

DSP_OS HW1 HW2

DSP

A1
A2

B1
B2

C1

C2

MEM

MEM

v1
v2

sync

sync

OS Model

C3

C2

C1

Figure 4. Input model: architecture model.

In the architecture model, the shared memory compo-
nent is modeled as a special behavior with interfaces. The
memory behavior encapsulates all variables mapped into

the shared memory component. At its interface, the mem-
ory behavior provides two methods for each variable to read
and write the value of the variable from/to memory.

3.2. Output Model: Communication Link Model

The communication link model is an intermediate model
for communication design and is the result of the network
synthesis and reflects communication topology of the com-
munication architecture. Also, communication link model
serves as specification of communication link synthesis
which is followed by network synthesis. In the commu-
nication link model, we can see system components com-
municating via logical link channels which still implements
message passing semantics.

For each variable communicated between components,
the implementations of upper layers of protocol stack such
as presentation layer, session layer, transport layer and net-
work layer are inlined into the corresponding system com-
ponents. In the communication link model, end-to-end ap-
plication channels have been replaced with point-to-point
logical link channels between system components that will
later be physically directly connected through bus wires
during communication link synthesis. In the communica-
tion link model, communication elements such as bridges,
transducers are inserted from network protocol library and
synthesized to perform protocol translation between two
different busses.

M_TX

DSP_OS HW1 HW2

DSP

A1 A2

B1
B2

L1

C1

C2

MEM_LK

MEM

v1
v2

sync

sync

OS Model

H_TX

L3

L2

Figure 5. Output model: communication link model.

For example, the communication link model after net-
work synthesis is shown in Figure5. During the network
synthesis, the application channels (c1, c2, c3 andMEM)
are inlined into the behavior of the corresponding system
components and also the implementations of presentation
layer are inserted and connected with the application layer
adapter channels in the model. The application channels (c1
andc2) which are accessed sequentially inDSPandHW2,
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have been grouped but mapped onto two different busses
(DSPBusandHBus). A bridge (H TX) is introduced to per-
form protocol translation betweenDSPBusandHBus. The
communication betweenDSPandHW2 is routed over logi-
cal link channels,L1 andL2 via H TX. The communication
by message passing channelc1 betweenDSPandHW1 is
mapped overL3.

Also a system memory (MEM) has its own interface pro-
tocol (MBus) which has been connected to theDSPBusand
therefore, a transducer (M TX) for protocol translation be-
tween them is necessary. The transducer is modeled by a
special behavior with interfaces. At its interface, the trans-
ducer behavior provides two methods (send/receive)to send
and read the value of variable to/from memory.

But memory component model has to be refined down to
an accurate representation of the byte layout. All variables
stored inside memory are replaced with and grouped into a
single array of bytes. The memory component is still mod-
eled as a special behavior with an interface which provides
two methods (read/write) to access each variable mapped
onto it with the offset of the variable in the memory.

3.3. Network Protocol Library

The network protocol library is a set of channels that rep-
resent the protocols of system busses and behaviors that rep-
resent communication elements on the system busses. The
channels for bus protocols contain attributes of the busses
including the name of associated protocols, address width,
data width, etc. The actual implementation of bus protocols
is defined in media protocol library which will be used in
communication link synthesis. The behavior for communi-
cation elements contains also the attributes of the communi-
cation elements including name, type of the communication
elements and bus protocols associated.

3.4. Design Decisions

The refinement engine works on directions given to it
by design decisions. The design process can either be au-
tomated or interactive as per user’s methodology. During
network synthesis, design decisions includeallocation of
system busses and protocol selection, selection of commu-
nication elements, the connectivity definition between com-
ponents and busses, the mapping of abstract communica-
tion to busses, andbyte layout of system memories. Based
on these decisions, the refinement engine maps the applica-
tion channels onto logical links and imports the templates
of the required communication elements from the network
protocol library and synthesizes the implementations of the
communication elements and finally generates communica-
tion link model.

For the purpose of our implementation, we annotated
architecture model with the set of design decisions. The
refinement tool then detects and parses these annotations
to perform the requisite model transformations. Based
on these decisions, the refinement engine imports the re-
quired communication elements from the network protocol
library and produces a communication link model that re-
flects communication topology of the bus architecture of the
system. In the communication link model, the top level of
the design consists of system components and logical link
channels to connect system components.

3.4.1 Bus Allocation and Protocol Selection

In bus allocation step, the number of system busses is de-
termined and the associated protocol to each bus need to
be decided. For bus allocation and protocol selection, the
communication traffics between components, the bus band-
width and concurrency of channel accesses in the compo-
nents need to be considered. However, for components with
fixed, predefined interface protocols, the bus allocation and
protocol selection are automatically performed on the fly
from network protocol library. For example, ARM proces-
sor is included in a design, then AMBA bus interface should
be allocated during bus allocation and protocol selection.

Figure6 show the screenshot of the bus allocation and
communication element selection in our SoC design envi-
ronment. In the screenshot,BussesandCEs in a Bus Allo-
cation Windoware for allocation of busses and communi-
cation elements. During the bus allocation, GUI shows pa-
rameterizable attributes such as bit width, bandwidth, and
baud rate of the selected bus.

Figure 6. A screenshot of bus allocation and commu-
nication element selection.
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3.4.2 Communication Element Selection

As part of the network layer, additional communication ele-
ments are introduced as necessary, e.g. to create and bridge
subnets using communication elements, splitting the system
of directly connected components with message passing
channels in the architecture model into several bus groups.

The communication elements include bridges connect-
ing two different busses for example, AMBA bus and PCI
bus. Also, for a shared memory access, interface protocol
of the memory is usually not compatible to the system bus,
then the memory interface controller need to be allocated.

During network refinement, the implementation of the
allocated communication elements is synthesized or taken
out of network protocol library. In the SoC design environ-
ment, the selection of communication elements is imple-
mented inBus Allocation Window.

3.4.3 Connectivity Definition

So far, we have allocated processing elements and storage
elements which have refined down to the component struc-
ture of a system architecture through architecture explo-
ration. Also, system busses and communication elements
through bus allocation and communication element selec-
tion are allocated. These system components need to be
connected to each other on the system busses in order to
transfer data to each other. Therefore, how system compo-
nents are connected to each other on the allocated system
busses need to be defined, in order words, topology of com-
munication architecture (connectivity) need to be defined.
Then, messages will be routed over the topology of commu-
nication architecture to perform transactions between com-
ponents.

The connectivity definition is implemented graphically
or tabular form as shown in Figure7. In the screenshot,
SRAM is assigned toMBus protocol, which becomes the
interface protocol ofSRAM.

3.4.4 Channel Mapping

Now, the topology of communication architecture has been
defined, and then message passing channels on top of a de-
sign in architecture model must be mapped to the allocated
system busses and communication elements. For example,
channelsc1 andc2 in Figure4 will be mapped toDSPBus
and HBus and communicate through communication ele-
mentH TX. This channel mapping is decided by users with
the help of GUI. The mapping information is annotated into
its corresponding channel in a design.

Figure 7. A screenshot of bus mapping.

3.4.5 Byte Layout of Memory

As part of presentation layer implementation, the shared
memory component model has been refined down to an ac-
curate representation of the byte layout. All variables stored
inside memory are replaced with and grouped into a single
array of bytes. Layout and addressing of variables inside the
memory need to be defined based on the lifetime analysis of
each variable and the alignment of the chosen target mem-
ory component. For example, if two variables have non-
overlapping lifetimes, they can be stored in the same mem-
ory locations, since the same memory space can be reused
for the two arrays [PDN99].

4. Tasks for Network Refinement

Network refinement tool refines the input, partitioned,
scheduled architecture model into a communication link
model that reflects communication topology of a system.
The refinement process can be divided into five steps,
namely,channel grouping, IP/Memory link model gener-
ation and insertion communication element synthesis and
insertion, protocol stack generation and insertion, andlink
layer generation and instantiation, each can be further di-
vided into sub-steps.

In this section, we illustrate the network refinement pro-
cess through a simple yet typical example as shown in Fig-
ure4. We assume that three busses (DSPBusfor DSP, HBus
for HW2andMBusfor MEM) are allocated and the connec-
tivity is defined as shown in Figure8.
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Figure 8. Connectivity definition for Figure4.

4.1. Channel Grouping

Once communication topology for a system is defined,
abstract transactions by message passing channels between
components in the architecture model need to be mapped
onto the communication topology of the system. If all trans-
actions between two components are sequential, therefore,
no concurrent communication can be multiplexed over logi-
cal links. In other words, sequential transactions are merged
over single streams as much as possible in order to reduce
number of logical link channels in the system.

Let us look at the following example in Figure9. Three
double handshake channels are used for the message pass-
ing between three components and are mapped into one bus.
OnPE1, A1 is followed by a parallel composition ofB1and
C1 while onPE2, A2 is followed byB2 andC2 is executed
on PE3. ChannelcB and cC can not be shared, because
the execution order betweenB1 andC1 is not known in ad-
vance. If we sharedcB andcC, thenB1 would potentially
receive data fromC1which was intended forC1. However,
we can safely sharecA andcB because we know thatA1 is
always executed first.

With this observation, we can turn the channel grouping
problem into agraph coloring problem[CLR90] as follows:

Given: Conflict graphG(V,E) for each component, where
the verticesV correspond to channels which are
mapped to a same bus and the edgesE represented
concurrency between channels.

Determine: Minimum number of channels concurrent

The graph coloring problem is NP-complete [CLR90].
Heuristic graph coloring algorithms can be used here. First
we can build a conflict graph for each component based on
the sequentiality and parallelism analysis on the channels.

A1

B1

C1

A2

B2

C2

cA

cB

cC

PE1 PE2

PE3

Figure 9. An example for channel grouping.

We define that channelc1 and channelc1 are conflict to
each other, if channel access ofc1 executes in parallel with
the that ofc2 in a component.

Algorithm 1 shows how to build conflict graph for a PE
from a design. The input to Algorithm1 is the internal rep-
resentation from the whole designIRDesign. First, channels
C that are connected to each componentBPE are the ver-
tex of the conflict graph for each component (line 3 – line
5). In order to find whether or not accesses for the channels
are executed concurrently, we look into all child behaviors
inside the component and see that the behavioral composi-
tions of the child behaviors are parallel or sequential (line
7). If the channels are accessed in parallel in each compo-
nent, the edge between the channels are inserted (line 8).

Algorithm 1. BuildConflict (IRDesign)

1: for all BPE ∈ IRDesigndo
2: GPE(V,E) = {}
3: for all C∈ IRDesigndo
4: if IsPort (C, BPE) then
5: AddVertex (GPE(V,E), vC)
6: for all v∈ GPE(V,E) do
7: if IsExecutedInParallel (C, v) then
8: AddEdge (GPE(V,E), {vC,v})
9: end if

10: end for
11: end if
12: end for
13: end for

The conflict graphs of our simple example in Figure9
are shown in Figure10. The channelscA, cB andcC are
connected to ports of thePE1and theB1 for the channelcA
andC1 for the channelcC are executed in parallel onPE1.
Thus, vertexcB andcC have an edge in the conflict graph
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of PE1.

cA

cB cC

cA

cB

cC

(a) PE1 (b) PE2 (c) PE3

Figure 10. Conflict graph for components for Figure9.

Now, we have conflict graphs for each component and
then we have to merge two conflict graphs of two compo-
nents in order to get a conflict graph where graph coloring
is performed. Algorithm2 shows the algorithm to merge
the conflict graphs of two components. First, merging step
starts a common graphGPE12(V,E) with no vertex and edge
(line 2). The common set of vertices of two conflict graphs
of two components are added into the common graph (line
3 – line 4). Then, if either of the conflict graphs for each
component has an edge between newly added vertexvPE1

or vPE2 and verticesv in the common graph, the edgevPE1,v
or vPE1,v is inserted (line 5 – line 7).

Algorithm 2. MergeGraph (GPE1(V,E), GPE2(V,E))

1: for all vPE1 ∈ GPE1(V,E), vPE2 ∈ GPE2(V,E) do
2: GPE12(V,E) = {}
3: if vPE1 == vPE2 then
4: AddVertex (GPE(V,E), vPE1)
5: for all v∈ GPE12(V,E) do
6: if ExistEdge (GPE1(V,E), {vPE1,v}) || Exist-

Edge (GPE2(V,E), {vPE2,v}) then
7: AddEdge (GPE12(V,E), {vPE1,v});
8: end if
9: end for

10: end if
11: end for

After merging the conflict graphs of two components, the
result graphs are shown in Figure11

cA

cB

cC

(a) PE1 and PE2 (b) PE1 and PE3

Figure 11. Merged graphs of the conflict graphs in
Figure10.

Finally, we have to color each merged graphs in order to

get the minimum number of channels between two compo-
nents. We can use any heuristic algorithm for graph color-
ing [CLR90]. In Figure 11, we can get one color in each
merged graph. Therefore, the result model after channel
grouping for Figure9 is shown in Figure12. The chan-
nel cA andcB betweenPE1 andPE2 will be grouped and
shared in the channelcAB in Figure11.

A1

B1

C1

A2

B2

C2

cAB

cC

PE1 PE2

PE3

Figure 12. Design after channel grouping for Figure9.

The two channelsc1andc2as shown in Figure4 can be
merged because accesses to the channels in two component
DSPand componentHW2are sequential. In the communi-
cation link model as shown in Figure5, the two logical link
channelsL1 andL2 reflects sharing of two channels (c1and
c2).

4.2. IP/Memory Link Model Generation and Inser-
tion

During network synthesis, a purely behavioral IP com-
ponent has been replaced with a model that encapsulates a
structural model of the component in a wrapper that imple-
ments all layers of communication with the IP. Since the
IP’s communication protocol are pre-defined and fixed, its
communication not be designed arbitrarily and the wrapper
provides the necessary functionality to be gradually inserted
into the IP’s communication partners as design progresses.

For a memory component, all variables stored inside
memory are replaced with and grouped into a single array of
bytes (line 4). Again the behavior model for memory com-
ponent implementreadandwrite interface so that the com-
ponents accessing the memory can use the interface method
calls (IMemLinkin line 2, and line 6 – line 11).

For example, the memory component (MEM) in the ar-
chitecture model is replaced with its link model (MEM LK)
in the communication link model as shown in Figure5.
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Figure 13. Memory model in presentation layer.

1 # d e f i n e MEM SIZE 1024
2 b e h a v i o r Memory (vo id ) imp lements IMemLink
3 {
4 cha r mem[MEMSIZE ] ;
5 vo id main (vo id ) { }
6 vo id read ( uns igned long i n to f f s e t , vo id ∗

da ta , uns igned long i n t l e n ){
7 memcpy ( da ta , mem +o f f s e t , l e n ) ;
8 }
9 vo id w r i t e ( uns igned long i n t o f f s e t , vo id ∗

da ta , uns igned long i n t l e n ){
10 memcpy (mem + o f f s e t ,da ta , l e n ) ;
11 }
12 } ;

4.3. Protocol Stack Generation and Insertion

The network synthesis implements presentation, session,
transport, and network layers. In SoC communication,
the session, transport and network layer are mostly empty.
Thus, we will insert the implementation of presentation
layer into each component.

4.3.1 Presentation Layer

The presentation layer is responsible for data formatting. It
converts abstract data types in the application to blocks of
ordered types as defined by the canonical byte layout re-
quirements of the lower layers as shown in Figure14. If the
bit width of a variable is smaller than the bus width, then
the variable can be assigned, for example, to the lower bits
of the bus. If the bit width of a variable is greater than the
bus width, then the words have to be transfered in different
bus cycles, for example, in a sequence of bus transfers. The
sequence can be written using little endian or big endian
assignment. Little endian assigns the least significant bits
(LSB) to the lowest address. In contrast, big endian assign
the most significant bits (MSB) to the lowest address. For
example, the presentation layer takes care of component-
specific data type conversions and endians (byte order) is-
sues (line 6 and line 10)

In the communication link model, the model for com-
ponents contains presentation layer implementations in the
form of adapter channels that provide the service (inter-
face) of the presentation layer to the application on one
side (IPresent), while connecting and calling network layer
methods on the other side (INetwork networkin line 1). The
presentation layer performs data formatting for every mes-
sage data type found in application (integer to void pointer
type conversion in line 5 and line 11). Therefore, each ap-
plication layer adapter channel can be connected to cor-
responding presentation layer adapter one by one. Since

Figure 14. Presentation layer adapter channel for gen-
eral bus access.

1 channe l c I n t P r e s e n t (INetwork network ) imp lements
I I n t P r e s e n t

2 {
3 vo id r e c e i v e ( i n t∗ v a l ) {
4 u i n t 3 2 t d a t a ;
5 network .r e c e i v e (&data , s i z e o f (d a t a ) ) ;
6 ∗ v a l = n t o h l ( d a t a ) ;
7 }
8 vo id send ( i n t v a l ) {
9 u i n t 3 2 t d a t a ;

10 d a t a = h t o n l ( v a l ) ;
11 network . send (& data , s i z e o f (d a t a ) ) ;
12 }
13 } ;

the presentation layer becomes a part of the application, its
adapter channels are instantiated inside the application of
each component.

The presentation layer inside the component accessing a
global, shared memory are responsible for converting vari-
ables in application into size and offset for shared memory
accesses as shown in Figure15. For example, The first argu-
ments of interface method calls (line 5, line 11, line 15, line
21) to the memory behavior are aligned based on the size of
the variables. In case of array accesses in the application,
the presentation layer for the memory takes the indices of
arrays as arguments of the interface methods (line 13, line
18). The indices will be added to base address of the ar-
ray in the memory when the presentation layer accesses the
memory behavior through interface method calls (line 15,
line 21).

4.3.2 Protocol Stack Insertion

The protocol stack insertion process is shown in Algo-
rithm 3. The input to Algorithm3 is the internal repre-
sentation for the whole designIRDesign. Each component
behaviorBPE inside the design is checked if it is software
component or hardware component. If the component is
software, the presentation layers (Cpresent) as shown in Fig-
ure14and Figure15if the component accesses memory, are
created with the corresponding operating system (OS) inter-
face port (Pos) inside its application shell (BPEapp) (line line
4 – line 5). Also OS adapter channel (Cos) will be instanti-
ated with the link layer channel interface port (Plink) inside
the OS shell (BPEOS) (line 3, line 6). In case of the presen-
tation layer for memory in PE, the memory interface port
(Pmem) will re-used to create presentation layer for memory
(Cmemory) inside its application shell (BPEapp) (line 7 – line
10). In the same way, the presentation layers for the hard-
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Figure 15. Presentation layer adapter channel for
memory access.

1 channe l cPresentMem (IMemLink shm ) imp lements
IMemApp

2 {
3 i n t read A ( vo id ) {
4 i n t v a l ;
5 shm . read (0 u l l , &va l , s i z e o f ( i n t ) ) ;
6 r e t u r n v a l ;
7 }
8 vo id wr i te A ( i n t d a t a ) {
9 i n t v a l ;

10 v a l = d a t a ;
11 shm . w r i t e (0 u l l , &va l , s i z e o f ( i n t ) ) ;
12 }
13 cha r∗ read B ( uns igned i n t i dx ) {
14 cha r∗ v a l ;
15 shm . read (4 u l l + idx , &va l , s i z e o f ( cha r ) ) ;
16 r e t u r n v a l ;
17 }
18 vo id w r i t e B ( cha r∗ da ta , uns igned i n t i dx ){
19 cha r∗ v a l ;
20 v a l = d a t a ;
21 shm . w r i t e (4 u l l + idx , &va l , s i z e o f ( cha r ) ) ;
22 }
23 } ;

ware component can be created inside theBPE (line 11 –
line 18).

For example, DSP component (DSP) is connected to five
channels including memory components in the architecture
model. The five presentation layers are generated and in-
lined into the DSP component and connected with applica-
tions in the communication link model as shown in Figure5.

4.4. Communication Element Synthesis and Inser-
tion

As part of network synthesis, communication elements
might have to be inserted into the system architecture. The
communication elements that translate between incompati-
ble bus protocols will act as bridges connecting two busses
or as bus interfaces for components with fixed, predefined
protocols. Like the other components, the behaviors of the
communication elements are instantiated and added to the
set of concurrent, non-terminating components at the top
level of the design.

If a communication element is allocated from the pro-
tocol library, its functionality is not implemented yet. We
need to fill functionality for the communication element by
synthesis.

Algorithm 3. InsertStack (IRDesign)

1: for all BPE ∈ IRDesigndo
2: if BPE == SW then
3: CreatePort (BPEOS, Plink)
4: CreatePort (BPEapp, Pos)
5: CreateInstance (BPEapp, Cpresent, Pos)
6: CreateInstance (BPEOS, Cos, Plink)
7: if hasMemoryPort (BPE) then
8: Pmem= FindMemoryPort (BPE)
9: CreateInstance (BPEapp, Cmemory, Pmem)

10: end if
11: else ifBPE == HW then
12: CreatePort (BPE, Plink)
13: CreateInstance (BPE, Cpresent, Plink)
14: if hasMemoryPort (BPE) then
15: Pmem= FindMemoryPort (BPE)
16: CreateInstance (BPE, Cmemory, Pmem)
17: end if
18: end if
19: end for

4.4.1 Bridge

Figure16 shows the behavioral model of a bridge used in
communication link model. The bridge has the two inter-
face ports for two different busses (bus1andbus2). In the
most case, the bridge will listen on both sides simultane-
ously in order to handle transfers dynamically as they come
in. Therefore, the bridge consists of two parallel child be-
haviorsForwardBhvrandBackwardBhvr, each of which is
responsible for transferring data in one direction and the
other direction.

The complete messages are received on one side,
buffered in the bridge’s local memory (forward[BUF SIZE]
in line 4,backward[BUFSIZE] in line 14), and sent out on
the other side. The variables inside the behaviors will model
the buffer which will be further implemented to FIFO queue
or memory later.

4.4.2 Memory Interface Controller

Since memory components have their own fixed interface
protocol, they might not be directly connected to the sys-
tem bus. Memory interface controller, therefore, might be
inserted into communication link model during network re-
finement.

The interface of the memory interface controller should
be handled differently from bridge because link layer model
for memory is implemented by behavior with interfaces as
shown in Figure17. The memory interface controller copies
the channel interface methods (read andwrite methods) of
the link model of memory behavior (IMemLink in line 1).
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Figure 16. Bridge behavior in link Model.

1 # d e f i n e BUF SIZE 1024
2 b e h a v i o r ForwardBhvr (IBus1Link bus1 , IBus2Link

bus2 )
3 {
4 cha r fo rward [ BUFSIZE ] ;
5 vo id main (vo id ) {
6 wh i le ( t r u e ) {
7 bus1 . r e c e i v e (forward , BUF SIZE ) ;
8 bus2 . send ( forward , BUFSIZE ) ;
9 }

10 }
11 } ;
12 b e h a v i o r BackwardBhvr (IBus1Link bus1 , IBus2Link

bus2 )
13 {
14 cha r backward [ BUFSIZE ] ;
15 vo id main (vo id ) {
16 wh i le ( t r u e ) {
17 bus2 . r e c e i v e ( backward , BUFSIZE ) ;
18 bus1 . send ( backward , BUFSIZE ) ;
19 }
20 }
21 } ;
22 b e h a v i o r Br idge ( IBus1Link bus1 , IBus2Link bus2 )
23 {
24 ForwardBhvr Forward ( bus1 , bus2 ) ;
25 BackwardBhvr Backward ( bus1 , bus2 ) ;
26 vo id main (vo id ) {
27 par {
28 Forward . main ( ) ;
29 Backward . main ( ) ;
30 }
31 }
32 } ;

Inside interface methods, the memory interface controller
invokes the link layer interface methods (line 5, line 8).

Figure 17. Memory interface behavior in link Model.

1 b e h a v i o r MemoryCtr l (IMemLink mem) imp lements
IMemLink

2 {
3 vo id main (vo id ) { }
4 vo id read ( uns igned long i n to f f s e t , vo id ∗

da ta , uns igned long i n t l e n ){
5 mem. read ( o f f s e t , da ta , l e n ) ;
6 }
7 vo id w r i t e ( uns igned long i n t o f f s e t , vo id ∗

da ta , uns igned long i n t l e n ){
8 mem. w r i t e ( o f f s e t , da ta , l e n ) ;
9 }

10 } ;

4.4.3 Communication Element Insertion

Algorithm 4 shows how to insert the synthesized communi-
cation elementsCEsinto the internal representationIRDesign

of a design. First, all bussesBusPE1, BusPE2, BusC con-
nected to components and channels are extracted from con-
nectivity of the design (line 2 – line 4). Basically, if the
busses which are mapped to channels and components, are
not compatible, we insert the corresponding communication
elementCEBusPE1,BusPE2, CEBusC,BusPE1 (line 5 – line 12).

On the other hand, the memory is connected through
its interface instead of channels in input model. Thus we
insert the memory interface controller behavior with inter-
face. The interface of the memory controller behavior will
be connected to its corresponding component and the origi-
nal memory will be connected to the interface of the mem-
ory controller behavior (line 17 – line 22).

For example, a memory interface controllerM TX be-
tweenDSPBusandMBusand a bridgeH TX betweenDSP-
BusandHBusare synthesized and instantiated in the com-
munication link model as shown in Figure5.

4.5. Logical Link Channel Generation

In the top level of behavior hierarchy, adjacent compo-
nents need to be connected with logical link channels which
implement two way blocking semantics as described in Sec-
tion 3.1 because the communication link model has to pre-
serve the original semantics of input architecture model.

The number of logical link channels are determined by
channel grouping algorithm as shown in Section4.1. For the
implementation, we reuse application channels in the archi-
tecture model which implement two way blocking seman-
tics and instantiate them to connect adjacent components in
the communication link model.
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Algorithm 4. InsertCEs (IRDesign, CEs)

1: for all channelC∈ IRDesigndo
2: BusC = mapped bus ofC
3: BusPE1 = mapped bus of the sender ofC
4: BusPE2 = mapped bus of the receiver ofC
5: if BusC 6= BusPE1 then
6: FindCE (CEs, CEBusC,BusPE1)
7: CreateInstance (IRDesign, CEBusC,BusPE1)
8: end if
9: if BusC 6= BusPE2 then

10: FindCE (CEs, CEBusC,BusPE2)
11: CreateInstance (IRDesign, CEBusC,BusPE2)
12: end if
13: end for
14: for all memoryM ∈ IRDesigndo
15: BusM = mapped bus ofM
16: BusPE = mapped bus of the partner ofM
17: if BusM 6= BusPE then
18: FindCE (CEs, CEBusM ,BusPE)
19: CreateInstance (IRDesign, CEBusM ,BusPE, M)
20: PM = FindMemoryPort (BPE)
21: ReplacePort (PM, CEBusM ,BusPE)
22: end if
23: end for

For example, three logical link channels (L1, L2 andL3)
are instantiated and connected with components including
an additional communication element (H TX) as shown in
Figure5.

5. Experimental Results

Based on the described methodology and algorithms, we
developed a network refinement tool, calledSpecC Network
Refinement (scnr), which takes architecture model and user
decisions for network synthesis and generates communica-
tion link model. For experiments, we generated architecture
models for different examples, JPEG and GSM Vocoder.

Table1 shows the characteristics of the partitioned archi-
tecture models of these examples. Different architectures
using Motorola DSP56600 processor (DSP), MIPS based
CPU (CPU) and custom hardware (HW) were generated
and various bus architectures were tested. In Table1, the
number of channels represents the number of message pass-
ing channels in top level of architecture model and the total
traffic refers to the amount of data exchanged between com-
ponents.

Table2 shows design decisions which are made during
network synthesis. In this table, channel mapping from ap-
plication channels to link channels is done by automatic net-
work refinement tool which implements the channel group-

ing as shown in Section4.1.
To compare against the manual effort of model refine-

ment, we have to measure the quality of the generated mod-
els. In order to be able to assess the model quality, we pro-
pose a set of quality metrics. Some of them are quantitative
but others are difficult to be quantized. These quality met-
rics are important to compare the automatic refinement with
manual refinement. Although the automatic refinement has
the advantage of error-proof and being fast, its output may
not be as good as the one produced manually by designers.
Therefore, we need to define good metrics to evaluate the
quality of the refinements.

The first metrics we can use is the code size of the mod-
els. In general, each refinement will increase the size of the
model because more details are added. The code size can
be quantitatively measured by the number of source lines.
Therefore, we can use (number of lines of original model
/ number of lines of refined model) as one of the quality
metrics. The smaller the ratio, the better the refinement. In
general, more model objects is equivalent to longer code.
So the creation of new objects should be avoided as much
as possible.

The second metrics we can use is the communication
overhead introduced by the refinement. As we explained
earlier, the channels accessed sequentially in the behaviors
can be merged, which improves the quality of the mod-
els. First, the merging process removes redundant channels
which cause the code size increase. In addition, merged
channels will reduce the number of channels for optimiza-
tion which users have to decide.

The final quality we can look at is the readability of the
refined model. It is difficult to define quantitatively the
readability. However, in general, the readability can be im-
proved by keeping the changes as small as possible and by
following a simple but self-explanatory naming convention.

Table 3 shows the results of network refinement. We
used the Lines of Code (LOC) metric and number of chan-
nels reduced during network refinement. The number of
channels are reduced based on channel grouping as shown
in third and fourth column in Table2 which turns out to re-
duce the number of lines of codes significantly in JPEG and
Vocoder example. Modified lines of code by automatic re-
finement is calculated bymodi f ied= inserted− library +
deleted(lines of code from library need to be subtracted
in calculation of modified lines of code) is in fifth column.
Even with a very optimistic estimate of 10 LOC per person
hour, manual refinement takes several weeks to get commu-
nication link models. Automatic refinement, on the other
hand, completes in the order of a second. In order to cal-
culate the productivity gain, we assume that design deci-
sions (bus allocation, protocol selection, channel mapping)
for network design by a designer take 5 minutes per bus. For
example, the productivity gain forarch1of JPEG is calcu-
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Table 1. Characteristics of the partitioned architecture models.

Examples Components Buses # Channels Traffic

JPEG
arch1 1 DSP, 1 HW 1 DSP Bus 7 7560
arch2 1 DSP, 1 DCT IP 1 DSP Bus 2 2160

Vocoder

arch1 1 DSP, 1 HW 1 DSP Bus 12 46944
arch2 1 DSP, 2 HW 1 DSP Bus 22 56724
arch3 1 DSP, 3 HW 1 DSP Bus 42 76284
arch4 2 DSP, 2 HW 1 DSP Bus 29 52160

Table 2. Design decisions for network synthesis.

Examples Channels Routing Medium (master/slave)

JPEG
arch1 all linkHW DSP Bus (DSP/HW)
arch2 all linkIP DSP Bus (DSP/IP)

Vocoder

arch1 all linkHW DSP Bus (DSP/HW)

arch2
12 channels linkHW1

DSP Bus (DSP/(HW1, HW2))
10 channels linkHW2

arch3
12 channels linkHW1

DSP Bus (DSP/(HW1, HW2, HW3))11 channels linkHW2
19 channels linkHW3

arch4
17 channels linkDSP1HW1

DSP1 Bus (DSP1, DSP2)/(HW1, HW2)
12 channels linkDSP2HW2

Table 3. Experiment results for network refinement.

Lines of Code Automatic Manual Productivity
Examples Arch Link Modified (inserted (lib)/deleted) refinement refinement gain

JPEG
arch1 2940 2969 133 (81 (0)/52) 0.08 s 13.3 hr 160
arch2 2717 2763 88 (66 (0) /22) 0.07 s 8.8 hr 106

Vocoder

arch1 10972 10980 170 (89 (0)/81) 0.27 s 17.0 hr 204
arch2 11386 11415 223 (176 (0)/147) 0.34 s 22.3 hr 268
arch3 11263 12276 559 (286 (0)/273) 0.43 s 55.9 hr 671
arch4 13986 14033 369 (208 (0)/161) 0.45 s 36.9 hr 221
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lated by 160= (13.3 hr.)/(0.08 sec.+1 bus×5 min.). With
this assumption, the productivity gain is around several hun-
dred times as a result of automatic refinement.

6. Conclusions

In this report, we presented a methodology and algo-
rithms to automatically generate an intermediate communi-
cation link model from architecture model of a system. The
network synthesis implements end-to-end communication
semantics between system components which is mapped
into point-to-point communication between communication
stations of network architecture. The implementations of
presentation layer for each data transaction are inlined into
components during the network synthesis.

Network refinement tool,scnr has been developed and
integrated into our SoC design environment. Experiments
were performed to validate this concept. Simulations were
done on input models and output models to ensure their
semantic equivalence. Using an industrial-strength exam-
ple, the feasibility and benefits of the approach have been
demonstrated and several hundred times of productivity
gain is obtained with network refinement tool.
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