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Algorithm/Architecture Co-Design of a Stochastic Simulation
System-on-Chip

Hyungman Park, Xiaohu Shen, Haris Vikalo, Andreas Gerstlauer
Computer Engineering Research Center

The University of Texas at Austin

Abstract

Computational models of gene regulatory networks
(GRNs) well describe the behavior of interactions
among molecular species over time. For larger
networks, the problem of state-space explosions makes
such approaches practically unsound. D. T. Gillespie
discovered a statistically identical way of simulating
the time evolution of species populations, leveraging a
Monte Carlo technique, so-called stochastic simulation
algorithm (SSA). The SSAs lend themselves accurately
well to stochasticity in GRNs and other biochemical
reaction systems in a well-stirred environment. The
computational burdens of SSAs, however, incur
immensely slow simulation run times needed to
simulate a biological time of interest. In this
report, we investigate various SSAs and introduce
a custom yet highly scalable stochastic simulation
system-on-chip (SSSoC) architecture which can achieve
greater speed-ups in the simulation. With careful
co-design of algorithms and microarchitectures, we
compare and predict the possible SSA candidates that
are well suited for hardware acceleration. Furthermore,
we show how the architecture can be operated in
different networking modes by exploiting coarse-grain
parallelism in the algorithms. Based on our theoretical
analysis, results show that our approach can achieve
orders of magnitude higher performance than software
simulations on a typical workstation. We believe the
initial studies carried out in this report render us some
guidelines toward the future research ahead of us.

1 Introduction

Gene regulatory networks (GRNs) are biological
systems in which biomolecular species, such as genes,
mRNA, and proteins, chemically interact with each
other through such an intricate process of gene

expression. DNA molecules in a gene contain all the
information to code for the amino acid sequences of
proteins and this information is transcribed into RNA
molecules, which in turn orchestrates the underlying
chemical mechanisms to translate the message sent
from DNA molecules into a protein—known as the
central dogma of molecular biology [1, 2]. Although
what the central dogma states is simple per se, all the
machineries involved in the process is not, and many
biochemists have attempted to unravel the structure
and dynamics of GRNs because this is the key to
advancing the knowledge of the functionality of micro-
and macro-organisms, to revealing mechanisms of
genetic diseases, and to supporting the drug discovery
process [3, 4].

Innovations in high throughput instrumentation
and experimental systems—e.g., DNA and protein
microarray—have aided the study of GRNs to a great
extent [2]. However, practically feasible experimental
studies provide relatively few data points compared
to the size of the network and are adversely affected
by strong biochemical and measurement noise. Due
to these detrimental effects, network structures and
their properties deduced from experimental results are
somewhat speculative. Extensive experimental studies
may potentially address this impediment, yet they are
both costly and time-consuming and, for very large
networks, simply not feasible at this time [5].

On the contrary, the development of computational
models for GRNs and other biochemical processes have
gained a lot of attention owing to its capability of
predicting the network behavior without the need of
extensive experimental studies [6, 7, 8, 9, 5, 10, 11].
Several computational models developed over the years
include Boolean and Bayesian networks, deterministic
differential equations, the chemical master equation [7],
and the chemical Langevin equation [8]. Among various
approaches, solving the chemical master equation using
a stochastic simulation algorithm (SSA), or Monte Carlo
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simulation technique, proposed by D. T. Gillespie has
shown promising results with accurate characterization
of the network model [11]. However, the Achilles’ heel
lies in its computational complexity and because of the
astronomical number of iterations required to simulate
biologically interesting phenomena over a reasonably
long period of simulated time, even this approach easily
becomes intractable with larger network systems [5].

Hence, improving the performance of the SSA is
critical to understanding the structure and dynamics of
GRNs and other biochemical systems. To this end,
biochemists and computer scientists have introduced
numerous enhanced versions of Gillespie’s SSA and
have built both software tools and hardware platforms
to perform the simulation of varying algorithms. In this
report, as part of the preliminary investigation into the
design of a novel stochastic simulation system-on-chip
(SSSoC), we review existing stochastic simulation
algorithms and evaluate the performance of their custom
hardware implementations to compare with software
counterparts.

The rest of the report is organized as follows:
Section 2 provides with mathematical formulations
of the dynamics of GRNs and briefly reviews
various versions of the SSA and their computational
complexities. For better understanding of the concepts,
a simple model of intracellular viral infection is
illustrated with its simulation result. Section 3
reviews related work as an effort to enhance the
simulation speed by means of different software and
hardware platforms. Section 4 shows how our SSSoC
architecture is organized and describes its core building
blocks supporting different modes of operation. We
describe details of several SSAs and suggest their
possible hardware architectures. We also perform a
theoretical analysis of latency and throughput on the
microarchitectures of different algorithms and compare
the results with software simulations. Section 5
describes how models with different network sizes can
be partitioned and mapped onto the SSSoC architecture
arranged in a network-on-chip fashion. Finally, we
conclude with a summary of the report in Section 6.

2 Modeling and Simulation of
Gene Regulatory Networks

The signals in gene regulatory networks are carried
by molecules. For instance, proteins which enable
initiation of the gene transcription to mRNA—so-called
transcription factors—can be considered as input

signals. They bind to the so-called promoter regions
adjacent to the regulated gene and, in doing so, enable
an RNA Polymerase to perform the transcription. On
the other hand, proteins that are translated from the
mRNA can be considered as output signals. Moreover,
some of the created proteins may act as transcription
factors themselves and upregulate or downregulate gene
expressions, i.e., activate or suppress the transcription
process. This creates feedback loops in the network
allowing direct or indirect self-regulation. Therefore, it
is apparent that we need some modeling and simulation
methods to characterize the relationship between the
input and output signals thus to accurately depict
the behavior of gene expression or other kinds of
biochemical systems. As an example of such systems,
Figure 1(a) illustrates binding of a transcription factor to
a motif. Figure 1(b) shows a small subnetwork extracted
from a much larger regulatory network in yeast.

In the following sections, we show both deterministic
and stochastic ways of modeling biological networks
with different mathematical formulations and explain
how stochasticity in gene expression lends the use of
SSAs well to the simulation of GRNs.

2.1 Modeling Methods

The most common approach to the modeling of GRNs
and other biochemical systems is to mathematically
formulate their dynamics using a set of differential
equations. Before delving into the details of such
mathematical formulations, some nomenclatures must
be defined. Generally, in characterizing the dynamics of
a system having the N molecular species {S1, . . . , SN}
that chemically interact through M specified reaction
channels {R1, . . . , RM}, we consider a well-stirred
mixture of those N molecular species inside some
volume Ω at constant temperature, and what intrigues
us is the time evolution of an N -element species vector
X(t) = [x1(t), x2(t), . . . , xN (t)]′, where xn(t) is
the number of molecules for the nth species Sn at
time t in the system. The dynamics of the mth

reaction channel Rm is depicted by a stoichiometric
change vector—or simply, state change vector—Vm =
[ν1m, ν2m, . . . , νNm]′, where νnm denotes a change
in the population of the nth molecular species Sn
as a result of an occurrence of reaction Rm. In
addition, given the system state at time t denoted
as X(t) = X , the probability that a reaction will
occur somewhere inside Ω in the next infinitesimal
time interval [t, t + dt) is defined as am(X)dt, where
am(X) is called the propensity function of reaction

6



Figure 1: Gene expression with (a) transcription factor binding to a regulatory region and thus regulating transcription
of the gene downstream, and (b) subnetwork extracted from a much larger regulatory network in yeast.

Rm. The propensity function can further be expressed
as am(X) = cmhm(X), where cm is a stochastic
rate constant implying the probability that one reaction
takes place in the time interval [t, t + dt), and hm(X)
denotes all possible combinations of individual Rm
reactant molecules at instance t. Note that hm(X) is
typically expressed in three different forms as a complex
reaction comprising more than two reactant species can
be further decomposed into a number of elementary
reactions 1 [12]. With these notations defined, we will
now review how the system behavior can be modeled
using different mathematical formulations.

2.1.1 Chemical Master Equation

As the probability of a reaction occurring in the next
infinitesimal time interval [t, t+ dt) depends only upon
the stateX(t) at time t, i.e., the future state depends only
upon the present state, we can model X(t) as a Markov
process with discrete states, where the time evolution of
the state probabilities P (X, t) is given by the chemical
master equation (CME) [7],

∂P (X, t)
∂t

=
M∑
m=1

[am(X − νm)P (X − νm, t)

− am(X)P (X, t)].

(1)

As shown in Equation (1), the CME is a stochastic
1 The three elementary reactions include a monomolecular reaction

(type-1; S1 → S2), a bimolecular reaction with reactant species
of different kinds (type-2a; S1 + S2 → 2S3), and a biomolecular
reaction with reactant species of the same kind (type-2b; 2S1 → S2).
Thus, hm can be written in the following forms: hm = x1 for type-1,
hm = x1x2 for type-2a, and hm = x1(x1−1)/2 for type-2b, where
x1, x2, and x3 represent the number of molecules for species S1, S2,
and S3, respectively.

model in the form of a linear ordinary differential
equation (ODE) that exactly describes the probability
of a system being in a particular state X at time t.
Although the CME models the network behavior in an
exact manner, the biggest challenge comes when one
wishes to solve this equation computationally. However,
this approach becomes inviable as we may easily run
into the problem of state-space explosions. In other
words, the number of states for a system consisting ofN
species with a population size of n per species is given
by nN .

2.1.2 Chemical Langevin Equation

Given X(t) = X denoted as the current system state at
time t, let a random variable Km(X, τ) for any τ > 0,
be the number of reactions that occur in the next time
interval [t, t + τ ]. Then, the future system state at time
t+ τ is given by

X(t+ τ) = X(t) +
M∑
m=1

VmKm(X, τ). (2)

Notice Equation (2) is in the form of a stochastic
differential equation (SDE), and it is not a trivial task
to obtain a probability distribution function for Km.
However, imposing certain conditions on the equation
above, we can achieve a good approximation to the
random variable Km.

Condition 1: τ must be small enough such that none
of the propensity functions in the system changes its
value appreciably during the time interval [t, t+ τ ], i.e.,
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the propensity functions satisfy

am(X(t′)) ∼= am((X(t))
∀t′ ∈ [t, t+ τ ] and ∀m ∈ [1,M ].

(3)

If condition 1 is satisfied, then all reactions occurring in
the time interval will be independent and each Km will
be a statistically independent Poisson random variable
Pm(am(X(t)), τ) resulting in

X(t+ τ) = X(t) +
M∑
m=1

VmPm(am(X(t)), τ). (4)

Condition 2: τ must be large enough such that the
expected number of occurrences for reaction Rm during
the time interval [t, t+ τ ] is much larger than 1, i.e.,

〈Pm(am(x), τ)〉
= am(X(t))τ � 1 ∀m ∈ [1,M ].

(5)

Although Condition 2 is counter to Condition 1 and it
may look rare to meet both conditions simultaneously,
Gillespie stated in [8] that sufficiently large molecular
populations are likely to suffice Equations (3) and
(5), simultaneously. The value of τ satisfying both
conditions is considered as a macroscopic infinitesimal
dt, and Equation (4) can be further approximated by a
nonlinear stochastic differential equation, so-called the
chemical Langevin equation (CLE) [8],

X(t+ τ) = X(t) +
M∑
m=1

Vmam(X(t))dt

+
M∑
m=1

Vm
√
am(X(t))dt)Nm(t),

(6)

where Nm(t), ∀m ∈ [1,M ], are independent standard
Gaussian random variables with a zero mean and a unit
variance. Notice that Equation (6) is the canonical form
of the standard Langevin equation [13], and fulfilling
both conditions makes the problem change from solving
a discrete-state Markov process in the CME to solving a
continuous-state Markov process.

2.1.3 Reaction Rate Equation

A biochemical system can also be deterministically
modeled using a set of ordinary differential equations,
so-called reaction rate equations (RREs), based on the
law of mass action. The RRE can be written in general
form as

dY (t)
dt

=
M∑
m=1

νmãm(Y (t)), (7)

where Y (t) = X(t)/Ω and ãm = am/Ω. Once the
initial conditions and rate constants of a given system
are known, the future states of the system can be
predicted deterministically by solving equations in the
form above.

Interestingly, it can be easily observed that
Equation (7) is derived from the CLE under the
assumption of a thermodynamic limit, in which both
the number of molecules in the system and the system
volume Ω approach ∞ while maintaining species
concentrations. This is attributed to the fact that, in such
a condition, the second term in Equation (6) vanishes
as it becomes dominated by the first term. Therefore,
all of the three modeling approaches explained so far
are interconnected each other such that the CME is
approximated by the CLE and the RRE is another form
of the CLE in the thermodynamic limit [8].

Although this deterministic approach models well for
such systems with large populations of species, it is not
sufficiently accurate for capturing the dynamics of the
system with a small number of molecules for certain
species on the order of 10 to 100 due to the tendency
to show stochasticity in its behavior [14]. Moreover, the
complexity of solving the equations grows vastly with
increases in the number of reactions and species in the
system.

2.2 Stochastic Simulation Algorithms
(SSAs)

To accurately describe the dynamics of biochemical
systems, it is important to employ the right model
among different approaches described above. Molecular
interactions in gene regulatory networks are subject to
significant spontaneous fluctuations. For example, to
allow binding of an RNA Polymerase to a promoter
region, certain enzymes act as a catalyst and set the
promoter into an active state. Thermal fluctuations in
the cell cause promoters to randomly switch between
an active and a repressed state, effectively making
the transcription a random event. As a result, the
number of created proteins is a random variable. The
fluctuations in the number of proteins are enhanced by
the protein degradation, which is a stochastic process
itself. Moreover, mRNA may also be degraded,
which results in variations of the mRNA available for
translation. Finally, binding of the previously mentioned
transcription factors to the promoter regions, needed to
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Figure 2: Taxonomy tree of various methods.

initiate RNA Polymerase, are also probabilistic events.
Therefore, to fully capture the dynamics of molecular
interactions in GRNs, we need a stochastic network
model thus the CME or CLE is often used to reflect
stochasticity inherent in gene regulatory networks.

As discussed earlier, the CME precisely models the
system state X(t) as a Markov process with discrete
states and provides with the time evolution of the state
probabilities. By contrary, the CLE approximately
models the time evolution of the system state X(t) as
a Markov process with continuous states. Formulations
of the CME or CLE for most biochemical systems with
larger network sizes, however, result in an impractically
large set of ordinary or stochastic differential equations.
Consequently, both CME and CLE becomes intractable
to be solved in conventional ways. To overcome such
high computational complexity, Gillespie pioneered the
way toward efficiently solving both types of equations,
in either an exact or approximate manner, by leveraging
a Monte Carlo method, so-called stochastic simulation
algorithm. Thus far, numerous variants of the Gillespie’s
original algorithms have been introduced, and we will
now briefly review some of the popular SSAs by
classifying them into exact, approximate, and hybrid
methods as shown in the taxonomy tree2 of Figure 2.

Gillespie originally introduced two different SSAs
called the direct method (DM) [11] and the first reaction
method (FRM) [15]. Because they assume the same

2Note that the list of various SSAs in this taxonomy tree is not
meant to be complete and there exists a plenty of more algorithms
accounting for the amount of efforts put into overcoming the
complexity.

probability model on which the CME is based, both the
DM and the FRM are regarded as the exact SSA. In
such algorithms, reactions are evaluated in a continuous,
stepwise fashion to execute the one most likely to
occur next. Since they simulate individual reactions
over time, exact SSAs are accurate but computationally
very intensive. Both the DM and the FRM have an
algorithmic complexity of O(EM), which is linear in
the size of the network (number of reactions M ) and
the number of simulated events (number of executed
reaction cycles and time steps E). However, in regular
sequential implementations, the DM is typically more
efficient. In each time step, the DM randomly generates
the time τ until the next reaction and the channel µ
where it takes place. By contrast, the FRM has a
smaller fixed cost but needs to generateM exponentially
distributed random numbers to determine τ and µ as
the minimum over individual times τm when reaction
m will occur next. In both cases, all M propensity
functions am(X(t)) need to be evaluated in every time
step.

To address the problem of high computational
complexity, implementations of the exact DM and FRM
with optimized data structures for efficient data reuse
and caching have been developed. In the optimized
direct method (ODM) [16], the sorting direct method
[16], and the next reaction method (NRM) [12], τm
are only computed for reactions in which any of the
input species concentrations has changed, leading to a
complexity of O(ED logM) (where D is the average
number of updates per time step).

On the other hand, Gillespie also presented an
approximate SSA called the τ -leap method [17, 18]
assuming all M reactions fulfill the so-called leap
condition (Condition 1 in Section 2.1.2) 3. In the
τ -leap method, a number of time steps are leaped over
by amount τ and, within that τ period of time, all
M reactions in the system are executed a Km number
of times, where Km is a Poisson random variable of
reaction Rm with an expected value of amτ , whereas
exact methods advance only a single time step at a
time by executing a single, selected reaction that is
most probable to occur next. As a result, despite
the fact that the procedure of evaluating τ is much
compute intensive than that of exact methods, as long
as the leap condition for a network allows a large
enough number of events to be aggregated into a single

3 It is also shown in the Gillespie’s original τ -leap paper [17] that,
as species populations become large enough to meet all M conditions
given by Condition 2 in Section 2.1.2, in addition to meeting the leap
condition, executing the τ -leap method is equivalent to solving the
chemical Langevin equation.
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time step, the fewer time steps in leaping methods
can significantly improve performance with acceptable
losses in accuracy. Additionally, many improved
τ -leap methods have been introduced to avoid negative
populations of reactant species [19, 20, 21] and to
prevent large changes in propensity functions [21, 22].

Another kind of approximate methods is the
multiscale or hybrid method. Such methods enhance
the inefficiencies of both exact methods and variants
of the τ -leap method by conforming to the multiscale
nature of gene expression and other chemically reacting
systems. Because species populations and reaction rates
vary dynamically both over time and among different
reactions in the network, some reactions are slow while
others are fast. In a system with the majority of fast
reactions, exact methods become extremely inefficient
and may not well represent the system whose critical
behavior is governed by slow reactions. Likewise,
when a system comprises mostly slow reactions, τ -leap
methods are likely to have small sizes of time steps akin
to those of exact methods thus become computationally
very inefficient with losses in accuracy. To address
such inconsistencies, hybrid methods classify reactions,
either dynamically or statically, into slow and fast
reactions and execute, generally, an exact method on
slow reactions and an approximate method on fast
reactions. Many approaches have been proposed
by varying the approximate methods applied to fast
reactions, i.e., using τ -leap methods [23, 24] or solving
the CLE or RRE [25, 26, 24]. Additionally, other
methods simulate only slow reactions by incorporating
the effect of fast reactions into slow reactions by making
a quasi-steady state assumption [25, 27, 28, 29, 30, 31,
32].

2.3 Example: Intracellular Viral Infection
To illustrate the concepts, we consider a simple model
of intracellular viral infection [33, 28, 34, 35] with 4
molecular components and 6 reactions,

R1 : RNA c1→ DNA R2 : DNA c2→ DNA + RNA
R3 : RNA c3→ RNA + P R4 : RNA c4→ 0
R5 : P c5→ 0 R6 : DNA + P c6→ V.

The above reactions describe insertion of the viral
sequence into the host DNA (R1), transcription of the
viral DNA to viral RNA (R2), translation of the viral
RNA to the protein P (R3), degradation of the RNA and
protein (R4 andR5, respectively), and the creation of the
new viral structure which leaves the host cell (R6). The
stochastic rates of the reactions in the channelsR1 toR6

are c1 = 1/day, c2 = 0.025/day, c3 = 100/day, c4 =

0 5 10 15 20 25 30
200

300

400

500

600

700

800

Time (days)

x 3(t
)

 

 

One realization of ODM

Mean of 1000 runs of ODM
Mean of 1000 runs of tau−leaping

Figure 3: Simple viral network simulation.

1/day, c5 = 1.99/day, and c6 = 11.25 × 10−6/day
[35, 33]. Let x1(t), x2(t), x3(t), and x4(t) denote the
number of molecules of the viral DNA, RNA, protein,
and viral structure, respectively. The vectors describing
the changes in xi(t), 1 ≤ i ≤ 4 can be stated by
inspection of the reaction rules,

V1 = [ 1 −1 0 0 ]′ V2 = [ 0 1 0 0 ]′

V3 = [ 0 0 1 0 ]′ V4 = [ 0 −1 0 0 ]′

V5 = [ 0 0 −1 0 ]′ V6 = [ −1 0 −1 1 ]′.

We simulated the reactions with an ODM and
τ -leap method using the StochKit2 [36] software
package. The initial condition was chosen as X(0) =
[700 10 200 0]′. Figure 3 shows the variations in
the number of the protein molecules x3(t) over a period
of 30 days. The graph plots both a single realization
of the Markov process x3(t) and an average value over
1000 runs of the ODM and τ -leap SSAs. For this simple
network, simulation of 1000 runs on a 2.4 GHz Intel
Core2 Quad workstation required a total of 4.4s and
1.8s, respectively. For larger problems, i.e., realistic
networks with a large number of species, reactions,
time steps and simulation runs, run times on regular
workstations quickly become prohibitive.

3 Related Work
The SSAs are traditionally implemented on general
purpose workstations. Such realizations tend to be
slow and become prohibitive for all but the simplest
networks with very few components and time steps to
be simulated. For example, simulating expression of
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one gene in one generation of E. coli (with 30 min.
simulated real time between cell divisions) can take
more than 20 h [37]. Simulation of the whole cell,
which encompasses more than 1014 events [38], requires
30 years even on modern GHz-class workstations
[39]. SSAs exhibit potentially massive parallelism,
both fine-grain across concurrent evaluations of reaction
channels in each time step, and coarse-grain across
multiple instances of the SSA system. To exploit
this, parallel SSA implementations on supercomputers
[40, 41], compute clusters [42, 43] and emerging
many-core and GPU platforms [44, 45] have been
investigated. These approaches all exploit parallelism
across multiple independent simulations, but do not
reduce prohibitively long simulation times for a single
instance of a large-scale system. In such cases,
the simulation algorithm itself can be parallelized by
partitioning the system model and distributing reaction
computations across a networked cluster [46, 47, 48].

Previous approaches for custom hardware realizations
of DM [49], FRM [50] or NRM [51] SSAs on FPGAs
have shown promising results. However, the flexibility
provided by reconfigurable hardware fabrics limits their
size and performance. Furthermore, FPGAs typically
require difficult and time-consuming redesign processes
for each new problem instance, which involves complex
synthesis tools that are not intuitive to the intended users
in the natural sciences. While some approaches allow
for reconfiguration without the need to resynthesize
[51], they are limited to a particular SSA algorithm and
impose tight restrictions on parameters such as network
size.

4 SSSoC Architecture
From this section onward, we introduce the design of our
SSSoC architecture and its core building components,
and compare the performance of different SSAs in
the form of custom hardware implementations. We
envision SSSoC architecture will act as a general
platform capable of simulating biochemical networks
using various SSAs discussed in the previous sections.
As illustrated in Figure 4, SSSoC is realized as a
scalable array of Stochastic Processing Elements (SPEs)
exploiting both coarse- and fine-grain SSA parallelism
across and within SPEs, respectively. Each SPE contains
an exact and an approximate execution engine to allow
for simulation of fine-grain reactions, species updates
and associated time steps following either an exact, a
leaping or a hybrid scheme. SPEs can be arranged
in an on-chip or off-chip network for simultaneous

simulation of multiple independent network instances
or simulation runs. SPEs can optionally exchange
species updates with their neighbors for partitioned
simulation of larger networks or co-simulation of several
interacting networks, such as tissue cells interacting
through diffusion.

The computation in SPEs will be driven by a
hierarchical combination of local and global control
that determines the reactions and species updates to
be evaluated in each reaction cycle and time step.
SSSoCs will be predominantly hardcoded but will be
able to execute arbitrary network descriptions that are
pre-loaded into SPE-internal reaction tables and species
memories. As a result, programming of SSSoC will be
straightforward with the help of simple tools that can
read network descriptions in standard formats, such as
the Systems Biology Markup Language (SBML) [52],
and download them into the SPEs.

Stochastic Processing Elements (SPEs) perform
computation of the time series of species concentrations
and reactions in a given GRN model following a specific
simulation algorithm. At their core, SPEs contain
two execution units that let them operate in either an
exact mode, a τ -leap mode, or a hybrid combination
of the two. Exact and approximate units share a
common species memory, control and router. A central
controller holds tables with reactions assigned to the
SPE and distributes and orchestrates computation in
coordination with local state machines in each execution
unit. As discussed, reaction channels can always
be broken down into elementary reactions with not
more than two reacting species [12] and hence only
three possible input combination functions h1(xmi),
h2(xmi, xmi), and h3(xmi, xmj). Without loss of
generality, it is therefore sufficient to store for each
reaction the index m, the indices mi and mj of
participating species and the coefficient cm in a central
reaction memory of fixed width. Likewise, a vector table
stores change vectors Vm encoded as quadruples Vm =
[(i, vi) (j, vj) (k, vk) (l, vl)]. In every reaction cycle,
each execution unit then computes the τ and V across
all assigned reactions. As will be described below,
execution units are internally pipelined and R-way
parallelized to fetch concentrations from the species
memory and compute reaction times at a maximum rate
of R xmi/xmj pairs per clock cycle. One of the most
crucial challenges to be addressed will be the memory
bandwidth needed to keep execution units supplied
with input data. Given complex tradeoffs, design
parameters, such as the banking of memories, will
be carefully balanced using thorough, and potentially
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Figure 4: Stochastic Simulation System-on-Chip (SSSoC) architecture.

automated [53, 54, 55], exploration of the design space
for each considered SSA choice.

4.1 Exact SSAs and Architectures
In this section, we elaborate on various exact SSAs
and design their corresponding hardware architectures in
block diagram form. We also compare the performance
of different architectures by estimating the total latency
needed to simulate every Monte Carlo iteration of the
SSA.

4.1.1 The First Reaction Method (FRM)

The first reaction method [15] computes a tentative time
τm of reaction Rm at time instance t as given by

τm = − ln r
am(X(t))

=
− ln r

cmhm(X(t))
, (8)

where r is a uniformly distributed random number in the
interval (0, 1). Then, t+ τ is the time at which the next
reaction is likely to occur, where t is the current time
and τ is given by the minimum value of all τm for M
reactions, i.e.,

τ = min{τ1, . . . , τM}. (9)

The reaction Rµ, which is determined as the one most
likely to occur in the next infinitesimal time interval
(t + τ, t + τ + dτ), is obtained by taking the index µ
corresponding to τ , i.e.,

µ = argminm{τ1, . . . , τM}. (10)

The FRM algorithm is explained below:

1. Initialization. Initialize the number of molecules
with X(0) and set the current time to t← 0.

2. Propensity functions. Calculate propensities
am(X(t)) for all M reactions.

3. Reaction times. Generate M independent,
uniformly distributed random numbers r between
0 and 1; and calculate the tentative reaction times
τm for all M reactions by Equation (8).

4. Reaction selection. Find τ and µ by Equation (9)
and (10)

5. Reaction execution. Update the current time and
the number of molecules by t ← t + τ and
X(t) ← X(t) + Vµ, respectively, where Vµ is a
stoichiometric vector for the selected reaction.

6. Termination. If t < tdesired or no more
reactant species remain in the system, terminate the
simulation; otherwise go to step 2.

A software implementation of the FRM becomes
inefficient in proportion to the size of the network since
we need to generate M tentative reaction times as well
as M exponentially distributed random numbers for
every iteration of the algorithm. In hardware, however,
computation of -ln r and am can be performed in
parallel. Hence, the overhead for generating one random
number per reaction can be effectively amortized.
In addition, hardware replication for computing the
reaction times can further enhance throughput of the
algorithm.
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Figure 5: Microarchitecture of FRM unit.

By exploiting such parallelism, a hardware unit for
the FRM can be designed as shown in Figure 5. It adopts
a deeply pipelined architecture consisting of multiple
reaction units {RU1 . . .RUR} for computing the
tentative times of different reactions and a τ -aggregator
unit for determining both the next occurrence time τ
and its associated reaction index µ. Inside each RU,
a random number generator rand() and a logarithmic
function generator -ln() are sequentially connected,
and in parallel to those two components, a propensity
function generator am computes propensities using the
rate constant cm and the number of molecules xi and
xj as input. As discussed in Section 2.1, propensities
are calculated only for elementary reaction types so its
implementation can be simplified to a mix of arithmetic
operators and multiplexers as shown in Figure 5 on the
right. The τ -aggregator unit is structured as a binary tree
comparing R sets of data (m, τm) coming from RUs to
compute τ and µ.

The data that flows through the FRM unit can be
managed by the external control unit (not shown in
Figure 5). The control unit continuously fetches data
from external memories and distributes them across
different RUs. Meanwhile, the propensities computed
by RUs are passed continuously into the tree-structured
τ -aggregator to be compared among each other. After
a certain number of cycles, both τ and µ are available
at the output, and the control unit in turn loads a

Table 1: Latency cycles of various operators.
Operations # of cycles Float References

rand() 4 Yes [50]
-ln(), ex 12 Yes [56]

add/subtract 3 Yes [57, 58, 59, 60, 61]
1 No [61]

multiply 3 Yes [57, 58, 60, 61]
2 No [61]

divide 20 Yes [57, 58, 62, 60, 61]
shift 1 Yes, No [61]

compare 1 Yes [63, 58, 60, 61]
min 1 Yes [63, 60, 61]

absolute 1 Yes [61]

stoichiometric vector addressed by the index µ and
finally pass it, together with τ , to the external memory
unit for updates via the external router.

Exploiting parallelism both across multiple RUs
and within a single RU, we can potentially achieve
some speed-ups over software realizations. For a
quantitative study, we perform a theoretical analysis to
evaluate the latency and throughput of the FRM unit.
As to estimating the latency of every building block
in the design, we refer to various literature sources
and meticulously selected latency numbers practically
applicable to the actual implementation. Latency
numbers are labeled next to each building component
in Figure 5 and are also summarized in Table 1 with
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relevant references. We will be using the same latency
numbers listed in this table throughout the report for
consistent analysis.

The total number of cycles needed for each time step
can be evaluated by summing up all the latency numbers
along the critical path. As such, the overall latency can
be expressed as

Lfrm = Lin + max(Lrnd, Lam) + Lτm

+ Lmin + max(Lfire, Ltime)
(11)

where Lin is the latency for distributing R sets of
input data (cm, xi, xj) into RUs; Lrnd for generating
an exponentially distributed random number; Lam for
computing a propensity; Lτm for computing a tentative
time; Lmin for determining τ and µ; Lfire for firing the
selected reaction and updating the species; andLtime for
updating the simulated time by adding τ to the current
time.

Using the banking of memories for storing the
input data of RUs, we assume the latency for species
distribution can be reduced to

Lin = dlogRe. (12)

As the tree height of τ -aggregator is dlogRe and a total
ofM reactions are to be processed, the number of cycles
required for computing τ and µ is expressed as

Lmin = dlogRe+
⌈
M

R

⌉
. (13)

Substituting Equations (12) and (13) into Equation (11),
and using the fixed values of Lrnd = 36, Lam = 6,
Lτm = 20, Lfire = 3, and Ltime = 4 4, the overall
latency of the FRM turns into

Lfrm = 2dlogRe+
⌈
M

R

⌉
+ 40. (14)

4.1.2 The Next Reaction Method (NRM)

One variant of the FRM is the next reaction method [12],
which scales well specifically for a loosely-coupled
system with larger network sizes. The main idea of
this method is threefold: first, using a dependency

4 For the time update, we assume 3 cycles for the floating-point
addition of t ← t + τ and 1 additional cycle for writing the new t
to the corresponding register, which together make the latency a total
of 4 cycles. For the species update, assuming 1 cycle for loading a
stoichiometric vector, 1 cycle for adding or subtracting the number
of molecules, and 1 cycle for storing the updated species data to
the memory, a latency of 3 cycles in total is needed. Thus, we can
implement the two updates in 4 cycles by operating them concurrently.

Table 2: Simple dependency graph.
Index Reaction Depends on Affects Computes
R1 A+B → C A,B A,B,C R1, R3

R2 D + E → E + F D,E D,F R2

R3 C → D C C,D R2, R3, R4

R4 D → ∅ D D R2, R4

graph depicting interactions among all reactions in
the network, it computes tentative reaction times only
for those reactions affected by the previous reaction
occurred; second, it uses absolute time rather than
relative time for time between reactions, making it
possible to reuse the previous tentative reaction times
for unaffected reactions without generating new random
numbers; lastly, it employs a data structure of indexed
priority queue (IPQ) to reduce the time needed for
finding the minimum of tentative reaction times.

Computing propensities sequentially for all reactions
at every iteration of the algorithm is costly. In the
NRM, this is amortized by creating a dependency graph
before initiating a new simulation and by calculating
propensities for affected reactions only. Table 2 shows
an example of the dependency graph for a simple
network with 5 species and 4 reactions. As can be
seen, we only need to compute propensities for reactions
containing one or more reactant species whose number
of molecules have changed by the previously executed
reaction. Suppose R1 was the last reaction executed.
Then, the number of molecules for species A, B,
and C must have been changed by that reaction, thus
reactions R1 and R3 need to be recomputed as they
contain at least one of the aforementioned species as
reactant species. Therefore, only a portion of the
entire reactions is considered for the computation of
propensities, especially in the loosely-coupled cases.

Evaluating tentative reaction times in the NRM is
somewhat distinct from the FRM. For the last reaction
executed, its tentative reaction time is computed by the
same equation

τµ,new = − ln r
aµ,new(X(t))

=
− ln r

cµhµ,new(X(t))
(15)

as in the FRM, and thus a random number is needed
to be generated. However, for reactions affected by
the previous execution, τm,new is computed by scaling
the previous τm,old with the ratio of old and new
propensities, i.e.,

τm,new =
am,old
am,new

(τm,old − t) + t (m 6= µ), (16)

where am,new is a newly computed propensity for
reaction Rm; am,old and τm,old are, respectively, a
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propensity and a tentative reaction time obtained from
the previous iteration; and t is the current time. A
caution needs to be taken for the notion of time in
the equation. Unlike the FRM, all the time variables
are regarded as absolute time, not relative time. In
this respect, the current time t is, in fact, equal to
τµ,old, which is the time at which the last reaction
executed. As a result, by using absolute time, it is
mathematically proven in [12] that only a single random
number generation per iteration is necessary, and reuses
of τm values for the reactions not affected by the prior
execution are possible.

The NRM further enhances its performance by using
the IPQ data structure together with an index data
structure when searching for the minimum τ . All τm
values are maintained in a binary-tree data structure such
that it takes O(logM) operations to update a new τm
and aO(1) operation to take the minimum τµ. Details of
how to manage the data structures are beyond the scope
of this report (see the NRM paper [12]).

The NRM algorithm is explained below:

1. Initialization. Initialize the number of molecules
with X(0) and set the current time to t ← 0;
generate a dependency graph; and execute the
FRM algorithm for one iteration and maintain
tentative reaction times in an IPQ.

2. Propensity functions. Calculate only affected
propensities according to the dependency graph.

3. Reaction times. Generate a uniformly distributed
random numbers between 0 and 1; calculate
a tentative reaction time for the last reaction
executed using Equation (15); calculate tentative
reaction times for affected reactions using
Equation (16); and update the IPQ, accordingly.

4. Reaction selection. Get the minimum τ and its
corresponding reaction index µ from the IPQ.

5. Reaction execution. Update the current time
and the number of molecules by t ← τ and
X(t) ← X(t) + Vµ, respectively, where Vµ is a
stoichiometric vector for the selected reaction.

6. Termination. If t < tdesired or no more
reactant species remain in the system, terminate the
simulation; otherwise go to step 2.

The core unit of the NRM is shown in Figure 6.
Since the NRM is derived from the FRM, it shares
the basic framework of the FRM unit but additionally
incorporates, in each RU, a τm generator, a propensity

memory (denoted as am Mem), and a τm tree
implementing the IPQ data structure.

Based on the dependency graph stored in a table,
the external control unit (not shown in Figure 6)
distributes R sets of input data (cm, xi, xj) across RUs,
only for those reactions whose propensities need to be
recomputed by the propensity generator (denoted as
am). Once a valid propensity comes off the pipeline of
the propensity generator, it is stored into the propensity
memory for reuse in the next time step, and at the same
time, it is driven into the two data paths generating two
different τms given by Equations (15) and (16). Upon
determining whether τm being generated is associated
with the last executed reaction, the control unit selects
a proper τm from the right data path—either τµ,new or
τm,new. The tree is then traversed and the nodes are
updated with the computed values τm. Lastly, as all τms
for affected reactions have been evaluated by RUs, the
minimum value read from the root node of the tree in
each RU acts as input to the tree-structured τ -aggregator
by which the minimum τ of all reactions and the index
µ are finally computed.

The tree data structure can be implemented in a
pipelined fashion similar to what has been implemented
in [64]. The basic approach is illustrated by an abstract
view of the τm tree in the dotted oval of Figure 6. As
shown in the diagram, a series of pipeline stages are
connected one after another and a memory storing the
nodes at each level of the tree is separately attached to
each pipeline stage. What makes the pipelining possible
is that unlike the case of the software IPQ, the tree is
updated in one direction only—i.e., traversed from the
root node to one of the bottom nodes. Because at most
one node per tree level is traversed and updated, it is
sufficient to have a single read-compare-write operation
in each pipeline stage.

We make an analytical model of the NRM
architecture representing the number of cycles needed
for the computation of dD · Me reactions per each
progress of time step, where the dependency factor D
is defined as an average of the ratio of the number of
reactions needed for the recomputation of propensities
to the number of total reactions M in the network. To
begin with, the overall latency can be expressed as

Lnrm = Lin+
max(max(Lrnd, Lam) + Lτµ , Lam + Lτm)

+ Lτ -tree + Lmin + max(Lfire, Ltime),
(17)

where Lτµ is the latency for computing a tentative
reaction time of the fired reaction in the previous time
step; Lτm for computing a tentative time of a reaction
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affected by the previous fire; Lτ−tree for updating
the IPQ tree with newly computed tentative reaction
times. The rest parameters have been already defined
in Section 4.1.1 for the FRM. Assuming Ma � 1,
where Ma is the number of reactions affected by the
previous fire, computation takes place mostly in the data
path generating tm,new as opposed to the one generating
τµ. For this reason, the first argument of the outer max
operation can possibly be ignored, thus Equation (17)
turns into

Lnrm = Lin + Lam + Lτm + Lτ -tree

+ Lmin + max(Lfire, Ltime).
(18)

Because the tree height of the IPQ data structure
expands up to dlogMe, each operational stage takes 3
cycles for read-compare-write, and only one node per
tree level is to be traversed, the maximum latency for
updating the tree with the tentative times of dD ·M/Re
reactions can be expressed as

Lτ−tree = 3dlogMe+
⌈
D ·M
R

⌉
. (19)

Therefore, substituting Equation (19), Lin = Lmin =
dlogRe, and the constants of Lam = 6, Lτm = 26,
Lfire = 3, and Ltime = 4 into Equation (18), the
total number of cycles required to compute on dD ·Me

reactions throughout the time evolution is expressed as

Lnrm = 2dlogRe+3dlogMe+
⌈
D ·M
R

⌉
+36. (20)

Note that to achieve such latency as given by this
analytical expression, a good load balancing of data
across RUs is needed such that the reactions coupled
with the previously executed reaction should be evenly
distributed and mapped onto different RUs, which will
be one of our potential research challenges in the future.

4.1.3 The Direct Method (DM)

The direct method [11] is similar to the FRM but
only requires a single τ computation according to the
equation given by

τ = − ln r1
a0

, (21)

where r1 is a uniformly distributed random number in
the interval (0,1) and

a0 =
M∑
m=1

am(X(t)) =
M∑
m=1

cmhm(X(t)). (22)

The reaction Rµ, determined as the one most likely to
occur in the next infinitesimal time interval (t + τ, t +
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τ + dτ), is obtained by taking the index µ satisfying the
inequalities given by

µ−1∑
m=1

am < a0r2 ≤
µ∑

m=1

am. (23)

In other words, the propensities are successively
accumulated until the accumulated value is greater than
or equal to a0r2, and µ is selected as the index of the
last am term accumulated. r2 is another independent
random number uniformly distributed in the interval
(0,1). Thus, the DM requires a total of two random
numbers per each time step, effectively reducing the
simulation run time consumed by the random number
generation, as compared to the FRM.

The DM algorithm is explained below:

1. Initialization. Initialize the number of molecules
with X(0) and set the current time to t← 0.

2. Propensity functions. Calculate the propensity
functions am(X(t)) for all M reactions; and take
the sum of all propensities to get a0.

3. Reaction time. Generate a uniformly distributed
random number r1 between 0 and 1; and calculate
the next reaction time τ by Equation (21).

4. Reaction selection. Generate another
independent, uniformly distributed random number
r2 between 0 and 1; and accumulate propensities
until the next reaction index µ satisfying the
inequalities of Equation (23) is found.

5. Reaction execution. Update the current time and
the number of molecules by t ← t + τ and
X(t) ← X(t) + Vµ, respectively, where Vµ is a
stoichiometric vector for the selected reaction.

6. Termination. If t < tdesired or no more
reactant species remain in the system, terminate the
simulation; otherwise go to step 2.

4.1.4 The Optimized Direct Method (ODM)

The optimized direct method [14] is a variant of the
original direct method. As the NRM enhances the
FRM by considering dependencies among different
reactions, the ODM also relies on the dependency graph
to enhance the DM. In addition, to boost the time
spent on searching for the reaction which meets the
inequalities given by Equation (23), the ODM, during
its initialization phase, performs a presimulation for a
certain period of time and reorders reactions such that

reactions found to be executed more often than others
are placed in higher priorities of the search order.

As for computing τ and µ, Equations (21) and
(23) from the original DM algorithm can be reused.
However, how to calculate the sum of propensities
is somewhat different from the DM as only affected
reactions are considered in calculating propensities.
That is, an old propensity of the previous time step
am,old is subtracted from a new propensity of the current
time step am,new. Therefore, the sum of propensities
a0,new is given by

a0,new = a0,old +
∑
m

(am,new − am,old), (24)

where a0,old is the sum of propensities from the previous
time step and m belongs to reactions affected by the last
executed reaction.

The ODM algorithm is explained below:

1. Presimulation. Simulate the network for a given
period of time and gather a histogram of the
number of executions for all M reactions; and sort
the reactions such that reactions more frequently
executed than others is placed in higher orders.

2. Initialization. Initialize the number of molecules
with X(0) and set the current time to t ←
0; generate a dependency graph; evaluate and
maintain propensities am for allM reactions in the
network; take the sum of all propensities a0; and go
to step 4.

3. Propensity functions. Using the dependency
graph, evaluate and maintain propensities of
affected reactions only; and update the sum of
propensities using Equation (31).

4. Reaction time. Generate a uniformly distributed
random number r1 between 0 and 1; and calculate
the next reaction time τ by Equation (21), i.e., τ =
−(ln r1)/a0.

5. Reaction selection. Generate another
independent, uniformly distributed random
number r2 between 0 and 1; and accumulate
propensities in the order of the sorted frequency
until the next reaction index µ satisfying the
inequalities of Equation (23) is found, i.e.,∑µ−1
m=1 am < a0r2 ≤

∑µ
m=1 am.

6. Reaction execution. Update the current time and
the number of molecules by t ← t + τ and
X(t) ← X(t) + Vµ, respectively, where Vµ is
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Figure 7: Microarchitecture of (O)DM unit.

a stoichiometric vector for the selected reaction
channel.

7. Termination. If t < tdesired or no more
reactant species remain in the system, terminate the
simulation; otherwise go to step 3.

Since the ODM is derived from the DM, the basic
framework of hardware architecture can be shared
between the two algorithms. Although propensities and
their sum can be computed concurrently by multiple
RUs in parallel, unlike the FRM or the NRM, it is not
easy to parallelize the algorithms in hardware especially
because of the sequential nature of how the reaction
selection takes place in the algorithms. A search for the
next reaction index takes at mostM operations, and thus
it can act as a limiting factor of the overall throughput
according to Amdahl’s law.

To address this problem, we can employ the
binary-tree data structure suggested in the appendix
of the NRM paper [12] for storing accumulated sums
of propensities. By leveraging such data structure,
we can improve the search time to logM operations.
In addition, we can create a number of sub-trees
at different granularity by partitioning the tree into
fragments, making concurrent data processing of the
tree possible. Furthermore, since only one node at a

tree level is to be processed, a single operation of either
read-accumulate-write or read-subtract-compare can be
performed in a pipelined stage without adding much
hardware resources.

Figure 7 shows an implementation of the DM and
ODM algorithms. The reaction data are distributed
across multiple RUs to generate propensities, which
are then continuously passed into the

∑
am tree

unit comprising a number of partitioned sub-tree unit
arranged in a tree form. Similar to what we have shown
in the NRM, each sub-tree unit consists of a number of
operational stages with dedicated memories attached to
each stage for storing the node values at the same tree
level. Notice unlike the tree unit shown in the NRM
architecture, the tree nodes are updated from a bottom
node to the root node. As the sum of propensities
a0 is available at the output of the

∑
am tree unit, a

uniformly distributed random number r2 between 0 and
a0 is generated by the multiplier and the random number
generator, and the generated random number is written
back into the tree unit for further search of the next
reaction index µ, where the tree nodes are traversed
in a reverse direction, i.e., from the root node to a
bottom node. While the tree nodes are traversed, the
next simulated time τ is also evaluated via a division
operation on a0 and r2.
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We make an analytical model of the DM and ODM
architecture expressing the latency needed to advance a
single step of the time evolution. To begin with, the total
number of cycles is expressed as

L(o)dm = max(Lre, Lt), (25)

where Lre is the latency for the selection and execution
of the next reaction and Lt is the latency for computing
the simulated time. Lre and Lt are further expressed as

Lre = La0 + La0r2 + Lsearch + Lfire (26)

and

Lt = max(La0 , Lrnd) + Lτ + Ltime, (27)

where La0 is expressed as

La0 = Lin + Lam + La-tree. (28)

The new parameters defined for the NRM are as
follows: La0 for computing a sum of propensities;
La−tree for updating the tree nodes with newly
computed propensities; La0r2 for generating a
uniformly distributed random number between 0
and a0; Lsearch for traversing the tree nodes to find the
next reaction; and Lτ for computing the time step τ by
dividing r1 by a0.

Given the height of the tree is logM and an operation
of read-accumulate-write is needed at each tree level,
the latency for updates is expressed as

La-tree = 5dlogMe+
⌈
D ·M
R

⌉
, (29)

in order to process a total of dD · M/Re reactions.
Likewise, given the height of the tree is logM and an
operation of read-subtract-compare is needed at each
tree level, the latency for a search is expressed as

Lsearch = 5dlogMe. (30)

In the equations above, we have assumed 1 cycle
for read, write, and compare each and 3 cycles for
accumulate and subtract each. Lsearch does not contain
the second term because only one node at a tree level is
to be traversed (See [12] for details).

Overall, substituting Lin = dlogRe, Lam = 6,
Lrnd = 16, La0r2 = 3, Lfire = 3, Lτ = 20, and
Ltime = 4 into Equations (26)–(30), the overall latency
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Figure 8: Performance of various exact SSAs.

given by Equation (25) becomes

L(o)dm = max(Lre, Lt)

= max

{
dlogRe+ 10dlogMe

+
⌈
D ·M
R

⌉
+ 12,

max
(
dlogRe+ 5dlogMe

+
⌈
D ·M
R

⌉
+ 6, 16

)
+ 24

}
(31)

where D = 1 for the DM and 0 < D < 1 for the ODM.

4.1.5 Performance Comparison

Table 3 summarizes the analytical latency models
of various architectures discussed so far, and
conservatively assuming a low clock frequency of
500 MHz in cost-effective legacy 180nm or 90nm
technology, Figure 8 compares their throughput on
network models with varying network sizes (M ) and
dependencies (D). In addition, assuming a chip that
can fit a maximum of 128 RUs5, to see the effect
of parallelism, the graphs plot the throughput for
different configurations in terms of the number of
RUs per SPE (R) and the number of SPEs in the
SSSoC. We define the throughput as the number of
simulated time steps per second in accordance with

5This matches typical GPU architectures.
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Table 3: Latency cycles of various exact hardware units.

Exact H/W unit Latency in # of cycles

FRM Lfrm = 2dlogRe+
⌈
M
R

⌉
+ 40

NRM Lnrm = 2dlogRe+ 3dlogMe+
⌈
D·M
R

⌉
+ 36

(O)DM a L(o)dm = max

{
dlogRe+ 10dlogMe+

⌈
D·M
R

⌉
+ 12,

max
(
dlogRe+ 5dlogMe+

⌈
D·M
R

⌉
+ 6, 16

)
+ 24

}
a D = 1 for the DM and 0 < D < 1 for the ODM.

Table 4: Comparison of latency for reaction selection.
Architecture Update Search

FRM dlogRe+ dMR e 1

DM 5dlogMe+ dMR e 5dlogMe

NRM 3dlogMe+ dD·MR e 1

ODM 5dlogMe+ dD·MR e 5dlogMe

literature [50, 45], and assume each SPE simulates a
given network independently of others. (In Section 5,
we will specifically explore opportunities for a SPE
network that can be flexibly configured, depending on
network characteristics, to act as either many small
or one large simulation system.) We use dependency
factors of D = 10% and 50% to represent models
at different levels of coupling. In fact, counting the
number of affected reactions on actual models, we
measured 10% for heat shock response [65] and 50%
for intracellular viral infection [33].

Somewhat surprisingly, and contrary to the situation
in software, despite the parallelism exploited in all
architectures, an FRM or NRM outperforms, to varying
extents, a DM or ODM, respectively, as network
size grows. Upon closer inspection, this is mainly
because the reaction selection part of the FRM-based
architectures takes by far less latency than that of the
DM-based architectures. The number of cycles needed
to update relevant data and search for the next reaction
is summarized in Table 4. Clearly, the FRM-based
architectures perform predominantly better in searching
for the next reaction—constant vs. logarithm of network

size.

In the case of the update phase, however, where
the tentative times τm are evaluated for the FRM and
NRM and the partial sums

∑
am are evaluated for the

DM and ODM, subtle distinctions exist in comparing
the latency among different architectures. Firstly, with
no parallelism (R = 1), the latency of both FRM
and DM approaches M as the network size increases.
With a certain level of parallelism (R > 1), the FRM
outperforms the DM because the logarithmic term is not
negligible any more, thus the latency degradation of the
DM is much noticeable than that of the FRM. Secondly,
regardless of the level of parallelism, the dependency
factor D taken into consideration makes the NRM and
ODM outperform the FRM and DM, depending on the
level of coupling among reactions. Lastly, while the
NRM generally outperforms the ODM owing to its fast
search time, as either the network size or the dependency
factor increases, the throughput of the ODM approaches
that of the NRM because the logarithmic term in the
update phase becomes eminent compared to the linear
term.

Overall, in the graphs of Figure 8, for small network
sizes, the throughput ranges from around 10 Msteps/s
for a single SPE up to 1280 Msteps/s for a chip with
128 SPEs. For large network sizes, the single SPE
performance approaches a peak rate of R reactions
every cycle for a maximum throughput of 500R million
reactions or 500 R

M million steps per second. We can
note that the peak throughput for the full SSSoC is
equivalent to the performance of a single SPE with
R = 128 (i.e., 64/M billion steps per second).
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4.2 Approximate SSAs and Architectures
In this section, we will discuss approximate SSAs
focusing on a hardware implementation of the
Gillespie’s improved τ -leap algorithm [18]. In
addition, we will briefly mention how our SSSoC
architecture can be leveraged to implement so-called
hybrid SSAs.

4.2.1 The τ -leap Method

Gillespie originally proposed the τ -leap method in 2001
[17] and, later in 2003, improved its simulation accuracy
by calculating the variance, as well as the mean value,
of the propensity changes over a leap period [18].
Both of the τ -leap methods fire, within a leap time,
all reactions in the system as many times as given by
Poisson distributions, whereas exact methods execute
only a single reaction at every time step. We will
consider implementing the improved version as it is a
superset of the other.

The τ -leap method is derived from the assumption
that the leap time τ must be small enough such that the
propensity changes across all reaction channels remain
infinitesimally small during the leap period [t, t + τ),
where t is the current time. Given the state vector
containing the number of molecules for each species at
time t isX(t) = x, τ can be obtained from the following
equations [18]:

fmm′(x) =
N∑
i=1

∂am(x)
∂xi

vim′ , (32)

ηm(x) =
M∑

m′=1

fmm′(x)am′(x), (33)

σ2
m(x) =

M∑
m′=1

f2
mm′(x)am′(x), (34)

τ = min
m∈[1,M ]

{
τη,m, τσ,m

}
= min
m∈[1,M ]

{
εa0(x)
|ηm(x)|

,
ε2a2

0(x)
σ2
m(x)

}
,

(35)

where m,m′ ∈ [1,M ]; ηm and σ2
m are respectively a

mean and a variance for the mth reaction; ε is an error
control parameter close to 0 (0 < ε � 1); and a0 is a
summation of the propensities of all reactions. Notice
that, prior to advancing the simulated time by the leap
time τ , the leap condition must be checked if τ is greater
than a few multiples of 1/a0(x), which is the mean time

step for the exact SSA. If τ fails to meet such condition,
it would be efficient to run the exact method rather than
to leap over time.

The τ -leap algorithm is explained below:

1. Initialization. Initialize the number of molecules
with X(0) and set the current time to t← 0.

2. Propensity functions. Calculate propensities am
for all M reactions and take a summation of am to
get a0.

3. Reaction time. Calculate τ according to
Equations (32) through (35).

4. Leap condition. If τ < β/a0 (where 1 < β < 10),
execute an exact SSA for a number of successive
time steps (e.g. 100) and go to step 2; otherwise
proceed to the next step;

5. Poisson generation. For each m ∈ {1 . . .M},
generate a Poisson random number Km with a
parameter of amτ .

6. Reaction execution. Update the current time and
the number of molecules by t← t+ τ and X(t)←
X(t) +

∑M
m=1KmVm, respectively, where Vm is a

stoichiometric vector for the mth reaction.

7. Termination. If t < tdesired or no more
reactant species remain in the system, terminate the
simulation; otherwise go to step 2.

An architecture implementing the τ -leap algorithm is
shown in Figure 9. It mainly consists of two data paths
to compute two different tentative times. On one side of
the data path, the η and τη units calculate a tentative time
τη,m of reaction Rm by evaluating the mean ηm of the
propensity change in reactionRm, and on the other side,
the σ2 and τσ units calculate another tentative time τσ,m
of reaction Rm by evaluating the variance σ2

m of the
propensity change in reaction Rm. Calculation of some
intermediate variables such as fmm′ , am, and a0 can be
shared between the η unit and the σ2 unit, thus these
variables are computed only within the η unit and are
passed onto each of the σ2, τη and τσ units, accordingly.
As all M tentative times have passed into each of the
τη and τσ units in a pipelined fashion, the minimum
value is determined as τη,min = minMm=1 τη,m and
τσ,min = minMm=1 τσ,m by the τη unit and the τσ unit,
respectively. Subsequently, the leap checker compares
both of the minimum tentative times and take the smaller
value as the leap time τ .

To avoid the situation where only a few reactions are
leaped over thus it would be rather efficient to reject
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Figure 9: Top block diagram of τ -Leap unit.

τ -leap and run the exact unit instead, the leap checker
compares τ with some threshold level (i.e., multiples of
1/a0) and notifies the result to the external control unit.
If τ fails to be greater than the threshold, the control
unit disables the τ -leap unit and triggers the exact unit
with a signal, Leap T/F. Otherwise, the Poisson unit
next to the leap checker generates a Poisson random
number for each reaction with a Poisson parameter of
amτ . To parallelize the process, P Poisson random
numbers (K1 . . .KP ) are generated at a time and are
driven to the external control unit for generation of a
state change vector V , given by V ← KmVm, which in
turn is used for an update of the system state according
to X ← X + V . The simulated time t is also to be
advanced by amount τ , i.e., t← t+ τ .

As can be noted in Equations (32)–(35), the process
of calculating ηm and σ2

m is accomplished by numerous
matrix operations. To achieve better performance gain,
we can exploit data parallelism existing in the matrix
operations and implement the τ -leap unit as a pipelined
vector machine. Consequently, each unit contains the
same kind of P matrix operators in parallel to operate
on the whole sequence of data at a time. For this reason,
both η and σ2 units take a P sequence of data in a
vectorized form as labeled in Figure 9. We will now
elaborate further on details of each unit by referring to
the microarchitecture diagram shown in Figure 10.

η unit. The η unit computes a sequence of
sum-of-product operations given by Equations (32) and
(33). The first stage of the pipeline executes, on the mth

reaction, a vector multiplication of[
fm1 · · · fmM

]
=[

∂am
∂xi

∂am
∂xj

] [vi1 · · · viM
vj1 · · · vjM

]
. (36)

Since the number of reactions for a large network is
typically on the order of several hundreds to thousands,
rather than operating on the whole M sequence of
data, we apply strip-mining and perform a partial vector
operation of size P one after another until the full vector
length M has reached. Therefore, the hardware is
pipelined to execute dM/P e vector multiplications of
the form above with P sets of fmm′ data processed at a
time (i.e., m′ = {1 . . . P}).

The derivatives of the propensity function am of
reaction Rm with respect to xi and xj can easily
be evaluated due to the fact that the reaction is only
constrained by three elementary types of reactions (see
Section 2.1). Based on reaction types, six different
combinations of derivatives are possible (0, cm, cm(xi−
1/2), cmxi, cm(xj−1/2), and cmxj) and the operations
are implemented in the ∂a/∂x unit as drawn in the upper
left corner of Figure 10.

In parallel to the evaluation of those fmm′ data,
the propensity functions of all M reactions need to
be calculated and, as before, P sets of input data
{(c1, xs, xt) . . . (cP , xu, xv)} among all M reactions
are passed into P propensity units (a1 through aP unit)
until all dM/P e sets of data are driven through the
pipeline.

In the following stages of the pipeline, the mean value
associated with a reaction is computed by taking the sum
of fmm′am′ as given by Equation (33). Reiterating the
equation, we can write the vector multiplication in the
form of

ηm =
[
fm1 · · · fmM

]  a1

...
aM

 . (37)

This vector operation is implemented using P
multipliers followed by a binary tree-structured
η-aggregator, and again, dM/P e operations are
pipelined to finally get the mean value ηm. Concurrent
to the η-aggregator, the a-aggregator accumulates all
propensities to obtain a0.
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σ2 unit. The basic flow of operations is similar to the
η-unit but an additional level of parallelism is necessary
for computation of the f2

mm′ term in Equation (34).
In each of the f2

j units (j = 1, . . . , P ), a vector of
(fm1 · · · fmR) is multiplied by a column vector of the
same fmm′ matrix. For instance, in the f2

1 unit, a vector
multiplication of

f2
m1 =

[
fm1 · · · fmP

] f11...
fP1

 (38)

is performed, whereas the f2
P unit evaluates a vector

multiplication of

f2
mP =

[
fm1 · · · fmP

] f1P...
fPP

 . (39)

If there are more than P reactions to process (M >
P ), the same vector multiplications can be performed
by streaming data into the pipeline. These vector
operations are performed via the multipliers followed by
the f2-aggregator.

As a vector of (f2
m1 · · · f2

mP ) is available at the
output of all f2-aggregator units, The following vector
multiplication given by Equation (34) is evaluated:

σ2
m =

[
f2
m1 · · · f2

mM

]  a1

...
aM

 . (40)

That is, the vector (f2
m1 · · · f2

mP ) is multiplied by the
propensity vector (a1 · · · aP ) obtained from the η unit,
using additional multipliers and the σ-aggregator next to
the f2-aggregator units.

τη and τσ units. The τη unit evaluates τη,m for all M
reactions according to τη,m = εa0/|ηm|, as expressed
in Equation (35), and outputs their minimum (i.e.,
τη,min = minMm=1 τη,m) to the leap checker. The
control parameter ε is a constant value preloaded in a
register. Likewise, the τσ unit evaluates τσ,m for all
reactions, according to τσ,m = ε2a2

0/σ
2
m, and outputs

their minimum (i.e., τσ,min = minMm=1 τσ,m) also to
the leap checker. In this case, an additional multiplier
is needed to compute a2

0. ε2 is also a constant value
preloaded in a register.

Leap Checker. This unit simply compares the two
tentative times of τη,min and τσ,min, each generated by

the τη unit and the τσ unit, respectively, and determines
the smaller value to be the leap time τ . In addition,
as argued in the discussion of the algorithm, the leap
condition is checked by comparing the selected τ with
a threshold of β/a0, where β ranges typically from 1 to
10. If τ turns out to be greater than the threshold, the
leap flag is enabled; otherwise it becomes disabled to
alert the external control unit.

Poisson unit. Finally,M Poisson random numbers are
generated by executing the Poisson unit dM/P e times.
It contains P subunits which generate Poisson random
numbers of (K1...KP ) with the expected occurrences
of (λ1, . . . , λP ) = (a1τ, . . . , aP τ). Each subunit is
implemented using a simple algorithm [66] for which
a pseudo-code is listed in the following.

Algorithm 1 A simple algorithm for Poisson-distributed
random number generation
procedure Poisson(λ)

1: k ← 0 p← 1 L← e−λ

2: repeat
3: k ← k + 1
4: Generate a uniform random number u in [0, 1]
5: p← p× u
6: until p > L
7: return k − 1

In the algorithm, a uniformly distributed random
number is generated at every iteration of the loop
until p becomes greater than L, where p is the
accumulated multiplications of a sequence of uniform
random numbers generated over a number of iterations
and L is an exponential value calculated by e−λ. λ is an
expected value of a Poisson-distributed random variable.
Upon meeting the condition to break from the loop, k−1
is determined as a Poisson random number, where k is
a counter value representing the total number of loop
iterations.

As can be seen, the complexity of this algorithm is
linear in λ. We will eventually have to explore enhanced
algorithms to address this complexity. However, due
to its ease of implementation in hardware, we use
this algorithm as a baseline for further improvements.
An implementation of this algorithm is sketched in
Figure 10. As latency for the initial calculation of
p ← p × u can be amortized while calculating e−λ

by means of a multiplication and a table look-up, and
a valid p is generated every cycle, the hardware can
potentially perform better than software despite the
same complexity limited by λ.
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Just as with the exact SSA units, we follow along
the critical path of the pipeline, discarding all potential
latencies that can be hidden, and express the total latency
as a function of the mean of Poisson numbers Kmean,
the network size M , the number of parallel processing
elements P . As a starter, the total latency is expressed
simply as

Lleap = Lin + Lσ2 + Lτσ2 + LPoisson + Lfire, (41)

where Lin is the number of cycles for distributing
input data across all units; Lσ2 is for evaluating the
variance σm2 of all reactions; Lτσ2 is for computing
the minimum τσ,min and checking the leap condition
on its value; LPoisson is for generating Poisson random
numbers of all reactions; and Lfire is for executing
all reactions based on their corresponding Poisson
parameters. (In the following, refer to Figure (10) for
newly defined latency parameters.)

Given P +P 2 input processing elements in the η and
σ2 units, and leveraging the banking of memories, we
assume the input latency to be

Lin = dlog (P + P 2)e, (42)

where P is defined as a degree of parallelism implying
the number of units which operate concurrently on
the data—somewhat similar to the term, vector length,
used in vector processors. Specifically, P refers to the
number of parallel processing units which include the
fP , fP ′

2, and fP 2 units, the Poisson unit and so forth.
Both of the η and σ2 units operate concurrently

so the critical path lies in the one with a longer
pipeline depth, which in this case is the σ2 unit.
Hence, we only consider the data path associated with
computing τσ2,min. Simply summing the latency of
each component in the σ2 unit, the total latency is
expressed as

Lσ2 = Lf + Lf2 + Lf2-agg + Lfa + Lσ2-agg, (43)

and the latency of both f2 and σ2 aggregator units is
further expressed as

Lf2-agg = Lσ2-agg = dlogP e+
⌈
M

P

⌉
, (44)

in order to process the data of M reactions using P
concurrent units.

In the τσ2 unit, the latency for calculating a2
0 can

be hidden as a0 is available even before a valid
output comes from the σ2 unit. Likewise, the latency
for calculating β/a0 in the leap checker can also be
amortized. In addition, we can discard the latency for

the compare operation in the leap checker as it can also
be hidden by Poisson random number generation. Thus,
the latency accounting for both the τ2

σ unit and the leap
checker is expressed as

Lτσ2 = Labs + Ldiv + 2Lmin +M, (45)

in order to process the data of M reactions.
Determining the latency of the Poisson unit is not a

trivial task as it depends on the generated Poisson value
which turns out to be random. To address this, we
define a parameter Kmean as the mean value of a set of
generated Poisson numbers collected from experimental
runs. In other words, Kmean is the number of fires
or time steps advanced per reaction per leap, requiring
Kmean + 1 compare operations followed by updates of
the counter value. Despite several cycles are initially
needed to fill up the pipeline for evaluating p ← p × u
and e−λ in hardware, once the pipeline is filled with
valid data, the multiplier provides the valid output of
p × u at every cycle. In addition, calculation of e−λ is
needed only once per a single Poisson random number
generation. Furthermore, the combined latency of the
uniform random number generator and the multiplier
can effectively be hidden if we let them run from the
very beginning (e.g., t = 0). Hence, many cycles can
potentially be hidden, and it is reasonable to express the
latency as

LPoisson = (Kmean + Lcmp + Lcnt)×
⌈
M

P

⌉
. (46)

Assuming we can further hide the latencies for
updating the simulated time and loading both the
state change vector and the system state vector while
generating Poisson random numbers, the latency for
firing the whole M reactions (i.e., X + KmVm) is
expressed as

Lfire = (Lmul + Ladd + Lstore)×
⌈
M

P

⌉
. (47)

All in all, substituting Equations (42)–(47) into
Equation (41) and using constant values of Lf = 9,
Lf2 = Lfa = Labs = 3, Ldiv = 20, Lmin = Lcmp =
Lcnt = Ladd = Lstore = 1, Lmul = 2, the total latency
is expressed as

Lleap = dlog (P + P 2)e+ 2dlogP e

+ (7 +Kmean)×
⌈
M

P

⌉
+M + 40.

(48)

In contrast to the exact methods, translating
Equation (48) into a throughput equation is not a
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Figure 11: Microcoded leap processor.

simple task as the total number of reactions executed
per leap is nondeterministic—i.e., not only is Kmean
random but also a function of propensities and leap
times. Therefore, rather than plotting a generalized
throughput graph in this section, we will show
experimental results of certain network examples in
Section 4.3.

There is a variety of methods and new ones continue
to be developed. Methods differ in their complexity
and accuracy for determining the leap condition and the
τ interval, but no clearly superior approach seems to
exist [33, 21, 19]. Furthermore, as will be confirmed
by experimental results in Section 4.3, derivation of
τ by bounding expected propensity variations requires
relatively complex and irregular computations that
are not amendable to easy hardware parallelization,
resulting in only moderate speedups. Towards this end,
a research challenge will be to design an approximate
unit that can flexibly support current and future leaping
methods yet is specialized enough to do so optimally.
We can conclude that a direct hardware implementation
of the τ -leap unit with such high hardware complexity
may not be the best approach. Instead, we can envision
a specialized, microcoded processor (as sketched in
Figure 11) that can be reprogrammed to execute
different leaping variants on top of a custom data path,
which includes dedicated hardware for leaping-specific
operations such as random number generators and am
pipelines and memories. With careful co-design of
microarchitectures, this should allow us to achieve

the same performance as full custom hardware while
supporting a wide range of leaping algorithms.

4.2.2 Hybrid SSA

Overall, the envisioned SPE design represents a flexible
yet high-performance architecture that combines a
programmable τ processor with a dedicated exact SSA
unit. In addition to operating in any of the two modes,
the architecture naturally supports hybrid simulations
in which reactions are statically [28, 34, 25, 29] or
dynamically [23, 24] partitioned into slow and fast ones
running in parallel on the exact and approximate units,
respectively. The central controller thereby maintains
the classification of reactions and distributes them to
the appropriate processing unit. To support dynamic
partitioning, the execution units can in turn be extended
to include reaction classifiers that report status changes
back to the controller, e.g. following the procedure
outlined in [23]. Finally, the router receives τ and
V from both units and, depending on the smaller τ ,
combines them into an overall time and species update.
In this context, we will also investigate support for other
dynamic partitioning approaches [24], where we will
address challenges for integrating such support into the
controller and execution units while maintaining overall
high performance across all supported SPE modes.

4.3 Experiments and Results

For performance comparison to hardware models, we
simulate several network examples (both artificial and
real ones), on a 2.67 GHz Intel Core i7-920 processor,
by using the StochKit2 [36] software package, where
we explicitly select, among many available methods,
the ODM [14] and the τ -leap [18] to achieve the
best performance results in software. Based on the
simulation information captured during software runs,
we evaluate the speed-ups of our analytical hardware
models of the NRM and the τ -leap against software
realizations of the ODM and the τ -leap, respectively.
We select particularly the NRM and compare its
performance with that of the ODM in software owing
to its promising result of performance in hardware, as
previously discussed in Section 4.1.5.

4.3.1 Partially Coupled Decay System

We define an artificial network named Partially Coupled
Decay System (PCDS) whose network size and
dependency factor can easily be adjusted. A general
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form of the PCDS network containing m × n reactions
and m× (n+ 1) species is expressed below:

Rset1 = {S1 + Si1
c1−→ ∅ :m+1≤i1≤m+n}

Rset2 = {S2 + Si2
c2−→ ∅ :m+n+1≤i2≤m+2n}
...

Rsetm = {Sm + Sim
cm−−→ ∅ :

m+(m−1)n+1≤im≤m+mn},

(49)

where all of the indices (i1 – im, m, and n) are positive
integers; and m and n are constant values which can
be parameterized depending on the desired network size
and dependency factor. Notice that each of the reaction
sets, Rset1 – Rsetm , contains n reactions which are
coupled each other via the first reactant species, and
reactions across different sets are independent from each
other as they do not share any of the same reactants. For
example, if we were to create a PCDS network having
4 reactions, 6 species, and a dependency of 50%, the
generated network would look as follows:

Rset1 = {S1 + S3
c1−→ ∅, S1 + S4

c1−→ ∅}

Rset2 = {S2 + S5
c2−→ ∅, S2 + S6

c2−→ ∅}
(50)

4.3.2 Performance Comparison for PCDS
Networks

For both the ODM and τ -leap simulations, we created
a range of PCDS networks with predefined initial
conditions by varying network size and dependency:
M = {1, 000i : 1 ≤ i ≤ 10, i ∈ N}, D =
{10%, 50%}, and {c = 1e-9, Xt0 = 1e5}. The
same rate constant was applied to all reactions, and
all reactants were initialized with the same number
of molecules. Using a Python script which takes on
libSBML libraries [67], we generated PCDS networks
with combinations of M and D in SBML-L2V4 format
and subsequently converted them into StochKit2 format
using the tool (sbml2stochkit) included in the StochKit2
software package.

For the ODM simulations, we used the latest beta-3
version of StochKit2 to simulate each network for a
simulated time of 15s. We simulated a given network 11
times and during each run, we measured a dataset of the
simulation time (todm,sw) and the number of time steps
(Nstep), and extracted the one containing the simulation
time occurred to be the median of all 11 experiments.
Based on such measurements, we were able to predict
the simulation time in hardware, as if the hardware of the
NRM would have simulated the same model, according

to

tnrm,hw =
Lnrm ×Nstep

f
(51)

where Lnrm, given by Equation (20), is the latency in
cycle needed to simulate a single time step and f is an
operating frequency of the hardware.

Figure 12 plots the performance gains of the NRM
in hardware, defined as todm,sw/tnrm,hw, where we
assume a single SPE containing from 1 RU up to
128 RUs at 500 MHz. The measured number of time
steps for each network size is further plotted along the
secondary axis. We can see in the plots that as the level
of parallelism in the hardware (R) and the dependency
among reactions (D) increase, speed-ups also increase
from 8x up to 96x for networks with a dependency of
10%, and 7x up to 241x for networks with a dependency
of 50%. As expected, speed-up enhancements over
increases in network size and dependency tend to
become prominent as a higher degree of parallelism is
involved.

For the τ -leap simulations, we used the beta-1 version
of StochKit2 because the latest version implements
a modified τ -leap method [20] in which the issue
of negative populations is addressed and thus the
performance can slightly be degraded in software. Since
the beta-1 version halts the simulation or notifies with
warnings as a certain number of the occurrences of
negative populations is detected, we were able to
manage, throughout the experiments, to have zero
occurrence of such exception. As in the ODM
simulations, we used the same set of network models,
and executed the software 11 times on each network
type for a simulated time of 15s. During each run, we
measured a dataset of the simulation time (tleap,sw), the
number of leaps (Nleap), the number of exact fallback
steps (Nfb), and the average number of fires for each
reaction per leap (i.e., Poisson random number Kmean),
and extracted the one containing the median of all
simulation times. Based on the measurements, we
evaluated the simulation time in hardware according to

tleap,hw =
(Lnrm ×Nfb) + (Lleap ×Nleap)

f
, (52)

where Lleap, given by Equation (48), is the latency in
cycle needed to simulate a single leap.

Assuming a single SPE having R RUs in an exact
unit and a P degree of parallelism in a leap unit,
and all operating at 500 MHz, Figure 13 plots the
performance gains of the τ -leap in hardware over the
software realizations. We only observe the data with
the hardware size of up to P = R = 8 as its
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Figure 12: Performance gains of the NRM architecture simulating artificial PCDS networks with an initial condition
of {c = 1e-9, Xt0 = 1e5} for a simulated time of 15s, and the associated number of time steps (1 SPE @500 MHz).
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Figure 13: Performance gains of the τ -leap architecture simulating artificial PCDS networks with an initial condition
of {c = 1e-9, Xt0 = 1e5} for a simulated time of 15s, and the associated number of leaps and fallbacks (1 SPE
@500 MHz).

area cost is estimated to be comparable to 128 RUs
in the exact SSA simulation. For each network size,
the number of leaps and the number of fallbacks are
also plotted along the secondary axis, and four cases
of exact SSA fallback steps are observed as shown in
Figure 13(b). As a result, speed-ups range from 4x up
to 32x for networks with a dependency of 10%, and
from 6x up to 31x for networks with a dependency of
50%. Although neither network size nor dependency
has much impact on speed-up enhancements, we still
observe improvements in speed-up as a higher degree
of parallelism is exploited.

Overall, we have observed that exploiting
concurrency in hardware influences the speed-ups

of both exact and approximate simulations to varying
extents, and thus it is just a matter of, given a frequency
constraint, how much degree of parallelism (SPE, R,
P ) we can accommodate in a single SSSoC to achieve
better speed-ups, and thus an additional study of area
estimations remains as part of the future work.

4.3.3 Performance Comparison for Real Networks

In addition to the artificial network, we simulated
real biological networks including intracellular viral
infection [33], heat shock response (HSR) [65],
and mitrogen-activated protein kinase (MAPK)
cascade [68], each of which has distinct network
characteristics in terms of the number of reactions (M ),
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Figure 14: Performance gains for real network examples (Simulated time = 300s, 1 SPE @500 MHz).

the number of species (S), and the dependency (D).
Figure 14 shows the speed-up results for both exact and
τ -leap methods simulating aforementioned models for a
biological time of 300s. The number of different types
of time steps for each network is additionally shown
in the figure. As in the artificial case, we simulated a
given network 11 times and took the dataset containing
the median simulation time, and using Equations (51)
and (52), we evaluated the predicted simulation times
of both the NRM and the τ -leap method in hardware.

As a result, speed-ups ranging from 7x to 9x for
the NRM and from 5x to 8x for the τ -leap method
were achieved under the assumption of utilizing single
SPE with a number of sub-units as given by P and R
in Figure 14. In Figure 14(a), the reason speed-ups
gradually degrade as R increases is due to the fact
that there exist crossover points in our throughput plots
of various exact methods (see Figure 8) where adding
more RUs in an SPE adversely affects on the throughput
especially for smaller network sizes and dependency
factors.

5 SSSoC Networking

An SSSoC combines multiple SPEs that are
interconnected in a network-on-chip (NoC) fashion to
exploit coarse-grain SSA parallelism [69]. External
ports of SPEs at the borders of the SSSoC are used for
communication with the host PC and will allow multiple
chips to be combined and connected at the board and
cluster level, further increasing scalability. Routers
connect SPEs to their neighbors and are configurable
in the way they communicate and exchange updates.

We will specifically develop SSSoC support for both:
(1) independent simulation of the same network in
multiple SPEs (parallelism across the simulation); and
(2) partitioning of a larger network simulation across
multiple SPEs (parallelism across the method). In the
process, we will explore novel parallel and distributed
SSA variants specifically targeted at SSSoC execution.

Standalone Simulation In a standalone simulation,
the same network is pre-loaded into all SPEs.
SPEs independently perform simulations with different
random seeds, where particular care has to be invested
to ensure the independence of generated random
numbers [41], e.g. by seeding hardware from random
physical events such as thermal noise. Routers are
configured to operate locally only and no updates are
exchanged with other SPEs. Instead, routers send
species information to the host PC, which aggregates
and averages data collected over multiple instances. An
open issue is the bandwidth needed for communication
with the host. Utilizing high-speed host interfaces
such as PCI-Express, we except to be able to fully
hide host communication latencies in parallel to SPE
computations. To address any potential bottlenecks, we
will consider SSSoCs that can collect statistics at run
time directly in an attached external, on-board memory.

Within the framework of standalone operation, we
will investigate tradeoffs between SPE size (number of
RUs) in relation to the overall SSSoC area (number
of SPEs). Preliminary results (see Figure 8) indicate
that for independent Monte-Carlo simulations, a large
number of small SPEs is optimal in terms of utilizing
chip resources. However, the situation is reversed
for simulation of a single large network. By
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reconfiguring a network of small SPEs to act as a
single, combined large network simulation as described
below, we expect the final SSSoC to flexibly support
both cases at near-optimal performance. Overall,
we will perform design space exploration for various
SSSoC operation modes and configurations, including
heterogeneous arrays of differently sized SPEs, under
area, performance and power considerations.

Partitioned Simulation A standalone simulation
mode can effectively parallelize many independent runs,
but does not help in speeding up individual simulations
of large networks. Furthermore, SPEs are limited by
practical considerations in the size of their memories
and tables, and hence the size of the network they
can support. To overcome these limitations, SSSoCs
will support a configuration in which multiple SPEs
collectively co-simulate a larger network based on either
graph [46] or geometric [47, 48] partitioning. Again,
key research challenges stem from the question of how
to support different modes in a most optimal fashion.
Note that in contrast to other architectures, the SSSoC
approach will be inherently scalable, e.g. by avoiding
the bottleneck of a global shared memory.

In graph-based methods, the model to be simulated is
partitioned and distributed such that each SPE processes
a subset of reactions assigned to it. Species memories
in SPEs thereby hold a copy of all input concentrations
needed by assigned reactions6. In exact simulations as
illustrated in Figure 15(a), a subset of p reactions are
partitioned and mapped onto a SPE by programming its
reaction and vector tables with stochastic rate constants
cm, reaction types hm, and stoichiometric vector Vm.
While the leap unit being disabled, the exact unit
evaluates the next reaction most likely to occur in the
nearest time point and sends the associated reaction time
τe and stoichiometric vector Ve to the router, which in
turn communicates with its adjacent routers to exchange
time-stamped update events (te,Ve) across the network.
After receiving updates from all other SPEs, routers
locally select the event with the smallest time stamp and
update local time and species values accordingly.

By contrast, distributed τ -leaping simulations will
be more challenging as computation of the time
leap interval requires various intermediate data to be
available across the whole network, i.e., the data
dependency across SPEs can degrade the overall
concurrency of the SSSoC with increased overhead in
communication. With that said, we may perhaps have to

6This may require duplication of species values in multiple
memories.

compromise some accuracy by only accounting for the
mean value of the propensity change when determining
the leap interval, i.e., by discarding the variance
evaluation. Figure 15(b) shows a SPE implementing
such approximate mode and includes the required data to
be communicated through routers to other SPEs. Similar
to the exact case, a subset of p reactions are partitioned
and mapped onto each SPE with pre-loaded table values.
While a SPE in the exact mode independently evaluates
the time step τe of its assigned subset of reactions,
in the approximate mode, it is more efficient for a
SPE to evaluate the mean and thus the leap interval
cooperatively with other SPEs so as to minimizing the
communication overhead. This is due to the fact that
calculating the mean of a given reaction channel requires
the evaluation of parameters such as propensities and
stoichiometric vectors across all reaction channels as
well as its own.

Revisiting the process of the τ -leap algorithm in
Section 4.2.1, we can partition the calculation of ηm
in Equation (33) (i.e., ηm =

∑M
m′=1 fmm′am′ ) into

p separate equations and map them across different
SPEs. For example, one SPE processes a partial
mean of ηm,partial,1 =

∑p
m′=1 fmm′am′ , another

SPE processes a partial mean of ηm,partial,2 =∑2p
m′=p+1 fmm′am′ , and so on. Notice that as

a prerequisite to the evaluation of fmm′ given by
Equation (32) (i.e., fmm′ =

∑N
i=1(∂am/∂xi)vim′ ),

the SPE assigned to the reaction m needs to distribute
a pair of (∂am/∂xi, ∂am/∂xj) values to all SPEs.
The partial mean values calculated by SPEs are then
aggregated through routers and thus ηm is obtained.
Likewise, routers collect the partial sum of propensities
a0,partial from SPEs and aggregate them to get a total
sum of propensities a0 for all reactions in the network.
With availability of a0 and ηm, the leap interval τm
is calculated according to εa0/|ηm| by utilizing the
pipeline of the leap unit. In the same manner as
described above, the whole SPEs cooperatively process
the τm values for all reactions in a pipelined fashion, and
the leap unit in each SPE finds τl as the local minimum
of τm. Lastly, routers further determine the minimum
of τl as the final leaping time τ . Upon completion
of processing the final τ , routers distribute the value
across all SPEs so that each leap unit accordingly
generates Poisson random numbers Km for those p
reactions assigned to its own and provides its local
router with a partial sum of stoichiometric vectors (i.e.,
Vl =

∑
mKmVm with m being constrained to the

assigned p reactions). Lastly, routers accumulate the
stoichiometric vectors Vl from all SPEs and distribute
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Figure 15: Operational modes for partitioned simulation.

the final values of τ and V for updates of local time and
species values. Additionally, the exact unit is enabled
in case the fallback condition occurs, and in the hybrid
mode, both exact and leap units dynamically partition
all reactions into slow and fast reactions by setting or
clearing the (slow/fast)m entry in the reaction table.

As can be noted, it is not a trivial task to manage all
the synchronization between SPEs as well as to reduce
communication overhead. It becomes even challenging
when it comes to implementing the partitioned
simulation for the algorithm that considers both the
mean and the variance. Perhaps, we can optimize
necessary communication overhead, e.g., by exchanging
intermediate results that can be pre-computed locally
in each SPE. Overhead of broadcasts across the mesh
network can generally be minimized by employing
well-known collective communication patterns [70,
71, 72, 73, 74]. For example, in the exact SSA
case, routers only need to forward events that have
a lower time stamp than any of the events that
have been received already. Furthermore, we can
adapt existing partitioning solutions [46] that analyze
dependencies between reactions and map closely
coupled subnetworks onto the same or neighboring
SPEs to reduce overhead. Nevertheless, communication
and synchronization in every time step may become
a bottleneck. As such, we can envision decoupled
approaches that, based on the observation that species
values only increment/decrement slightly in each step,

aim to overlap communication of species updates with
computation of the next iteration. This can significantly
increase throughput but will affect the exactness of
computations that are performed while species updates
are being performed. We are currently in the process
of evaluating accuracy and performance of such an
approach.

Next to graph-based methods, geometric clustering
has been a relatively recent development. In these
approaches, spatial information is introduced and
systems are described as reaction-diffusion models [75].
For example, in the next subvolume method (NSM) [76],
the system is divided into equal subvolumes that are
individually simulated by an SSA to determine local
reaction or diffusion events. The NSM then repeatedly
executes the event with the lowest time stamp, where
only those subvolumes affected by the event in the
previous step are resimulated. This method has
already been successfully parallelized on traditional
clusters [48]. We can note that a two-dimensional
partitioning in the NSM naturally maps to the 2D
SSSoC topology. As such, we can adapt the techniques
presented in [48] in such a way that SPEs only need
to exchange updates with their immediate neighbors
when executing diffusion events7. However, a research
challenge will be how to optimally synchronize local
time stamps and maintain a global time and event

7Other diffusion models can be realized by designating entries in
the vector tables as external updates for specific other SPEs.
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update order across SPEs, requiring implementation of
distributed time synchronization protocols [77] within
the routers. This will incur overhead for broadcast of
time stamps in every iteration. To reduce potential
bottlenecks, we can adapt existing temporal decoupling
techniques [48]. However, accurate decoupling requires
support for rollbacks with associated large memory
requirements. We can instead envision a limited, inexact
decoupling where routers advance time and update state
if all configured neighbors have reached the same t.
This effectively limits the window that each SPE can
run ahead to one time step, where inaccuracies without
a rollback mechanism arise from diffusion updates that
arrive earlier than the already computed local event.
Again, we will study tradeoffs between accuracy loss
and performance gains of such an approach. Results
of work on partitioned simulation are expected to lead
to novel distributed simulation methods that will also
have immediate applicability on traditional cluster or
grid architectures. Overall, we envision an SSSoC
network in which SPEs and routers can be individually
configured for different network simulation modes,
different SSA variants and different simulated network
topologies.

6 Summary and Conclusion
We have presented an architecture of the stochastic
simulation system-on-chip (SSSoC) that is capable
of simulating gene regulatory networks and other
biochemical reaction systems. The architecture
implements both exact and approximate stochastic
simulation algorithms (SSAs) via a scalable array of
stochastic processing elements (SPEs) communicating
through routers placed in a mesh topology.

As part of our research agenda forward, we have
studied different types of stochastic simulation
algorithms and evaluated how each of them will
perform when implemented in custom hardware.
For performance comparison among different
implementations, we carried out a theoretical analysis of
latency and throughput and compared them by varying
hardware configurations and network sizes.

For exact SSAs, FRM-based hardware outperforms
DM-based hardware to varying extents, and results
from our throughput analysis show that, for small
network sizes, throughput ranges from 10 Msteps/s to
1280 Msteps/s for a chip with 128 SPEs operating
at 500 MHz, and for larger network sizes, the peak
throughput reaches up to 64/M Gsteps/s with M being
the number of reactions in the network. For approximate

SSAs, we particularly investigated into a hardware
implementation of the enhanced τ -leap method and
formulated an analytical expression of the latency for a
single leap step.

We performed software simulations on both artificial
and real networks, and evaluated the performance gains
of our analytical hardware models. For artificial
networks, the performance gains varied extensively,
and assuming a single SPE with varying levels of
concurrency inside, speed-ups of 7x–241x for the
exact method and speed-ups of 4x–32x for the τ -leap
method were achieved depending on network size
and dependency. For real biological networks of
intracellular viral infection, HSR, and MAPK cascade,
speed-ups of 7x–9x for the exact method and 5x–8x for
the τ -leap method were achieved.

Alternatively to the τ -leap in custom hardware,
we also sketched a specialized, microcoded processor
that is flexible enough to implement current and
future approximate methods. Furthermore, we briefly
mentioned how hybrid SSAs can be realized by
appropriately orchestrating the dedicated exact unit
and the programmable approximate unit. Lastly,
we explored how multiple SPEs interconnected in
a network-on-chip fashion can be leveraged to
support two different modes of simulation—standalone
simulation and partitioned simulation. Exploiting
coarse-grain SSA parallelism, we can either assign
the same network in multiple SPEs or partition a
large network across multiple SPEs based on some
partitioning method such as graph-based method or
geometric clustering.

In summary, with the promising results of our
approach identified in this report, we have taken the first
step toward co-design of algorithms and architectures
for a dedicated SSSoC design. We believe the work
and some of the envisioned ideas presented in this report
can serve as a cornerstone for the future research going
forward.
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