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Abstract—This report demonstrates application of the System-on-
Chip Environment (SCE) towards the design of 
hardware/software platforms for real-time audio processing 
following MP3, AAC, and AC3 decoding standards. Starting 
from C reference implementations, well-defined specification 
models are developed and fed into an SCE-based design space 
exploration and synthesis flow. Models are synthesized down to 
ARM-based HW/SW platforms, where in all cases, final software 
and hardware implementations are generated within minutes. 

Keywords-multi-processor system-on-chip (MPSoC); system 
compiler, audio processing 

I.  INTRODUCTION  

Embedded systems and general purpose computing systems 
used to be at opposite ends of design spectrum, with little to no 
overlap between each other. While general purpose computing 
systems were powerful, flexible and programmable, embedded 
systems tended to be application specific, highly optimized and 
tightly constrained.  

In the embedded world, we see today that more and more 
complex functionalities, such as HD video, web browsing or 
3D graphics, are packed into embedded systems like 
smartphones. At the same time, increasing costs of chip 
development and shrinking time to market make it infeasible to 
design a new architecture for each new application instance. 
This has led to the emergence of platform-based design 
techniques, in which a more flexible, programmable or 
reconfigurable platform is reused across a large set of designs 
within a specific application domain. At the same time, while 
increasing the processing capability of systems is desired, cost, 
power consumption and heat are still the constraints that need 
to be dealt with. Pure software solutions have the most 
flexibility but consume too much power; while pure hardware 
solutions are more energy conservative but very inflexible. 
Hence, there is an inherent tradeoff between flexibility versus 
specialization that needs to be navigated. 

In the general purpose computing field, the scaling of 
frequency has hit physical limits and power walls limit the 
growth of computing power using traditional programmable 
processors. Multi-core design has emerged as a solution to 
increase performance while limiting core clock frequencies and 
hence chip activity and power density. However, even when 
replicating the same existing cores multiple times on a chip, 
power concerns will limit achievable performance gains going 
forward. Hence, other accelerating components such as GPUs 

have become popular to offload the burden of CPUs towards 
more specialized and more efficient processing engines.  

Overall, the development of embedded systems and general 
purpose systems both head toward solutions with multiple 
heterogeneous cores. Heterogeneous system design, however, 
is a complex task. Challenges include the high degree of 
parallelism at various levels, heterogeneity of programming 
models, architectures and tools, and ever-present real-time, 
power, cost and reliability constraints. Also, different parts of 
the system need to be specialized for different applications, 
using different development tools, design flows and 
incompatible interfaces. These challenges all together make it 
complex to develop a system from system specification to 
implementation.  

In this project, we aim to research flexible yet low-power 
embedded hardware/software platforms for real-time audio 
processing. The objective is to explore and design suitable 
architectures that can support multiple audio codecs, but can do 
so in an optimal fashion as determined by performance, cost 
and power consumption metrics. Our initial focus in is on 
investigation of possible architectures for audio decoding 
following MP3, AAC and AC3 standards. In doing so, we aim 
to apply design methodologies, technologies and tool flows 
developed in our group, e.g. as realized by the System-on-Chip 
Environment (SCE)  [1]. The long-term goal is to translate 
insights gained from this study into novel design space 
exploration algorithms that can automate the process of 
determining an optimal architecture for a class of applications, 
including the capability to design for flexibility in supporting 
future applications within that class. 

A. SCE 

SCE is a comprehensive development environment that 
takes a specification model, a set of element libraries and user 
input on design decisions, such as platform allocation and 
mapping to generate Transaction Level Models (TLMs)  [2] at 
different abstraction levels for rapid and early virtual 
prototyping and design space exploration using simulation and 
validation of these generated models  [3]. Backend hardware 
and software synthesis tools then take generated TLMs and 
synthesize C and RTL code to further realize the final software 
and hardware implementations using traditional low-level 
design flows. Besides the application itself, SCE also 
incorporates models of the underlying platform, such as 
Operating Systems (OSs) and hardware into the generated 
TLMs as well as final implementations so that the behavior of 
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Figure 1: SCE design flow. 

 
Figure 2: MP3 encoder block diagram. 
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In SCE, all models are all described in the SpecC System Level 
Design Language (SLDL)  [4]. Final output is generated in C or 
VHDL/Verilog for software and hardware parts of the system. 
SCE has databases for processing elements (PEs), 
communication elements (CEs), buses, and operating systems. 
Figure 1 shows the design process using SCE.  

SCE follows a specify-explore-refine flow w
wer level model. SCE takes the model generated from the 

upper level to specify the input to the design process at the next 
level. Designers enter different design decisions to SCE to 
generate models with different resource allocation, mapping, 
task partitioning, and scheduling. These models are then 
profiled and simulated to produce performance metrics such as 
power consumption and delay. The explore stage involves 
finding optimal solutions based on the metrics obtained. 
Finally, the optimal solutions are then refined into output 
models that are passed  into the next level. 

B. Audio Codecs 

Audio codecs ar
yers, video and movie systems, cell phones, video/voice 

conferencing, to name a few. For different purposes, different 
categories of audio codecs are developed by different groups or 
standards. Audio codecs can be roughly divided into two 
categories: lossless and lossy. Lossless audio codecs encode all 
information, i.e. no information is lost after encoding and 
subsequent decoding. Examples of lossless audio codecs 
include the Free Lossless Audio Codec (FLAC), Adaptive 
Transform Acoustic Coding (ATRAC), WMA Lossless, etc. 
Generally speaking, these codecs provide the highest quality, 
although the quality also depends on the sampling rate and 
number of bits for quantization. 

Lossy audio codecs, on the  only 

MP3. It is defined in both MPEG-2 and MPEG-4. It is also a 
psychoacoustic based audio codec. Compared to MP3, AAC 
supports more bit rates, sampling rates, multiple-channel 
coding, and of course is more complex.  shows the encoder 
block diagram of AAC.  

Unlike MP3, AAC 
nificant information to reduce data rate while keeping a 

certain level of subjective quality. There are two types of lossy 
audio codecs. On the one hand, there are speech codecs, which 
analyze human voice content to find features in the encoder and 
synthesizes these features into equivalent speech in the decoder. 
Speech codecs are designed for encoding human voices and do 
not perform well with other type of sound like music. The most 
common speech coding scheme is Code Excited Linear 

Prediction (CELP). Examples of speech coding include 
G.723.1, G.726, iLBC, AMR, GSM 06.10, etc. Speech coding 
is mainly used for video/voice conferencing and cell phones. 
The other class of lossy audio codecs are psychoacoustic based. 
This type of codec removes the part of the audio that is 
unperceivable to humans based on psychoacoustic models. 
Compared to speech coding, psychoacoustic based audio 
codecs require higher bit rates and provide higher sound quality. 
They are  widely used in many multimedia applications, such 
as music players, digital cameras, movie archiving, etc. Among 
the most popular and widely supported psychoacoustic audio 
codecs are MP3, AAC, and AC-3, which are especially popular 
in consumer electronics. Besides, these three codecs are open 
standards and many implementations are available. Thus, we 
choose these three codecs for design exploration within this 
project. 

1) M
MPEG A

low bit-rate psychoacoustic model based audio codec. It works 
by removing the part of the audio that humans are not sensitive 
to in order to compress the size while maintaining high quality. 
It is defined in ISO/IEC 11172-3. MP3 is widely supported by 
almost all digital music players and is the most prevalent 
format used for music storage.  

Figure 2 illustrates the bloc
ically, the PCM samples are divided into subbands and the 

psychoacoustic model controls the configuration of MDCT 
(Modified Discrete Cosine Transform), Scaler, and Quantizer 
blocks to determine what information can be removed. On the 
decoder side, the procedure is reversed, but in a simpler way 
since a lot of psychoacoustic model computation is not 
required.  

2) AAC
AAC (A

C profiles are defined in MPEG-2. The LC (Low 
Complexity) profile is the simplest and the most widely used. 
The Main profile is like an LC profile with backward 
prediction. Finally, the SSR (Scalable Sample Rate) profile is 
designed to increase temporal resolution at high frequency and 
spectral resolution at low frequency. 



 
Figure 3: AAC encoder block diagram. 

 

 
Figure 4: AC-3 block diagram  [5]. 

 

In MPEG-4, several audio profiles are defined and each 
profile includes several codecs. Two new AAC schemes are 
added in MPEG-4, i.e. HE-AAC (High Efficiency AAC) and 
LTP (Long Term Prediction). LTP is an improvement over the 
Main profile using a forward predictor. HE-AAC is an 
extension of LC-AAC optimized for low bit rate applications. 
HE-AAC v1 uses SBR (Spectral Band Replication), which 
takes advantage of harmonic frequency redundancy. HE-AAC 
v2 couples SBR with PS (Parametric Stereo) to enhance 
efficiency of stereo signals. 

3) AC-3 
AC-3 is also called Dolby Digital or ATSC A/52. It is 

commonly used to encode 5.1 channel audio, but also supports 
mono and stereo modes. Like MP3 and AAC, AC-3 is a 
psychoacoustic based audio coding technique.  Figure 4 shows 
the block diagram of an AC-3 encoder and decoder. The 
filtered coefficients are represented with mantissa and 
exponents. Mantissa and exponent are transmitted separately. 
AC-3 takes advantage of a high frequency coupling that 
selectively couples channels at high frequencies 

C. Audio Codec Implementations 

To start the design process in SCE, a SpecC model is 
required. Since SpecC is very similar to C, it is comparatively 
easy to find an already available implementation in C or C++ 
and then convert it to SpecC. There are existing 
implementations provided by open source communities. When 
choosing the right open source implementation as a starting 
point for this project, we evaluated the following criteria: the 
coding language, fixed point versus floating point 
implementation, and code complexity. The following sections 
discuss the open source codecs we have surveyed and our final 
selection. 

1) MP3 
MAD  [6] is a MPEG audio decoder that supports MPEG1 

and MPEG2 formats. It implements all three layers – Layer 1, 
Layer 2, and Layer 3. MAD supports 24-bit PCM output and is 
implemented in C. Operations are done in fixed point. MAD is 
available under a GPL.  

2) AAC 
FAAD2  [10] is an open source MPEG-2 and MPEG-4 

AAC decoder. It is licensed under GPL v2. It supports a variety 
of different AAC profiles such as LC (Low Complexity), Main, 
LTP (Long Term Prediction), and HE (High Efficiency). It is 
implemented in pure C code. The output format can be 

configured to 16-bit, 24-bit, 32-bit fixed point integer or single 
or double precision floating point. However, the complexity of 
the source code is not low. The total number of lines of code is 
about 68,000.   

The ISO AAC reference code  [11] includes an encoder and 
decoder for all MPEG-4 audio codecs. The AAC decoder part 
has about 30,000 lines of code. However, the disadvantage of 
the reference code is that it is not optimized compared to other 
open source solutions. 

Intel released an AAC code  [12] that is especially 
optimized for IPPs (Integrated Performance Primitives). 
Though the code is well optimized with  high performance to 
be expected when running on supported Intel platforms, tight 
coupling to a specific architecture may hinder our design space 
exploration. 

Opencore AAC  [13] is developed by PacketVideo and 
included as part of the Android multimedia framework. It 
supports LC, LTP, and HE profiles. It is mainly written in C, 
but is wrapped with C++ interfaces. The number of lines of 
code is about 75,000. Opencore also includes other audio 
codecs in the Android framework, such as MP3 and AMR. 

Finally, the Helix AAC Decoder  [9] is developed in open 
source form by RealNetworks. It is a 32-bit fixed point decoder 
and can be optionally optimized for ARM architectures. It 
supports the LC profile as well as the HE profile with SBR 
(Spectral Band Replication). Its code complexity is relatively 
low compared to other open source AAC codecs. The total 
number of lines of code is about 13,000. It is mainly written in 
C, but also has some code written in assembly for optimization 
on ARM.  

Table 1 summarizes the features and capabilities of the 
above described open source AAC decoders. 

3) AC3  
 [8]Liba52  is an open source implementation of AC-3 

decoder under GPL. It is implemented in C and operations are 
done in floating point. The total number of lines of code is 
about 2791. Besides the decoding library, this package also 
includes a test program. 

rations are 
done in floating point. The total number of lines of code is 
about 2791. Besides the decoding library, this package also 
includes a test program. 



Figure 5: AAC decoder specification model. 

 

TABLE 1: SUMMARY OF OPEN SOURCE AAC DECODERS. 

 Profiles Lang. LoC Floating/Fixed 
FAAD2 LC, 

Main, 
LTP, HE 

C ~68k Configurable for 
fixed point or 
floating point 

ISO LC, 
Main, 
SSR, LTP 

C ~30k Floating point 

IPP LC, LTP C ~7.7k Fixed point 
Opencore LC, LTP, 

HE 
C, with 

C++ 
interface 

~75k Fixed point 

Helix LC, HE C, ASM ~13k Fixed point 
 

D. Audio Code Selection 

MAD was chosen as the basis for the design of the MP3 
decoder because it is C based and 100% implemented in fixed 
point. Implementing such a design on a target processor avoids 
the need for a floating point co-processor. For the MP3 
implementation, we leverage an existing SpecC-based MP3 
decoder design based on the fixed-point MAD library as 
reported in  [6]. 

For AAC, the Helix decoder was selected due to its 
relatively low complexity, 100% fixed point implementation, 
independence from other libraries, and being written in C.  

For AC-3, Liba52 is the only codec surveyed and 
considered for implementation. This is based on an already 
partiallly converted SpecC model of Liba52 from a previous 
project. 

II. AAC DECODER DESIGN 

For the AAC decoder design, we start with the relatively 
simple fixed-point Helix reference implementation. The whole 
Helix project contains an audio codec framework that includes 
a couple of audio codecs. As a first step to prepare for 
conversion, the AAC decoder part was separated out into a 
standalone executable. This standalone AAC code was then 
further converted into a proper SpecC specification model for 
further design space exploration using SCE through a series of 
conversion and exploration steps as described in the following. 

A. Specification 

At the beginning of the conversion process, the C reference 
implementation was converted into an initial SpecC model. We 
first convert the C function call hierarchy directly into an 
equivalent hierarchy of SpecC behaviors, down to the level of 
primitive operations defined in the AAC source code that are 
kept as global or local C functions/operators. This initial SpecC 
code is “unclean” in the sense that the C function call hierarchy 
was converted directly into an equivalent hierarchy of SpecC 
behaviors that mimics the original C code (mapping each C 
function into one SpecC behavior) and mixes leaf statements 
with invocation of child behaviors throughout the hierarchy.  

Next is to convert the “unclean” SpecC code into a proper 
SpecC behavioral and structural hierarchy that exposes 
available parallelism, accurately represents inherent 
dependencies, and cleanly separates computation and 
communication in each level. For this process, we replace 
pointers in communication interfaces with explicit arrays or 
channels. Global variables should also be removed and 
replaced by channels or local variables. Furthermore, we 

reorganize the behavior hierarchy to cleanly separate C code in 
leaf behaviors from hierarchical instantiations of parent 
behaviors. For any non-leaf behaviors that mix regular C code 
statements with instantiations of sub-behaviors, we merge top-
level statements into existing sub-behaviors or create new sub-
behaviors. In the process, top-level control flow, like if, while, 
for statements are converted into an equivalent SpecC FSM 
composition. Furthermore, the code is simplified into a proper 
granularity for exploration by converting some smaller 
behaviors back into local functions and methods included in 
parent behaviors. This approach can lead to creating big leaf 
behaviors that may include many local methods. In the process 
of design space exploration, big behaviors can in turn be 
decomposed into smaller ones to increase flexibility if needed. 
Likewise, in future work, we may have to investigate further 
parallelization of the code to refactor FSM compositions into 
parallel or pipelined executions where possible. 

Revisiting the hierarchical granularity was done to both 
decompose large behaviors into smaller ones and increase 
flexibility as well as to combine and merge several smaller 
behaviors (in some cases consisting of single lines of code 
only) across the hierarchy in order to reduce the structural 
overhead. Overall, a key aspect in developing a good 
specification model is the choice of the granularity of 
behaviors. For the purpose of synthesis and exploration, SCE 
considers behaviors as indivisible units of computation. As 
such, their hierarchical composition can significantly influence 
quality of results or complexity of the exploration process.  

To validate the SpecC model, we implemented a proper test 
bench that is decomposed into separate modules for stimulus, 
monitor and the design under test (the actual AAC decoder). A 
stimulus behavior reads an input file and passes the content to 
the decoder via a queue. The design under test (decoder) 
decodes the incoming bit stream and outputs wave file data via 
a queue channel to the monitor when a frame is decoded. 
Another channel connects the decoder to the monitor for error 
reporting. A monitor behavior is added to receive decoded data 
from the decoder and write the output to a file. Stimulus and 
monitor modules terminate the simulation when either the end 
of the input file has been reached and completely decoded, or 
when a specified number of frames (as given on the command 
line) is reached.  

In the process of developing the testbench and the decoder 
models, we added support to process AAC files in both ADIF 
and ADTS format. The current testbench only exercises the 
AAC decoder with an ATDS file, but the code is prepared to 
handle ADIF files as well (yet untested). We use a 2-channel, 
44.1 kHz AAC stream that contains 861 frames to test the code. 
Throughout the successive conversion process we thereby 
ensure that the model is functionally accurate as validated 
against this fixed testbench, which is derived from test vectors 
provided with the reference code.  



The block diagram of the final, complete AAC SpecC 
specification model is shown in Figure 5. The model contains 
7227 lines of code, 22 behaviors, 16 leaf behaviors, and 3 
channels. This SpecC model can be fed into SCE for design 
space exploration.  

At this point, the conversion is complete. The SpecC 
specification model conforms both to the rules for use by the 
SCE tool set as well as to the modeling guidelines for proper 
granularity and encapsulation towards effective synthesis. 
Throughout all stages of the conversion process, the code has 
been functionally validated to produce output equivalent to the 
original reference code. The converted AAC decoder 
specification model can in turn be fed into the SCE tool flow 
for exploration and synthesis down to a variety of hardware and 
software implementations. 

B. Design Space Exploration  

We start design space exploration by feeding the SpecC 
model into SCE. After compiling and simulating the input 
model, we profile the model and examine the computational 
requirements of each block. Profiling results are shown in 
Figure 6. It can be easily observed that the IMDCT block 
consumes the majority of the total computation. Thus, two 
possible architectures were adopted for this model. One is 
using a pure software solution, i.e. mapping all blocks onto a 
processor. The other is to add a custom piece of hardware that 
accelerates the most computationally intensive block, which is 
the IMDCT in this case.  

1) Pure Software Implementation 
This implementation maps all blocks in this design to a 

single processor as illustrated in Figure 7(a). We select 
ARM_7TDMI among the processors provided by the SCE 
library as the only processing element and map all blocks under 
AACDecode to this processor. Two instantiations of virtual 
hardware blocks are allocated for stimulus and monitor I/O 
peripherals. For communication between modules, an AMBA 
AHB bus is allocated and the channels between stimulus and 
decoder and between decoder and monitor are mapped to the 
bus. The ARM processor is set as the master of the AMBA 
AHB and the two ports connecting stimulus and monitor are set 
as slaves. Each channel is given a different link layer address 
and interrupt. 

2) Hardware/Software Implementation 
To offload the most computationally intensive block from 

the processor, we allocate a custom hardware module in this 
design variant to accelerate this block. Figure 7(b) illustrates 
this implementation.  

An ARM_7TDMI and a standard hardware PE are allocated 
for this design. The IMDCT block is mapped to the custom 
hardware accelerator and all other blocks under AACDecode 
are mapped to the processor. Similar to the pure software 
implementation, two pieces of virtual hardware are allocated 
for stimulus and monitor peripherals. Likewise, an AMBA 
AHB bus is instantiated for communication between processing 
elements. The processor is the bus master and the other three 
elements are bus slaves. Each processing element is assigned a 
range of addresses and an interrupts. 

 
(a) Pure software implementation 

 

Figure 6: Computation profile of AAC decoder. 

 

(b) Hardware/software implementation 

Figure 7: AAC design space explorations. 

 

C. Results  

Both design variants are synthesized down to the point of 
automatically generating the final target binaries for the ARM 
processors, whereas hardware models of IMDCT blocks 
remain at a behavioral level, i.e. are not yet converted down to 
RTL models following a high-level (C-to-RTL) synthesis 
process. The final synthesized implementations are validated 
by co-simulating binary code running on a functional, binary-
translating (i.e. timing-accurate with CPI=1) instruction-set 
model of the ARM processor (using OVP  [15] ISS models), 
which are embedded in an overall SpecC transaction-level and 
pin-accurate system simulation  [16].  

Table 2 shows the final decoding and simulation results of 
the two implementations as measured on the OVP-based TLM 
simulation. For each model, the average decoding delay per 

TABLE 2: AAC DESIGN RESULTS ON OVP PLATFORM. 

AAC Decoder SW-Only HW/SW 
Avg. Decoding Delay 74.08 ms 88.74 ms 
Simulated Instructions 3,346,299,772 3,853,005,626 
Simulated Time 63.79 s 76.41 s 
Refinement Run Time 88.191 s 88.079 s 



Figure 9: AC3 decoder specification model. 

 
(a) Simulation times 

 
(b) Code complexity 

 
(c) Simulated decoding delays 

Figure 8: AAC decoder results. 

frame and the total number of simulated instructions is 
provided. The simulation time is the time spent on the host 
machine to run the simulation for the input test file. Simulated 
time is the time needed by the design to decode the 861 frames 
of the testbench. The refinement run time is the time spent to 
generate the final implementation from the specification model. 

Figure 8 shows normalized simulation time, lines of code, 
and simulated frame decode delay of both implementations at 
different levels of abstraction generated during the refinement 
process. As can be expected, with increasing detail included in 
the simulation at successively lower levels, simulation times 
and overall code complexities rise exponentially while 
simulation accuracy gradually improves towards the final ISS 
result. Note that simulated delays in models above ISS are 
based on back-annotated execution timings obtained from 
source-level profiling tools built into SCE  [17], which are not 
well calibrated to the given target architecture. Accuracy of 
high-level models can be significantly improved by employing 
a fine-grain back-annotation of target-specific execution 
metrics  [18]. Also note that due to the simple timing model in 
OVP, ISS results are not fully cycle-accurate either. This can 
lead to a misrepresentation of relative performance of different 
designs. Instead, as AC3 decoder results will show, high-level 
models are able to predict relative trends with better fidelity.    

III. AC3 DECODER DESIGN 

For the AC3 decoder, we began with an existing, partial 
conversion of a floating-point C reference model into SpecC 
format that was performed in an earlier project. There were 
several issues with this initial model that needed to be resolved: 
(a) timing issues due to improper parallelization leading to 
deadlock situations, (b) unclean structural hierarchy with 
communication through global data structures instead of local 
variables and channels, and (c) use of floating-point instead of 
fixed-point arithmetic as a basis for an efficient embedded 
implementation. For the floating-point to fixed-point 
conversion, the goal is to perform conversion that can produce 
the same level of sound quality of the decoded outputs as 
compared to the floating-point reference implementation.  

A. Specification 

Following the same principles for converting the AAC 
model, the AC3 floating-point model was first converted into 
an unclean hierarchy and then further cleaned up, debugged 
and validated. The overall structure of the AC3 decoder SpecC 
specification model is shown in Figure 9. We have added a 
testbench into the model with capabilities for reading encoded 
AC3 files and writing the decoded output stream into a wav file 
(using the original reference code for downmixing of 5.1 audio 
streams into a stereo wav file representation). The model has 
been validated on several AC3 sample files with varying 
characteristics, e.g. in terms of sample rates, as obtained from 
the internet. In all cases, it produces bit-exact output when 
compared to the original reference code. 

A fixed-point version of the AC3 decoder was also 
developed for this project. The original model contains four 
behaviors that include floating-point operations: Uncouple, 
Rematrix, Imdct, and OutputWrite (downmixing). These four 
behaviors are converted into equivalent fixed-point variants. 
The resulting fixed-point AC3 decoder specification model 
does not generate a bit-exact binary file. However, by listening 
to the generated wav files we could validate that floating-point 
and fixed-point versions produce output that is almost 
indistinguishable to the human ear. As such, we decide to not 
invest more time into increasing the precision of the fixed-point 
version. Rather, we concentrate on feeding both the floating-
point and the fixed-point SpecC models into the SCE 
exploration and synthesis flow.  

B. Design Space Exploration 

To evaluate the performance of the AC3 decoder on various 
target architectures and to explore different configurations, we 
use the SCE framework to automatically generate target 
implementations from the SpecC specification models. We first 
performed profiling on the fixed-point and floating-point 
implementations. Figure 10 shows the profiling results for 



floating-point and fixed-point implementations. As was the 
case in the AAC decoder, in both implementations, the IMDCT 
is the most computation consuming block in the system.  

Thus, similar to the case in the AAC design, both fixed-
point and floating-point models of the AC3 decoder were 
synthesized down to two different architectures: In a software-
only architecture, as shown in Figure 11(a), all computation is 
performed on an ARM7TDMI processor running at 100MHz. 
In a hardware/software architecture, shown in Figure 11(b), the 
IMDCT component is mapped to a custom hardware block that 
sits on a common AMBA AHB system bus (running at 
50MHz). In both cases, input and output blocks are realized by 
virtual hardware I/O peripherals sitting on the system bus.  

C. Results  

As before, all variants were synthesized down to the point 
of automatically generating the final target binaries for the 
ARM processors, whereas hardware models of IMDCT blocks 
remain at a behavioral/C level. In the AC3 case, the final 
synthesized implementations were validated by co-simulating 
binary code both on the timing-accurate-only OVP models as 
well as on a cycle-accurate instruction-set model of the ARM 
processor (using the SWARM simulator  [14] embedded into a 
transaction-level or pin-accurate SpecC platform model).  

Table 3, Table 4 and Figure 12 summarize performance and 
complexity for different architectures of the AC3 decoder when 

exercised with a testbench of 290 AC3 frames. The results 
show that better decoding performance is achieved in the fixed-
point model, since the ARM processor does not contain a 
dedicated floating-point unit.  

(a) Floating-point 

(b) Fixed-point 

Figure 10: AC3 decoder profiling results 

 

 
(a) Pure software realization 

 
(b) Hardware/software design 

Figure 11: AC3 decoder implementations. 

Furthermore, a large portion of floating-point operations is 
located in the IMDCT component, which leads to a 
significantly better performance in the HW/SW architecture of 
the floating-point model. By mapping the IMDCT and all of its 
floating-point operations to dedicated hardware, a better 
performance as for a fixed-point software implementation can 
be achieved. Nevertheless, hardware acceleration can even 
further improve fixed-point performance.  

TABLE 4: AC3 FIXED-POINT RESULTS. 

Fixed-Point Model AC3Decoder 
SW-Only HW/SW 

Avg. Decoding Delay 225.65 ms 80.92 ms 
Simulated Instructions 1,479,629,294 1,264,151,548 
Simulated Cycles 5,127,160,539 1,394,077,785 
Simulated Time 64.44 s 23.47 s 
Refinement Run Time 78 s 92 s 

TABLE 4: AC3 FLOATING-POINT RESULTS. 

Floating-Point Model AC3Decoder 
SW-Only HW/SW 

Avg. Decoding Delay 1,401 ms 176.89 ms 
Simulated Instructions 4,976,708,589 1,589,962,826 
Simulated Cycles 32,340,289,561 3,528,134,535 
Simulated Time 406.45 s 51.30 s 
Refinement Run Time 77 s 91 s 



Note that high-level models accurately predict the 
advantages of hardware acceleration in both floating- and 
fixed-point designs. However, the profiling tools used to 
annotate execution time estimates  [17] do not yet reflect the 
lack of floating-point support in the chosen ARM processor. As 
such, simulated delays of floating- and fixed-point variants of 
each design are almost the same (small differences stem from 
variations in the size of floating and fixed-point data 
transferred between the ARM and other components).   

IV. CONCLUSIONS 

In this project, we have developed SpecC specification 
models for three audio decoding standards, namely MP3, AC3 
and AAC decoders. All models follow a well-defined structure 
and model of computation (MoC) as a basis for further 
synthesis with the System-on-Chip Environment (SCE). With 
the given AC3, AAC and MP3 setup on top of the SCE tool set, 
we are able to quickly generate new implementation variants. 
For all decoder variants, we have explored several architectures 
and synthesized them down to final implementations on an 
ARM-based HW/SW platform. In all cases, final 
implementations of software and hardware running on the 

ARM-based target platforms could be synthesized within 
minutes. This can provide the basis for further projects to 
investigate and developing actual, novel multi-workload 
exploration methods that can synthesize target architectures 
optimized across a set of applications. 

As a first step, this may involve using existing SpecC-based 
source-level profiling tools to capture code characteristics of 
various computational blocks in the three algorithms. Using 
this information, we can envision concepts and techniques to 
extract microarchitectural similarities needed to optimal 
support computations in all three applications on a common 
platform of heterogeneous processing elements. Likewise, we 
can explore commonalities in the hierarchical graph structures 
that represent the data and control flow across behavioral 
blocks in each application. This can lead to a notion of 
architectural flexibility that captures the types of application 
graphs (and operation characteristics in each node) that 
naturally map onto a given platform. The long-term goal is to 
develop such concepts into a theory and algorithms that will 
enable automated design space exploration and design for 
flexibility across a class of current and future applications. 
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