

Technical Report

MASES: Mobility And Slack
Enhanced Scheduler For

Synchronous Dataflow Graphs

Wenxiao Yu and Andreas Gerstlauer

UT-CERC-15-01

May 8, 2015

Computer Engineering Research Center
Department of Electrical & Computer Engineering

The University of Texas at Austin

201 E. 24th St., Stop C8800
Austin, Texas 78712-1234

Telephone: 512-471-8000
Fax: 512-471-8967

http://www.cerc.utexas.edu

 ii

Abstract

MASES: Mobility And Slack Enhanced Scheduler
For Synchronous Dataflow Graphs

Wenxiao Yu, Andreas Gerstlauer

The University of Texas at Austin, 2015

Nowadays, real-time streaming and digital signal processing applications create

an increased demand for embedded systems with better capability to process large-

volume data streams with low latency and large throughput. Synchronous dataflow (SDF)

graphs allow for static analysis and optimization, and are widely used for modeling real-

time streaming applications. To reach a better performance, mapping of SDF descriptions

into tightly resource-constrained real-time implementations requires optimization of

pipelined scheduling of tasks on different processing elements (PEs). This poses the

problem of finding the optimal solution across a multi-dimensional latency-throughput-

area objective space.

In this report, we address the problem of pipelined scheduling of SDF graphs on

heterogeneous multi-processor platforms. Integer linear programming (ILP) models have

been applied to solve this problem, providing theoretically optimal results. However, the

execution time of solving an ILP model is exponential in the size of the input SDF graph,

limiting the usage of ILPs. By contrast, list scheduling heuristics have been proposed to

solve the pipelined scheduling problem in polynomial time, but existing approaches do

not guarantee the optimality of the result and fail to find a valid schedule when the period

 iii

constraint of the SDF graph is tight. This report contributes a heuristic called MASES

that improves the performance of list scheduling. MASES explores the flexibility in a

partial schedule by moving already-placed actors on the timeline such that enough space

is created for actors placed next. Different from heuristics based on backtracking,

MASES finds a valid actor assignment without the need for un- and re-scheduling of

already-placed actors. In contrast to backtracking heuristics, MASES guarantees to find a

valid schedule if one exists. In our experiments with randomly generated SDF graphs of

varying size, MASES was able to find valid schedules for all test cases whereas

backtracking only solved 47.2% of cases on average. Furthermore, for test cases that

succeeded for MASES and backtracking, MASES on average reduces execution time by

11% and increases latency by 11% compared to backtracking.

 iv

Table of Contents

Abstract ... ii	

List of Tables ...v

List of Figures .. vi

Chapter 1 Introduction ...1	
1.1 Synchronous Dataflow Graph ...1	
1.2 Pipelined Scheduling ..2
1.3 Report Outline ...5	

Chapter 2 Related Work ...6	
2.1 ILP Model ...6	
2.2 List Scheduling ...7	
2.2 Backtracking ...9	

Chapter 3 Mobility And Slack Enhanced Scheduling ...12	
3.1 Mobility Analysis ...13	
3.2 Slack Analysis ...20
3.3 Gap Selection ..25	
3.4 MASES Algorithm ...33	

Chapter 4 Experiments And Results ..34	
4.1 Random SDF graphs ...34
4.2 H.263 decoder ...39	

Chapter 5 Summary ...41	

Acknowledgements ..42

References ..43	

	

 v

List of Tables

Table 4.1:	 Improvement of MASES over backtracking ..38	

	

 vi

List of Figures

Figure 1.1:	 Synchronous Dataflow Graph ...3	

Figure 1.2:	 Modulo Reservation Table for SDF graph ..3	

Figure 2.1:	 Flow chart of list scheduler ...8	

Figure 2.2: Flow chart of list scheduler with backtracking10

Figure 2.3:	 Actor F cannot be scheduled ...11	

Figure 2.4:	 Actor A and its successors are unscheduled ..11	

Figure 2.5:	 Unscheduled actors are put back ...11	

Figure 3.1:	 Actor F cannot be scheduled on PE0 ...12	

Figure 3.2:	 MRT is adjusted and actor F founds its place13	

Figure 3.3:	 Example SDF graph ..14	

Figure 3.4:	 Mobility analysis ...15	

Figure 3.5:	 Example SDF graph ..15	

Figure 3.6:	 Actor C is blocked by E and cannot be moved16	

Figure 3.7:	 Example SDF graph ..16	

Figure 3.8:	 Actor G should not be moved ..17	

Figure 3.9:	 Flow chart of mobility computation ..18	

Figure 3.10:	 Flow chart of recursive Mob(X) function ...19	

Figure 3.11:	 Example SDF graph ..21	

Figure 3.12:	 Slack analysis ..21	

Figure 3.13:	 Example SDF graph ..22	

Figure 3.14:	 Actor G should not be moved ...23	

Figure 3.15:	 Flow chart of slack computation ...23	

Figure 3.16:	 Flow chart of recursive Slack(X) function ..24	

 vii

Figure 3.17:	 Example SDF graph ..26	

Figure 3.18:	 Squeezing Gap(C,E) ...26	

Figure 3.19:	 Squeezing Gap(A,C) ...27	

Figure 3.20:	 Example SDF graph ..27	

Figure 3.21:	 Precedential violation caused by squeezing28	

Figure 3.22:	 Squeezing Gap(E,G) will not cause precedential violation28	

Figure 3.23:	 Flow chart of gap selection ...30	

Figure 3.24:	 Flow chart of list scheduler with MASES ..32	

Figure 4.1:	 Size of graph vs. number of tests succeeded for backtracking35	

Figure 4.2:	 Execution time of backtracking and MASES36

Figure 4.3:	 Comparison of normalized latency ..37	

Figure 4.4:	 H.263 decoder ...49	

Figure 4.5:	 MRT of pipelined schedule of H.263 decoder40	

Figure 4.6:	 Result schedule generated by MASES ..40	

 1

CHAPTER 1: INTRODUCTION

Real-time streaming applications are characterized by a need to process large-

volume data streams with low latency and high throughput. Such applications are

natively non-terminating and can be modeled and analyzed using synchronous dataflow

(SDF) graphs [1,2]. Given the current trend towards heterogeneous multiprocessor

systems-on-chips (MPSoC) platforms, the design process for implementing these

applications requires processing elements (PEs) and time resources to be allocated to

actors by a scheduler. Since scheduling patterns determine the throughput and latency of

executing an SDF graph, the requirement of optimal performance, including high

throughput and low latency, presents a big challenge to the design of scheduling

algorithms.

1.1 SYNCHRONOUS DATAFLOW GRAPH

Synchronous data flow (SDF) is a model of computation (MoC) consisting of

synchronous actors and directed edges. An actor can be invoked when there are enough

input tokens on its input edges, and after the actor finishes its execution, it will put tokens

on its output edges. Edges are represented as FIFO channels between actors. The number

of tokens consumed and produced by every actor is constant, and will not change during

the execution [4,5]. This characteristic allows us to perform static analysis of SDF graphs

to compute the number of repetitive execution times of every actor during an iteration

and optimize resource allocation. For these reasons, SDF graphs have been widely used

to model applications with fixed data production and consumption rates [1].

Homogeneous synchronous data flow (HSDF) is a subset of SDF, where every

actor consumes one token and produces one token per firing, and each actor will fire once

 2

per iteration. Every SDF graph can be transformed into an equivalent HSDF graph using

the algorithm described in [8]. In this report, the default example SDF graphs used for

illustrative purposes are HSDF graphs.

1.2 PIPELINED SCHEDULING

In order to achieve real-time performance, the schedule of an SDF graph should

have a highly optimized execution order that minimizes latency. Latency denotes the time

cost of executing an iteration of the SDF graph, from the beginning of firing the first

actor to the end of finishing the last actor. If a schedule is not pipelined, the execution of

the next iteration cannot start before finishing the previous iteration, and the latency will

be equivalent to the period of execution, i.e. the reciprocal of throughput. Similar to the

concept of modulo scheduling approaches for software pipelining used in compiler

domain [3], the scheduling of actors in SDF graphs can equally be pipelined, such that

the next iteration will start early before the current iteration finishes its execution. A

pipelined schedule can fully utilize processing elements and effectively increase the

throughput while maintaining a minimal latency.

In the description of pipelined scheduling, the concept of Modulo Reservation

Table (MRT) is commonly used. A MRT is a two-dimensional table for the modeling of

resource constraints. In this table, the rows represent processing elements of the MPSoC

model, and the number of columns is equal to the number of time slots in the period for

execution of the SDF graph [2]. Fig. 1.1 shows an example use of a MRT: actor A is

mapped on PE0 at time 0, and the execution time of actor A is 1. Therefore, the MRT

will be updated by allocating MRT entry (PE0, 0) to actor A, making this time slot

unavailable to the other actors.

 3

The schedule shown in Fig. 1.2 is a pipelined schedule, since the actor F is

scheduled between actor A and C. In each period, the actor F will consume tokens from

the previous period and fire, while the actor A, B, C, D and E are sequentially fired,

producing tokens for actor F in the next period.

Fig. 1.1 Synchronous Dataflow Graph

Fig. 1.2 Modulo Reservation Table for SDF graph

In the process of pipelined scheduling, there is always a tradeoff among

throughput, latency and area requirements. Optimization of these objectives creates a

complete set of Pareto-optimal solutions, and designers can customize an objective

function to find an optimal result [4,7]. For the problem of optimizing a pipelined

schedule, there are two typical approaches: one is building an integer linear programming

(ILP) model for the SDF graph and MPSoC platform, and using an ILP solver to solve

this model and produce the schedule [4,5]; the other one is using list scheduling

algorithms to allocate time and processor resources to actors greedily [5].

 4

The first approach can guarantee the optimality of the result, since the ILP solver

will traverse the entire design space of the ILP model. The only drawback is the problem

of complexity. A linear growth of the size of the SDF graph will result in exponential

growth of the ILP design space. The second approach, on the other hand, uses heuristics

to derive a result in polynomial time and avoids design space explosion. However, it does

not guarantee the optimality of the result.

Despite the accuracy and optimality of ILP, their exponential complexity makes

them infeasible for practical use. Instead, list schedulers are widely used in practice. A

list scheduler’s complexity is linear in the number of actor instances to schedule.

Furthermore, list schedulers are flexible and can be easily combined with other

algorithms or heuristics to increase optimality while maintaining a reasonable amount of

execution time. In [10], a list scheduler is combined with a backtracking heuristic, which

unschedules and then reschedules blocking actors when there is not enough space to

place the next actor. Backtracking improves the rate of successfully finding a valid

solution, but its performance relies on the search depth limit, which in turn significantly

affects execution time performance. Backtracking also does not provide any guarantee of

finding a valid scheduling solution if it exists.

In this report, a new heuristic to resolve pipelined scheduling problems is

proposed. Our mobility and slack enhanced scheduling (MASES) heuristic is designed to

improve on existing list scheduling heuristics. In every iteration of the list scheduler, it

runs a comprehensive analysis on the partial schedule and reschedules actors on the MRT

to create a large enough space for the target actor to place. Using MASES, a list

scheduler approach is extended to be able to schedule the target actor and give out a

result using a decidable amount of time, rather than dealing with unpredictable limits of

backtracking.

 5

1.3 REPORT OUTLINE

The rest of this report is organized as follows: Chapter 2 introduces the related

work of solving pipelined scheduling problems for SDF graphs, including ILP and list

scheduling algorithms, as well as the backtracking heuristic that helps increasing the

performance. Chapter 3 introduces our MASES heuristic in detail. Chapter 4 presents

benchmarks and results of experiments on MASES in comparison to backtracking

heuristics. Finally, Chapter 5 summarizes the report and states the conclusions.

 6

CHAPTER 2: RELATED WORK

2.1 ILP model

Pipelined scheduling optimization problems of SDF graphs can be modeled using

ILPs defined with input parameters, decision variables, constraints and an objective

function. [2,3] Solving ILP models can provide theoretically optimal results. However,

the size of ILP models as well as the execution time of ILP solvers grows exponentially

when the size of SDF graph increases. As such, it is infeasible to process a large SDF

graph using ILP models.

An ILP model for pipelined scheduling of SDF graphs is introduced in [4]. There,

the decision variables includes Si(t) and Ei(t), which accumulate the number of started

and ended executions of actor i up to time t. MRTj(t) denotes the PE resource allocation,

and is also adopted in decision variables of the ILP model.

The input parameters include dij, pi1,i2, ci1,i2, oi1,i2, ni, Aij, period, buffer and time

window. dij denotes the execution time of actor i on PEj. pi1i2 and ci1i2 denotes the number

of tokens produced and consumed on the edge between actor i1 and i2. oi1i2 denotes the

number of initial tokens on this edge. ni denotes the repetition count of actor i in one

iteration. Aij refers to the allocation of actor i on PEj. Period places limit on the length of

periodic schedule. Buffer limits the maximum number of tokens on every edge. Time

window is a length of time on MRT in which the pipelined schedule is constructed. It

consists of a startup phase and a stable and periodic phase.

Constraints in the ILP model include execution precedence, execution times,

sequential execution, and periodicity in the stable phase. Execution precedence

guarantees that actors will only execute when there are enough tokens on input edges.

Execution time indicates the relationship between starting time and ending time of every

 7

actor. Sequential execution signifies that one PE can only be allocated to at most one

actor at any time.

The objective function in the ILP model for this problem is to minimize the

latency of a schedule under given constraints.

2.2 List scheduling

List scheduling heuristics are widely used for solving scheduling problems and

optimizing latency. A list scheduler prioritizes every actor in a SDF graph according to

the maximum execution time along every possible path from the actor to the sink actors

(actors that have no outgoing edges to any other actor). After assigning priority to all

actors, the list scheduler greedily puts actors on PEs as soon as they are ready to execute

and there is enough space on the MRT. If every actor is put on the MRT, the latency will

be computed and returned. When an actor cannot be scheduled due to lack of MRT space,

the list scheduler returns a latency of ∞, indicating that there is no possible schedule

under the given constraints for this SDF graph. Fig. 2.1 shows the flow chart of such a

basic list scheduler.

List scheduling heuristics do not guarantee the optimality of the scheduling result.

Every time when an actor is scheduled on a PE, it will take a certain amount of

consecutive time slots on the MRT. When the desired throughput is higher, the period

will be smaller and it is harder to find enough space on the MRT for actors. Theoretically,

the maximum throughput is reached when the period is so small that every time slot on at

least one PE is utilized. In other words, the highest achievable theoretical throughput of a

pipelined SDF graph is defined by the total execution time of all actors mapped to the

 8

most critical, i.e. most highly utilized PE. In reality, however, such strict period

constraints will keep list scheduler from finding a solution.

Fig. 2.1 Flow chart of list scheduler

 9

2.3 Backtracking

Backtracking is a heuristic proposed to help the list scheduler to go back a few

steps from its current partial schedule when it can no longer schedule any more actors

[10]. Fig. 2.2 shows the flow chart of a list scheduler with backtracking included. The

backtracking module is highlighted in the figure, and it will keep working until either

finding a valid actor allocation or reaching a limit of backtracking attempts.

Ideally, exhaustive backtracking could cover the overall design space of pipelined

schedules and find an optimal solution. An exhaustive search cannot avoid exponential

design space explosion, however. Backtracking heuristics to solve the problem in

acceptable time have been proposed. The problem is, however, that applying heuristics in

backtracking might end up with an endless loop, where the list scheduler keeps

scheduling and unscheduling actors. One heuristic for backtracking is proposed in [10],

where the blocking actors and their successors will be first unscheduled, the actor to

schedule will be placed, and the previously unscheduled actors will then be rescheduled.

For the example in Fig. 1.1, backtracking heuristic starts from the state in Fig. 2.3, where

it attempts to schedule actor F but no consecutive space is available. To place actor F, it

then unschedules actor A as well as all other actors depending on A, as show in Fig. 2.4.

Finally, in Fig. 2.5, previously unscheduled actors are rescheduled.

To keep actors from displacing each other over and over, there is a limit on the

number of times the backtracking subroutine is called. Increasing the limit increases the

odds of finding a solution, but will incur a higher cost in execution time.

 10

Fig. 2.2 Flow chart of list scheduler with backtracking

 11

Fig. 2.3 Actor F cannot be scheduled

Fig. 2.4 Actor A and its successors are unscheduled

Fig. 2.5 Unscheduled actors are put back

 12

CHAPTER 3: MOBILITY AND SLACK ENHANCED SCHEDULING

MASES is a heuristic that makes adjustment on the MRT of a partial schedule

when a list scheduler cannot find a solution. Compared to backtracking heuristics,

MASES does not unschedule any actor from the MRT, therefore resolving the problem of

potentially endless loops in which actors keep displacing each other.

For the example in Fig. 1.1, actor F is supposed to be scheduled on PE0, and it is

taking 2 consecutive time slots on the MRT. A list scheduler without backtracking will

stop at the state in Fig. 2.3 and return failure. Since it greedily scheduled previous actors,

when it comes to actor F, the available time slots are split and cannot be utilized. A list

scheduler with backtracking will unschedule every actor from the MRT, putting actor F

in the position of actor A, and then attempting to reschedule the other actors. For

MASES, it is much simpler. As shown in Fig. 3.1 and Fig. 3.2, the actor C can be moved

forward for 1 time slot, creating enough space for actor F. MASES exploits such actor

mobility to adjust the MRT and find a valid scheduling pattern without unscheduling any

actor.

Fig. 3.1 Actor F cannot be scheduled on PE0

 13

Fig. 3.2 MRT is adjusted and actor F founds its place

In MASES, we use concepts of mobility and slack to describe the flexibility in a

partial schedule. If an actor has mobility or slack, it can be moved in the MRT with little

side effect, thus creating a larger space for other actors. When there is not enough space

for an actor, a comprehensive analysis of mobility and slack of every actor on the partial

schedule is performed. To simplify the verbose description of consecutive available time

slots on the MRT, we use a term called gap to refer to this concept.

3.1 Mobility analysis

The mobility of an actor is defined as the number of time slots that this actor can

be moved forward without affecting the overall latency of the schedule. Actors that don’t

have any scheduled successor do not have mobility.

 14

According to the definition, actor N’s mobility can be computed by taking the

minimum value of N’s successors’ mobility plus the distance between N and N’s

successors:

𝑀𝑜𝑏 𝑁 = min!∈!"##(!){𝑑𝑖𝑠𝑡 𝑁,𝑀 +𝑀𝑜𝑏(𝑀)},

where dist(N,M) denotes the number of time slots from the end of actor N to the start of

actor M:

𝑑𝑖𝑠𝑡 𝑁,𝑀 = 𝑆 𝑁 %𝑝𝑒𝑟𝑖𝑜𝑑 − 𝐸 𝑛 %𝑝𝑒𝑟𝑖𝑜𝑑 + 𝑝𝑒𝑟𝑖𝑜𝑑 %𝑝𝑒𝑟𝑖𝑜𝑑

Here, S(N) and E(N) indicate the beginning and end of execution, respectively, of

actor N relative to the beginning of execution of the first actor in the same iteration.

An example is shown in Fig. 3.3. According to the definition, the mobility is

computed recursively. The mobility of actor C equals the mobility of actor D, which is

the distance from actor D to F, a.k.a. 1 time slot. Therefore, both actor C and D have

mobility of 1. The result of using mobility is shown in Fig. 3.4.

Fig. 3.3 Example SDF graph

While computing the mobility of an actor N, its successors’ mobilities are taken

into account. It is obvious that if all of actor N’s successors have mobility, actor N can be

moved as well. There is one more thing that needs to be considered when attempting to

move actor N: the MRT only allows at most one actor to be scheduled on each PE at any

time slot. Let Next(N) refer to the actor that is scheduled right behind actor N on the

 15

same PE. If Next(N) is not actor N’s successor, the computation of actor N’s mobility

should include the mobility of Next(N).

Fig. 3.4 Mobility analysis

For the example in Fig. 3.5, the distance between actor C and its immediate

successor, actor F, is 1. However, actor C does not have a mobility of 1, because actor E,

which is scheduled right behind it on the same PE, has no mobility and blocks actor C. In

Fig. 3.6, actor C has no mobility.

Fig. 3.5 Example SDF graph

 16

Fig. 3.6 Actor C is blocked by E and cannot be moved

For any actor N, Next(N) affects its mobility in the same way as N’s successors

do. With this, the computation of mobility becomes as follows:

𝑀𝑜𝑏 𝑁 =
 0 , 𝑆𝑢𝑐𝑐(𝑁) ∈ 𝜙

min!"#$%%_!"#$! 𝑀𝑜𝑏 𝑛 + 𝑑𝑖𝑠𝑡 𝑁,𝑛 , 𝑒𝑙𝑠𝑒 ,

where

𝑆𝑢𝑐𝑐_𝑁𝑒𝑥𝑡(𝑁) = 𝑆𝑢𝑐𝑐(𝑁) ∪ {𝑁𝑒𝑥𝑡 𝑁 }

At this point, the mobility of actor N denotes the possibility of moving actor N

forward on the MRT. However, the motivation of exploring actor N’s mobility is to

expand the gap in front of actor N. Given that the gap is formed between actor M and

actor N, if moving actor N requires moving actor M, the gap will be shifted instead of be

expanded.

Fig. 3.7 Example SDF graph

 17

Consider the example shown in Figs. 3.7 and 3.8, where the mobility of actor G is

1. Through recursive propagation, the mobility of actor F, E and C is also 1. According to

definition of mobility, actor C can be moved forward for 1 time slot without affecting the

overall latency. However, moving actor C is not beneficial, since it will not create a

larger gap between actor G and C.

Fig. 3.8 Actor G should not be moved

This phenomenon does not affect the recursive computation of mobility of every

actor. It only needs to be considered when an actor is selected to be the one that is

actually going to be moved to create a larger gap before this actor. In case of this

situation, we define another concept: actual mobility.

Let Prev(N) refer to the actor that is scheduled right before actor N on the same

PE. The actual mobility refers to the number of time slots that this actor can be moved

forward without moving actor Prev(N). If Prev(N) is scheduled later than N, i.e.

S(Prev(N)) > S(N), moving actor N might affect Prev(N). In this case, the actual mobility

of actor N can be computed conservatively by excluding the effect of actor N’s

successors’ and Next(N)’s mobility:

𝐴𝑐𝑡𝑢𝑎𝑙_𝑀𝑜𝑏 𝑁 =
 𝑀𝑜𝑏 𝑁 , 𝑆 𝑃𝑟𝑒𝑣 𝑁 < 𝑆(𝑁)
min

!"#$%%_!"#$!
𝑑𝑖𝑠𝑡 𝑁,𝑛 , 𝑒𝑙𝑠𝑒

Fig. 3.9 and Fig. 3.10 shows the workflow of the algorithm that computes

mobility of every actor on the MRT. It includes two nested functions: the outer function

 18

calls the inner function for every actor on the MRT and returns the mobility information

of every actor; the inner function recursively computes the mobility of the given actor.

Fig. 3.9 Flow chart of mobility computation

 19

Fig. 3.10 Flow chart of recursive Mob(X) function

 20

During this process, the mobility of all actors on the MRT is first initialized to 0.

After that, mobility computation is performed on every actor on the MRT. Since mobility

computation for an actor X involves the mobility of Next(X), to avoid a circular

dependency that may cause endless recursion, we compute the mobility of Next(X)

iteratively. Each time iterating over all the actors, the previously computed or initialized

mobility of Next(X) is used. After each such iteration, the computed mobility information

is compared with the one collected in the previous iteration. Mobility computation

finishes when the mobility information no longer changes between two iterations.

3.2 Slack analysis

The slack of an actor is defined as the number of time slots that this actor can be

moved forward along with its successors that have already been scheduled on the MRT.

Moving actors using slack will move the actors that have no scheduled successors on the

MRT, hence increase the overall latency of this partial schedule.

According to the definition, actor N’s slack can be computed by taking the

minimum value of N’s successors’ slack:
𝑆𝑙𝑎𝑐𝑘 𝑁 = min

!∈!"##(!)
{𝑆𝑙𝑎𝑐𝑘(𝑀)}

Similar to mobility, slack is also computed recursively. Since moving an actor

using slack means moving several actors, including sinks, every actor on the MRT that

does not have any successor scheduled on the MRT must have a slack of dist(N,

Next(N)).

An example is shown in Fig. 3.11. From Fig. 3.12, we can find that none of the

actors have mobility, but the slack of actor C is 2. If we move actor C using the slack,

actor D and F will be moved simultaneously, and the overall latency is increased.

 21

Fig. 3.11 Example SDF graph

Fig. 3.12 Slack analysis

In slack analysis, actor Next(N) also needs to be considered when computing the

slack of actor N. If Next(N) starts later than N, they will be moved together and

Slack(Next(N)) will be taken into account. Otherwise, if Next(N) is not going to move

along with actor N, dist(N, Next(N)) will be considered in slack analysis. In Fig. 3.12,

actor C cannot move more than 2 steps because actor A blocks its way.

 22

The computation of slack can be concluded as follows:

𝑆𝑙𝑎𝑐𝑘 𝑁 = min {𝑆𝑢𝑐𝑐_𝑠𝑙𝑎𝑐𝑘 𝑁 ,𝑃𝐸_𝑠𝑙𝑎𝑐𝑘(𝑁)},

where

𝑆𝑢𝑐𝑐_𝑠𝑙𝑎𝑐𝑘 𝑁 =
𝑝𝑒𝑟𝑖𝑜𝑑 , 𝑆𝑢𝑐𝑐(𝑁) ∈ 𝜙

min
!"#$%% !

𝑆𝑙𝑎𝑐𝑘 𝑛 , 𝑒𝑙𝑠𝑒

𝑃𝐸_𝑠𝑙𝑎𝑐𝑘 𝑁 = 𝑆𝑙𝑎𝑐𝑘 𝑀 , 𝑆(𝑁) < 𝑆(𝑀)
 𝑑𝑖𝑠𝑡 𝑁,𝑀 , 𝑒𝑙𝑠𝑒

and

𝑀 = 𝑁𝑒𝑥𝑡(𝑁).

Similar to actual mobility, there is a concept of actual slack. As mentioned before,

if moving actor N will move Prev(N) in the end, then it is not going to expand the gap. If

Prev(N) is scheduled later than actor N, it is very likely to be part of actor N’s successors

and their next actors. A conservative approach is setting the actual slack of actor N to

constant 0 if S(Prev(N)) is greater than S(N):

𝐴𝑐𝑡𝑢𝑎𝑙_𝑆𝑙𝑎𝑐𝑘 𝑁 = 0 , 𝑆 𝑃𝑟𝑒𝑣 𝑁 > 𝑆(𝑁)
 𝑆𝑙𝑎𝑐𝑘 𝑁 , 𝑒𝑙𝑠𝑒

From the example in Fig. 3.13, we can find the difference between slack and

actual slack. Since S(G) > S(C), the actual slack of actor C is 0. Moving actor C using

slack will move actor G, as shown in Fig. 3.14. Similar to actual mobility, actual slack

does not affect the slack propagation.

Fig. 3.13 Example SDF graph

 23

Fig. 3.14 Actor G should not be moved

 Fig. 3.15 Flow chart of slack computation

 24

Fig. 3.16 Flow chart of recursive Slack(X) function

 25

Fig. 3.15 and Fig. 3.16 shows the workflow of the algorithm that computes slack

of every actor on the MRT. The way we compute slack resembles what we did for

mobility computation. The slack computation requires two nested functions: the outer

function calls the inner function for every actor on the MRT and returns the slack

information of every actor, while the inner function recursively computes the slack of the

given actor.

Similar to mobility computation, actors on the MRT are first initialized with fixed

values of slack. For actors that don’t have successors on the MRT, their slack is equal to

the number of available time slots after them. The slack of other actors is initialized to 0.

The recursive slack computation and comparison with previous slack information are

otherwise similar to mobility computation.

3.3 Gap selection

After mobility and slack computation has finished and we have the mobility and

slack information for every actor, we put all available gaps on the selected PE into a gap

list, and decide which gap should be expanded for placing the new actor.

However, mobility and slack alone do not always work for expanding a gap. If we

cannot use mobility or slack to make a large enough gap, we have to borrow spaces from

other gaps by squeezing them.

For the example in Fig. 3.17, there is no mobility or slack for any actor on the

MRT. If we hope to expand the gap between actor A and C, the only choice is squeezing

the gap between actor C and E. Doing so requires moving actor C without moving its

successor, actor D, and will break the precedence relationship of actor D firing before

actor C finishes its execution. To solve this problem, actor D and all of its successors will

 26

have to be moved forward for one period. In Fig. 3.18 and Fig. 3.19, we find that these

actors will keep their positions on the MRT, but their starting times will be increased by

one period. We can similarly squeeze the gap between actor A and C to expand the gap

between C and E.

Although this will significantly increase the latency, the resource on the MRT are

utilized more effectively, leaving less unused time slots on the MRT. Because of the

latency cost, gap squeezing should only happen when the period is very small. In this

case, latency is traded off for throughput.

Fig. 3.17 Example SDF graph

Fig. 3.18 Squeezing Gap(C, E)

 27

Fig. 3.19 Squeezing Gap(A, C)

Squeezing gaps helps a lot when we need more space. However, some gap can be

non-eligible for squeezing due to backward edges or buffer space constraints.

A backward edge is an edge that forms a cycle and contains initial tokens. The

source actor of a backward edge has lower priority, and the sink actor has higher priority.

During the scheduling, the sink actor will be scheduled first by consuming initial tokens,

and the source actor will be scheduled later, providing tokens for the sink actor in the

next iteration. If there are not enough initial tokens to support two consecutive firings of

the sink actor before the source actor finishes its execution, there will be a precedence

violation. In light of this, the sink actor cannot be moved into a subsequent period. Doing

so would add one period to every actor that follows the sink actor, including the source

actor.

Fig. 3.20 Example SDF graph

 28

Fig. 3.21 Precedential violation caused by squeezing

Fig. 3.22 Squeezing Gap(E, G) will not cause precedential violation

For the example in Fig. 3.20, actor H is going to be scheduled on PE0 and it will

take two time slots. There are three gaps on PE0, and squeezing any of them would create

 29

enough space for scheduling actor H. However, if the initial tokens on the backward edge

from actor E to C only support one firing of actor C, squeezing gap (C, E) would push

actor E forward for one period, as shown in Fig. 3.21. When the actor C starts firing in

the next iteration, actor E in the current iteration has not fired yet. Therefore, gap (C, E)

cannot be squeezed, and Fig. 3.32 should be the correct result of gap selection instead.

Buffer space constraints are another issue that can make a gap non-squeezable.

Essentially, buffer space constraints on an edge impose an implicit backward edge

between the actors of this edge, and larger buffer space constraints correspond to more

initial tokens.

During the process of gap selection, the cost of choosing each gap is precisely

evaluated. The goal of this phase is to find the best gap to place the new actor, while

minimizing the overall latency. The workflow of gap selection is shown in Fig. 3.23. In

the flow chart, start(gap) refers to the first slot of the gap, len(gap) denotes the length of

the gap, mob(gap) and slack(gap) are defined as the actual mobility and actual slack of

the right end actor of the gap.

At the beginning of this phase, we have a list of gaps and the target actor. The

goal is to choose and expand a gap in order to create a large enough space for the target

actor, such that the required length is exactly the execution time of the target actor. The

earliest starting time of the target actor is known as t_start.

Choosing a different gap will generate different schedules. It is obvious that the

best choice would result in the smallest latency. The latency penalty can be measured by

computing the distance between t_start and the first time slot of gap.

 30

Fig. 3.23 Flow chart of gap selection

 31

Given the gap list, we start from the gap that is closest to t_start and iterate the

list. For each gap, we will first try to use mobility for expansion. If using mobility can

achieve the goal, the current gap will be chosen. Since the gap list is sorted by the

distance between t_start and every gap, finding a gap that allows expansion using

mobility means that we do not need to look into any other gap.

If mobility cannot support the expansion, we will try to use both mobility and

slack to expand current gap. Using slack will shift a block of actors and will increase

t_start. As such, we have to search through all gaps even if a gap is found that can be

expanded to meet the requirement using mobility and slack.

Finally, when using both mobility and slack does not work, a squeezed gap list is

generated. Gaps in this list will be squeezed one by one until the accumulated length

meets the requirement. Squeezing gaps will significantly affect the latency of the

schedule. For every actor that is moved during the squeezing process, at least one extra

period will be imposed on the start time of all of its successors that otherwise result in a

precedence violation. Since squeezing gaps might change the start time of the overall

schedule, i.e. move the first actor of the schedule, this shift has to be compensated for in

the evaluation of cost.

After going through the gap list, a list of gaps sorted by cost is created. The cost is

defined as the distance from t_start to the start of the gap, plus the number of periods

added. The algorithm then selects the gap with the minimal cost. After putting the new

actor in the selected gap, the absolute starting time of every actor will be updated and

broken precedence relationships are rebuilt.

 32

Fig. 3.24 Flow chart of list scheduler with MASES

 33

3.4 MASES Algorithm

The complete MASES algorithm extends a basic list scheduler with three

modules: mobility computation, slack computation and gap selection. The flow chart of

the MASES algorithm is shown in Fig. 3.24. When the list scheduler cannot move

forward, mobility and slack computations as well as final gap selection will be performed

as described in previous sections.

 34

CHAPTER 4: EXPERIMENTS AND RESULTS

We conducted a variety of experiments to evaluate list schedulers combined with

backtracking and with our MASES heuristic. A set of randomly generated SDF graphs

are fed into these two list schedulers and the results are compared from the perspective of

execution time and optimality of results.

The SDF graphs for testing were obtained using SDF3’s [9] random graph

generator. We generated 1000 random SDF graphs that cover different sizes, i.e. number

of actor instances, ranging from 10 to 100 at steps of 10 with 100 random graphs of each

size. The number of PEs is set to 3. The other attributes of SDF graphs, such as repetition

vector, execution time and unique PE assignment are randomly generated. We also

introduce a real example from SDF3 [9], the H.263 decoder, to verify the functionality of

MASES. In order to gain maximum throughput, the period constraint is always set to

theoretical minimum value, and the buffer space is unlimited.

The list schedulers are implemented using C++, and all experiments were

performed on a 3.5GHz Intel i7-4771 quad core workstation.

4.1 Random SDF graphs

As mentioned in Chapter 2, a backtracking-based list scheduler will call the

backtracking subroutine when it cannot keep on scheduling new actors on the MRT. In a

first experiment, we evaluated the backtracking-based list scheduler using random SDF

graphs.

For the backtracking heuristic, a search depth limit is required to avoid endless

loops of unscheduling and rescheduling of actors. The depth limit is usually proportional

to the size of the input graph [10]. This is because larger graphs are more likely to fail

 35

and thus require more attempts. Increasing the depth limit improves the success rate of

finding a solution. However, indefinitely increasing the depth limit still does not

eliminate failed cases, and doing so would make the cost of execution time unaffordable.

Based on the data in [10], the depth limit for a SDF graph that has N instances can vary

from N to 6*N, and the authors of [10] suggest a limit of 2*N, which balances execution

time and success rate of finding a solution. In the following experiments, we set the

default depth limit to 2*N.

From Chapter 3, we can conclude that one of the greatest advantages of the

MASES algorithm is that it does not rely on any search depth. Whenever there is no cycle

or buffer constraint in the SDF graph, MASES can guarantee the existence of a valid

solution. This advantage makes MASES extremely useful when the period constraint is

extraordinarily small.

Fig. 4.1 Size of graph vs. number of tests succeeded for backtracking

Fig. 4.1 shows the relationship between size of the SDF graph and number of

failed tests using a backtracking heuristic. As the size of graph increases, the possibility

0	

10	

20	

30	

40	

50	

60	

70	

80	

90	

100	

10	 20	 30	 40	 50	 60	 70	 80	 90	 100	

N
um

be
r	
of
	 p
as
se
d	
te
st
	 c
as
es
	

Size	 of	 graph	

Backtracking	

 36

of the backtracking algorithm finding a valid scheduling pattern quickly decreases. When

the size of SDF graphs is 10, there are 86 out of 100 test cases that pass the backtracking

heuristic. This number shrinks to 38 when the size of SDF graphs is 100. In comparison,

the MASES algorithm never fails to find a solution. No matter how large the size of SDF

graphs is, MASES can always find a valid scheduling pattern that satisfies the given

period constraint if it exists.

The execution times of backtracking and MASES algorithms are also compared.

Since there are a lot of test cases that did not succeed using backtracking, the comparison

is performed in two different ways: (1) taking every test case into account, including

cases for which backtracking failed, and (2) choosing only test cases that succeeded for

backtracking and MASES. The results are presented in Fig. 4.2.

Fig. 4.2 Execution time of backtracking and MASES

0	

2	

4	

6	

8	

10	

12	

14	

16	

18	

20	

10	 20	 30	 40	 50	 60	 70	 80	 90	 100	

Av
er
ge
	 e
xe
cu
ti
on
	 ti
m
e	
(m
s)
	

Size	 of	 graph	

MASES	 (all	 test	 cases)	

Backtracking	 (all	 test	
cases)	

MASES	 (selected	 test	
cases)	

Backtracking	 (selected	
test	 cases)	

 37

The results show that MASES generally has a better execution time cost

compared to backtracking. Since backtracking has to spend a lot of time on searching a

schedule before reaching the depth limit, the time expense is particularly notable when

including test cases for which backtracking fails. In comparison, the time expense for

MASES is overall much smaller than backtracking. Even when only considering test

cases that passed both MASES and backtracking, MASES still runs faster than

backtracking for most of the test cases.

The quality of scheduling results in terms of achieved latency is also evaluated. In

order to compare the latency, only test cases that are guaranteed to pass both schedulers

must be selected. To compare latency results between MASES and backtracking, we

normalized all results against latency achieved by a non-pipelined list scheduler that has a

large enough period to accommodate every actor. The result is shown in Fig. 4.3.

Fig. 4.3 Comparison of normalized latency

0	

0.2	

0.4	

0.6	

0.8	

1	

1.2	

1.4	

1.6	

1.8	

2	

10	 20	 30	 40	 50	 60	 70	 80	 90	 100	

N
or
m
al
iz
ed
	 la
te
nc
y	

Size	 of	 graph	

MASES	

Backtracking	

 38

The results show that MASES does not perform as well as backtracking in terms

of reducing latency. Backtracking basically repeats un- and re-scheduling actors, which is

a form of exhaustive search targeted at minimizing latency. By contrast, MASES relies

heavily on gap squeezing, which is one of the most important features that guarantees a

100% success rate of MASES. However, squeezing gaps can negatively affect the

latency.

 Latency Execution time

10 3% 4%

20 -2% 25%

30 -6% 27%

40 -5% 24%

50 -18% -48%

60 -8% 24%

70 -12% -18%

80 -10% 19%

90 -21% 26%

100 -27% 32%

Average -11% 11%

Min -27% -48%

Max 3% 32%

Table 1. Improvement of MASES over backtracking

Finally, the comparison of latency and execution time improvements of MASES

over backtracking for selected test cases are summarized in Table 1.

 39

4.2 H.263 decoder

In this experiment, both MASES and backtracking algorithms were tested using

the H.263 decoder example from [9]. The H.263 decoder is modeled as a SDF graph,

with worst-case execution times for an ARM7TDMI core. The graph is shown in Fig. 4.4.

Fig. 4.4 H.263 decoder

In this example, actors vld, idct and mc are mapped on PE0, and actor iq is

mapped on PE1. The execution time is 2 cycles for vld, 1 cycle for iq, 3 cycles for idct

and mc. There are 1190 actor instances to schedule in this SDF graph. As shown in Fig.

4.5, we can see that when the list scheduler attempts to schedule actor mc, there are not

enough consecutive available time slots. It took MASES 528.5s to solve this problem,

 40

finding a schedule shown in Fig. 4.6 with a latency of 1792 cycles. In comparison, setting

the depth limit of backtracking algorithm to 500, it still did not find a valid schedule after

an execution time of 178.3s.

Fig. 4.5 MRT of pipelined schedule of H.263 decoder

Fig. 4.6 Result schedule generated by MASES

 41

CHAPTER 5: SUMMARY

This report contributed a new approach that solves the pipelined scheduling

problem for synchronous dataflow graphs. As an alternative to backtracking heuristics in

list schedulers, we propose mobility and slack enhanced scheduling (MASES), a heuristic

that solves the problem of uncertainty of backtracking depth with better performance

when the period constraint is extremely strict. Mobility and slack analysis utilizes the

flexibility in the existing schedule for gap squeezing that trades off latency for

throughput. These features allow us to make adjustment on the scheduled actors instead

of removing them from the MRT and redoing the scheduling process, eliminating the

possibility of actors keep displacing each other. Tested on a large set of randomly

generated SDF graphs, the results of experiment prove the validity and benefits of the

MASES heuristics.

 42

ACKNOWLEDGEMENTS

This project was partially supported by National Instruments. I would like to

thank Dr. Jacob Kornerup from National Instruments, Austin, for his support and active

involvement in this project. I would also like to thank Dr. Brian Evans for providing his

suggestions and constant encouragement in this project.

 43

References

[1] E. A. Lee and D. G. Messerschmitt, “Static scheduling of synchronous data flow

programs for digital signal processing,” IEEE Transactions on Computers, 100.1
(1987): 24-35.

[2] M. Lam. “Software pipelining: an effective scheduling technique for VLIW
machines,” in Proc. ACM SIGPLAN ’88 Conference on Programming Language
Design and Implementation (June 1988), 318-327.

[3] D. Gajski, S. Abdi, A. Gerstlauer and G. Schirner, “Embedded System Design:
Modeling, Synthesis and Verification”, ISBN 978-1-4419-0503-1, Springer,
2009.

[4] A. Sinha, “Multi-Objective Trade-Off Exploration for Cyclo-Static and
Synchronous Dataflow Graphs”, Master’s thesis, University of Texas at Austin,
2012

[5] J. Lin, et al., “Heterogeneous multiprocessor mapping for real-time streaming
systems” in IEEE International Conference on Acoustics, Speech and Signal
Processing (ICASSP), 2011.

[6] S. Bhattacharyya et al., “Synthesis of embedded software from synchronous
dataflow specification,” Journal on VLSI Signal Process. Syst. 21, 2 (1999), p.
151-166.

[7] S. Ritz et al. “Scheduling for optimum data memory compaction in block diagram
oriented software synthesis” in IEEE International Conference on Acoustics,
Speech, and Signal Processing (ICASSP), 1995.

[8] S. Sriram and S. Bhattacharyya. “Embedded Multiprocessors Scheduling and
Synchronization”, Marcel Dekker, Inc, 2000

[9] S. Stuijk, “SDF3: SDF For Free” in Application of Concurrency to System
Design, 2006.

[10] B. Rao, “Iterative Modulo Scheduling,” The International Journal of Parallel
Processing, Volume 24, 1996

