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Abstract 

 

simCUDA: A C++ based CUDA Simulation Framework  

 

Abhishek Das, M.S.E 

The University of Texas at Austin, 2016 

 

Supervisor:  Andreas Gerstlauer 

 

The primary objective of this report is to develop a CUDA simulation framework 

(simCUDA) that effectively maps the existing application written in CUDA to be 

executed on top of standard multi-core CPU architectures. This is done by specifically 

annotating the application at the source level itself, and making the relevant changes 

required for the application to run in a similar and functionally equivalent manner on a 

multi-core CPU as it would run in a CUDA-supported GPU. The simulation framework 

has been developed using C++11 threads, which provides an abstraction for a thread of 

execution, as well as several classes and class templates for mutexes, condition variables, 

and locks, to be used for their management. As an extension to the simulation framework, 

the basic block sequence of execution on a per thread basis is also computed for analysis. 

This information can in turn be used to derive the basic block sequence of execution on a 

per warp basis, and thus emulate and replicate real-world behavior of a GPU.  
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Chapter 1  

Introduction  

Parallel computer hardware has gained much traction in recent years, where every 

computer manufacturer now seeks to provide a multithreaded hardware that exploits 

parallelism, and encourages software developers to explicitly use the parallelism as much 

as possible. The development of these parallel architectures has led to extensive use of 

parallel programming models [1].  

One such class of parallel processing units are called GPUs (Graphics Processing 

Units [2]). CUDA [3] is a programming model introduced in February, 2007 by NVIDIA 

to empower programmers to directly utilize a GPU’s inherent parallelism. This led to a 

trend of using conventional GPUs not only for graphics processing applications [4], but 

also for applications demanding massive parallelism like physics simulations [5], 

computational finance [6], etc. This class of GPUs started being referred as GPGPUs 

(General Purpose GPUs).  

CUDA has been specifically designed in such a manner that it is similar to general 

programming languages such as C [7]. It exposes three key abstractions to the 

programmer in the form of a set of language extensions. These key abstractions include: 

1. A hierarchy of thread groups, 

2. Shared memories, and  

3. Barrier synchronization. 

The programming model partitions the problem statement into coarse-grained 

modules which are solved independently in parallel by blocks of threads. Each module is 
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further divided into fine-grained sub-modules which are solved using threads within a 

block that run in parallel and can interact with each other.  

CUDA has been vastly popular for GPU architectures. In case of multi-core 

architectures, a comparable model is currently lacking. The only close competitors to the 

CUDA programming model in case of multi-core architectures include PThreads [8], 

MPI [9] and OpenMP [10]. This creates a disadvantage for programmers who have 

invested their time exploiting the benefits of CUDA in order to write a general purpose 

application. Thus, an extension to the CUDA programming model supporting multi-core 

architectures will be highly beneficial to transparently port existing applications and 

exploit the parallelism that the current generation of multi-core processors have.  

Although GPUs by themselves consist of many cores and offer massive 

parallelism, modern superscalar processors like Intel’s CPUs [18] offers four cores with 

faster single-thread performance compared to a GPU, which makes emulating a GPU’s 

functionality on such CPUs feasible. 

 

1.1 SIMCUDA OVERVIEW 

CUDA’s use of the specialized GPU features restricts the use of CUDA 

applications to be executed only in GPUs that support the CUDA constructs. The 

execution of CUDA constructs is currently not supported by CPUs due to lack of 

adequate hardware. This makes it challenging to port applications written in CUDA to 

different CPU architectures. 

Our simulation framework is based on C++11 threads, with which we try to 

mimic the execution of fine-grained threads in a block. We achieve porting of CUDA 

applications by modeling CUDA constructs as functionally equivalent C++ functions. 
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This enables us to run a CUDA application on different target platforms. The work-flow 

overview of our functional CUDA simulator is shown in Figure 1. The simulator takes in 

a CUDA application as an input. We then use regular expressions to modify the source 

code and replace it with its equivalent C++ model. We also include additional header 

files to help with the translation and compilation process. The modified source code is 

then compiled using a C++ host compiler to generate a host-compatible binary. 

 

 

Figure 1: Overview of work-flow of simCUDA simulation framework. 

 

1.2 DESIGN DECISIONS 

We chose the GNU Compiler Collection’s C++ compiler (G++) as the backend 

compiler to generate the CPU simulation code. This is because of its large support of the 

GNU tool-chain and specifically because it is a robust cross compiler which can target 

most common processor families like ARM , Intel x86, PowerPC, BlackFin, MIPS, 

SPARC, VAX and Motorola 6800. Thus, G++ is the supported compiler for simCUDA. 

This project also required extensive pattern matching and processing of huge 

amounts of text, which necessitated the need for a scripting language. “Perl” was used as 

the preferred scripting language for this project because of its wide-spread support, 

powerful functionality, and ease of use. 
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1.3 RELATED WORK 

In [11], a new detailed microarchitecture performance simulator is designed that 

runs NVIDIA’s parallel thread execution (PTX) virtual instruction set. It accepts the PTX 

generated from NVIDIA’s CUDA compiler (NVCC) as an input and maps them to the 

current multi-core architecture. Similarly, [12] also uses the PTX thread hierarchy to map 

to multi-core architectures. This report, instead involves the source-level translation of a 

CUDA program and does not rely on the PTX ISA. As such, we do not use the NVIDIA 

CUDA Compiler for the functional model. Nevertheless, NVCC is used in this report to 

extract the basic-block information from the PTX debug information, which is used to 

back-annotate the CUDA source code with equivalent tracing support. Source-to-source 

translation is also used in [13], which uses PThreads to achieve parallelism. They rely on 

modifying the nature of the kernel function from a per-thread code specification to a per-

block code specification, enforcing synchronization with deep fission and replicating the 

thread-local data, causing an additional overhead. This report rather uses C++11 threads 

to achieve synchronization between threads, thus eliminating the need to replicate thread-

local data. C++11 thread barriers are created and used as synchronization primitives at 

the thread-level. The work done in this report maintains the kernel-function’s nature as a 

per-thread specification. In doing so, we modify the nature of the kernel call in such a 

manner that all threads in a block run in parallel, but each block runs serially in a loop. 

This is because threads in a particular block can communicate with each other and 

potentially require synchronization, while, on the other hand, threads in different blocks 

do not communicate and are independent of each other. Thus, it is natural to treat and run 

each block separately, since it does not involve threads from other blocks. This in turn 

does not compromise on the accuracy of the process. 
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1.4 REPORT OUTLINE 

The rest of the report is organized as follows: Chapter 2 details the CUDA 

programming model and analyzes how parallelism is exploited in CUDA. It also details 

the CUDA architecture and the different stages of compilation that leads to the generation 

of the binary for the GPU. Chapter 3 provides the implementation details of simCUDA 

framework. It also outlines how C++11 threads are used to mimic the threads that run in a 

block in a GPU. Chapter 4 discusses simCUDA’s extended functionality of basic block 

tracing from the intermediate representation of the CUDA source code. Chapter 5 

discusses the results of the functional simulator for various benchmarks and how they 

compare with the results from an actual GPU. Chapter 6 discusses the summary and 

conclusion drawn from the results of the project, as well as the future work that can be 

done with the current simulator model. 
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Chapter 2  

CUDA Programming Model 

This chapter describes the CUDA programming model, which is based on a 

kernel function that is data-parallel and can be considered as the primary parallel 

construct [7]. Whenever a kernel is invoked, it creates many CUDA logical threads that 

are supposed to run in parallel. The threads are further organized in a multi-dimensional 

format such that a specific number of threads constitute a block. Threads within a block 

have synchronization primitives, and are free to share data among themselves. But blocks 

do not have any communication with other blocks and are independent of each other. 

Thus, no synchronization primitive is needed at the block level. This section gives a high 

level description of how a CUDA program is executed in a GPU through its massive 

hardware-level parallelism support. 

 

2.1 KERNELS 

Kernels are the basis of parallelism in the CUDA programming model. Simply 

put, a kernel is a function. It is defined using the __global__ declaration specifier [7]. 

When a kernel is invoked or called, it is executed by a specified number of threads, all 

running in parallel.  

 

2.2 THREADS 

The basic unit of execution is a thread. Each thread goes through the kernel 

function and is free to take its own distinct control path based on the values of its 

predicates. The thread in a particular block is identified with threadIdx which is an 
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implicitly defined variable and is accessible to all threads. Thus, all threads in a particular 

block have their own distinct thread IDs.  

 

 

Figure 2: Execution sequence of CUDA blocks in different GPUs. 

 

2.3 BLOCKS 

A block is simply a block of threads that share data between them and have 

synchronization primitives. The implicit variable threadIdx is a three-component vector, 

i.e. it has x, y and z components. Thus, it has the flexibility to form one-dimensional, 

two-dimensional or three-dimensional thread blocks. Threads in a block reside or execute 

on the same processor core on a GPU. Thus, the maximum number of threads per block is 

limited by the memory resources of the core they execute on. The processor core on 

which the block resides is called a streaming multi-processor (SM). If the number of 

blocks are more than the number of available SMs, then blocks wait for previous blocks 

to finish execution on a particular SM before they can execute on the SM. For example, if 
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a CUDA program is comprised of 8 blocks, then its execution on different GPUs having 

different number of SMs (2, 4 and 8) is shown in Figure 2 [7]. The number of total 

threads is given by the number of threads per block multiplied by the total number of 

thread blocks. Each block is identified with its own implicit variable called blockIdx 

which is built into the CUDA model.  

 

 

Figure 3: Organization of threads into blocks and blocks into grids. 
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2.4 GRIDS 

Blocks are further organized as grids. The grid size is dependent on the number of 

SMs a GPU has, and is the maximum number of blocks that can run in parallel on the 

GPU. The number of grids is dependent on the size of the data that is being processed. 

So, if a GPU has 4 SMs then the grid-size is 4. The organization of a grid into blocks and 

a block into individual threads is shown in Figure 3. The number of threads in a block or 

the dimensions of the block is accessible from within the kernel through the built-in 

variable blockDim. Similarly, the dimensions of a grid or the number of blocks per grid is 

also accessible through the built-in variable gridDim.  

 

 

2.5 WARPS 

Each SM splits its own blocks into warps. Threads in the block are actually 

executed concurrently in groups of maximum 32 threads, which is the size of the warp. 

Instructions are issued on a per warp basis [16]. Threads in a warp execute in lock-step 

manner. Thus, the basic block sequence of a warp is useful for calculating the time taken 

by all the 32 threads inside the warp to execute a particular kernel. An example has been 

shown in Figure 4, to illustrate this point. Figure 4(a) shows the CFG of a particular 

kernel which branches at the end of nodes 1 and 4. We assume that only 2 threads are 

active for a particular warp. The execution sequence of thread-0 is shown in Figure 4(b), 

while that of thread-1 in warp is shown in Figure 4(c). Since the execution in a warp is 

done in a lock-step manner, the overall execution sequence is as shown in Figure 4(d). 

Thus we see that even if thread-1 does not take the branch to node-2, it has to wait for 

thread-0 to finish executing node-2. Similarly, thread-0 has to wait until thread-1 finishes 
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executing node-3, and then both of them start executing node-4 in parallel.  Thread 

blocks are thus created in warp-sized units. Also, it is not necessary that at a time all 32 

threads of a warp need to be active. It is possible that for a particular kernel any number 

of threads between 0 and 32 in a warp are active at any given time, while the rest are 

inactive.  

 

 

 
Execution sequence of a warp: (a) CFG of a kernel. (b) Execution sequence of thread-0. 

(c) Execution sequence of thread-1. (d) Execution sequence of a warp with two active 

threads (thread-0 and thread-1). 

Figure 4: Example of execution sequence of a warp. 
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2.6 MEMORY  

A typical GPU memory hierarchy is shown in Figure 5. The memory hierarchy is 

divided into 3 types. It consists of:  

1. Local memory per thread. 

2. Shared Memory per block. 

3. Global Memory shared by all blocks. 

The local memory per thread is a private local memory that is accessible by each 

thread. The shared memory is visible to all threads in a block, and all the threads in a 

block can access as well as change it. The lifetime of the shared memory is the same as 

the lifetime of the block. The global memory is accessible by all the threads in all the 

blocks. Apart from these, there are also 2 additional read-only memory types. 

1. Constant memory. 

2. Texture memory. 

As the name suggests, constant memory is used for data that does not change over 

the course of kernel execution. The constant memory space is cached thus enabling 

higher bandwidth during read-access. Similar to constant memory, texture memory is 

also cached on chip, thus providing higher effective bandwidth in some situations. This is 

done by reducing memory requests to off-chip DRAM. Texture memory is particularly 

useful for graphics applications where memory access patterns exhibit a great deal of 

spatial locality. Texture memory is also useful for cases where you update your data 

rarely, but instead read the data very often. Texture memory has its own data addressing 

modes, and includes specific data formats. 
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Figure 5: Memory hierarchy in GPUs. 

 

2.7 PROGRAMMING MODEL 

As stated before, the kernel is identified by the keyword __global__ and has 

access to a number of implicit variables namely, threadIdx, blockIdx, blockDim and 

gridDim. This kernel is called or invoked from a different function simply by stating the 

function name followed by the syntax <<< … >>>. The variables inside the triple angular 

brackets represent the number of threads per block, and the total number of blocks. 

Within a block, each thread has its own local unique ID given by threadIdx. The threads 

also have a global unique ID, given by the formula: ((blockIdx*blockDim) + threadIdx). 

Blocks are independent of each other and thus can run in any order, in parallel or in 

series. The synchronization primitive within a block is the __syncthreads() intrinsic 
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function. It acts as barrier at which all threads in a block must wait. Only when all the 

threads reach the barrier point are they allowed to proceed further. 

A sample CUDA program is shown in Figure 6. The CUDA code in this example 

reverses an array of 64 integers. The synchronization primitive in the kernel makes sure 

that the line in the kernel d[t] = s[tr]; is executed only when all the threads in the block 

have reached that point. This enables the CUDA program to accurately reverse the array.  

 

 

Figure 6: Sample CUDA Code. 
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2.8 COMPILATION AND BINARY GENERATION 

NVCC is the CUDA compiler which performs the compilation for all CUDA 

source files [14], [15]. The CUDA compilation process as done by NVCC involves 

splitting, compilation, preprocessing, and merging steps. CUDA source files are 

comprised of GPU device functions (extension of C language) on top of a conventional 

C++ host code. The CUDA compilation flow is responsible for separating the device 

functions from the host code, and compiling the device functions using the proprietary 

NVIDIA compilers and assembler. It also compiles the host code using a C++ host 

compiler, and embeds the compiled GPU functions as fat-binary images into the host 

object file. CUDA runtime libraries are added during the linking stage to support remote 

SPMD procedure calling and to provide explicit GPU manipulation, like host GPU data 

transfers and allocation of GPU memory buffers.  

NVCC also accepts compiler options for defining macros, including library paths, 

and for manipulating the compilation process. The non-CUDA compilation steps are 

carried out by a C++ host compiler supported by NVCC. The NVCC compiler options 

are also translated to the appropriate host compiler options internally. The linker at the 

final stage combines both the CUDA object files from NVCC and the host CPU object 

files from the host compiler to generate a CPU-GPU executable. The compilation process 

from CUDA source files to CPU-GPU binaries is shown in Figure 7. 
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Figure 7: CUDA program compilation process using NVCC. 
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Chapter 3 

Functional Translation of CUDA to C++ 

The functional simulator uses the source code directly. It modifies the source code 

in such a manner that it compiles using a host compiler, and thus generates a target binary 

for a multi-core CPU. Hence, for functional simulation, at no point is the NVIDIA 

CUDA compiler required. Instead, all that is required is a host compiler that supports 

C++11 threads (e.g. gcc-4.8), which the simulation process is based on. This chapter 

describes in detail the translation process, and the specific modifications that a CUDA 

source code undergoes to compile and run on a host system without the presence of a 

GPU.  

 

3.1 DEFINING CUDA-SPECIFIC DATATYPES 

The CUDA programming model has many datatypes that are not part of the C++ 

language. These datatypes are an integral part of the CUDA language and are used in a 

regular fashion. Thus, it is important to define the structures that are part of the CUDA 

programming model. One such datatype is ‘dim3’. It is a three-component vector type 

which has three integer components namely x, y and z. We model this datatype using a 

class as shown in Figure 8 so that the functionality of the datatype remains the same.  

Similarly, CUDA has many different datatypes which are shown in Table 1. The 

number after the datatype represents the number of components of the vector. For 

example, char2 is a two component vector of type char with members x and y. All such 

datatypes have been modeled in an adequate fashion such that the functionality remains 

same after the modification process. 
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Figure 8: Modeling of CUDA-specific datatype ‘dim3’. 

Dimensions Variable Types 

1 char1, uchar1, short1, ushort1, int1, uint1, long1, ulong1, float1, longlong1, 

ulonglong1, double1 

2 
char2, uchar2, short2, ushort2, int2, uint2, long2, ulong2, float2, longlong2, 

ulonglong2, double2 

3 char3, uchar3, short3, ushort3, int3, uint3, long3, ulong3, float3, dim3 

4 char4, uchar4, short4, ushort4, int4, uint4, long4, ulong4, float4, 

Table1: CUDA-specific datatypes. 

 

3.2 PASSING IMPLICITLY DEFINED VARIABLES TO KERNEL 

In CUDA, there are many implicitly defined variables, which serve as identifying 

features of a thread. Implicitly defined variables generally means that they are built into 

the language and do not have to be explicitly passed to the kernel. The kernel function 

can freely access the implicitly defined variables and each thread in each block will have 

its own copy and value of such variables. Some implicitly defined variables in CUDA 

include: 
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1. threadIdx 

2. blockIdx 

3. blockDim 

4. gridDim  

Unfortunately, C++ does not define any such implicit variables which might help 

in identifying a particular thread or block. As a result, all these implicitly defined 

variables have to be explicitly passed, and this is done in the modification process. The 

modification involves two steps: 

Step-1:  

This involves changing the signature of the kernel function such that it includes 

all the implicitly defined variables i.e. threadIdx, blockIdx, blockDim and gridDim as 

function arguments. 

Step-2: 

This step includes changing the kernel call, wherein apart from the original 

function arguments we also provide the current thread-ID, block-ID, dimensions of the 

block, and dimensions of the grid as parameters.  

 

 
(a) CUDA source kernel with implicit variables. 
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(b) Modified C++ code with implicit CUDA variables as arguments.  

Figure 9: Transformation of CUDA implicit variables. 

Figure 9 shows as example of the transformation from CUDA code to C++ code 

for CUDA implicit variables. Figure 9(a) represents the original CUDA code which has 

access to all the implicitly defined variables. Figure 9(b) represents the modified C++ 

code where all the implicitly defined variables are passed as parameters to the kernel 

function. 

 

3.3 LAUNCHING THREADS  

As discussed in Chapter 2, Section 2.7, kernels are launched using triple angular 

brackets i.e. <<< … >>>. This is specific to CUDA and is not valid for a C++ program. 

Thus, the modification process is responsible for identifying the kernel launch construct. 

We do this by using regular expressions in Perl. Once a kernel launch is identified, 

information about the name of the kernel, the number of threads per block, the number of 

blocks, and the parameters to the kernel function is extracted from the kernel launch 

statement. These parameters are then used to launch C++11 threads. The blocks run 

sequentially in a ‘for’ loop. The standard process is to define the threads using the syntax 

of std::thread in one iteration of the loop that represents the block. As soon as the 

thread’s associated object is created, the threads start executing, except if there are any 

scheduling delays by the operating system (OS). We then use std::thread::join so that the 
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main thread waits for all the other threads to finish execution, before it executes the rest 

of the code.  

 

 

3.4 SERIALIZATION OF CUDA THREAD BLOCKS 

Conceptually, each thread in a GPU is implemented as a single OS thread. 

However, since the number of threads running in parallel in a GPU is very large, simply 

allocating an OS thread for each thread in a GPU implies significant overhead. The main 

challenges include utilization of shared memory only for threads in a block, and the 

concept of barrier synchronization, which involves synchronization of threads in a block. 

As, neither the hardware architecture of the host CPU nor the OS can be changed to 

support the challenges faced, it becomes the responsibility of the translation process to 

manage the execution of the threads. Since we know that blocks are independent of each 

other during their execution, and can run in parallel or in series with other blocks, it is 

natural to run each block serially, and run all the threads in a block in parallel. That way, 

the compiler only manages the synchronization of all the threads in a particular block at a 

time. Also, since the blocks are now serialized, all threads communicating with each 

other during the parallel execution process belong to the same block. This eliminates the 

risk of communication between threads of different blocks in a natural manner.  

Each thread in a block is run as a C++11 thread. The blocks are run in a for-loop, 

which launches each block one after another serially until all blocks have been executed. 

Local variables are simply re-used at each loop iteration. Shared variables are also visible 

across all threads of a block only, and get re-initialized for each new block implemented 

as a new loop iteration. Also, any synchronization primitive that is being used is 
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automatically valid for all the threads in a single block, since each iteration only 

represents a single block. 

It is important to note that CUDA allows the number of threads, and blocks to be 

a three-component vector i.e. both the thread-ID and the block-ID can have x, y and z 

components. Thus, we modify the CUDA kernel call in a way that only one component 

of all the threads runs in parallel at a time. As a result, a single kernel call is replaced by a 

nested loop of overall dimensions of the block which again nests loops over all the 

components of a thread. This is done mainly to make the job of synchronization between 

different threads in a block much simpler and easier to track.  

An example of modification of the CUDA source code to achieve serialization of 

blocks, as well as the modifications for a kernel-launch is shown in Figure 10. Figure 

10(a) represents the original CUDA source code where a kernel call is made with 

‘nblocks’ number of thread-blocks and ‘nthreads’ number of threads in each block. 

Figure 10(b) represents the modified CUDA code as a C++ code. The modified code 

shows the nested loops for x, y and z components of ‘nblocks’ which again contain the 

nested loops for x, y and z components of ‘nthreads’. 

  

 
(a) CUDA Source Code with a kernel-launch statement.  
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(b) Modified C++ code with serialized blocks and kernel-launch. 

Figure 10: Modification of kernel-launch and serialization of thread-blocks. 

 

3.5 SYNCHRONIZATION PRIMITIVE BETWEEN THREADS 

C++11 threads [17] provide us with constructs like mutex and condition variables, 

which are useful tools to create synchronization primitives that work in the host 

environment. CUDA has an implicit synchronization construct, namely __syncthreads(). 

This command is a block level synchronization barrier and is used when all threads in a 

block have to reach a barrier before they are allowed to proceed. A similar barrier is 

constructed in C++ using condition variables and mutexes, which replicate the 

functionality of __syncthreads(). Since thread blocks are serialized (as discussed in 

Section 3.4), we do not have the problem of synchronization barriers affecting threads of 

other blocks. The member function std::condition_variable::wait causes the current 
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thread to be locked until the condition variable is notified, and is subsequently unblocked 

when all threads reach the synchronization point and are notified.  

   

 
(a) CUDA source with synchronization primitive. 

 

 
(b) Implementation of synchronization barrier in C++ 
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(c) Modified C++ code with synchronization barrier. 

Figure 11: Synchronization primitive modification from CUDA source code. 

In CUDA, the function __syncthreads() is implicitly defined while in the 

transformed C++ code, the barrier is passed as a parameter. This again involves two steps 

in the modification process from CUDA to C++ code.  

Step 1: 

The signature of the kernel function is modified such that it now accepts a barrier 

object. This barrier object is generally passed by reference so that all the threads in a 

thread-block have the same synchronization primitive. We call the wait function on this 

barrier object inside the kernel function. 

Step 2: 

The kernel call is also modified so that a barrier object is first constructed before 

the kernel call, and then the object is passed by reference to the kernel function using the 

wrapper std::ref, which is basically a value type that behaves like a reference. An 

example of modification of a synchronization primitive is shown in Figure 11. 
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3.6 MODIFYING CUDA DEVICE-SPECIFIC AND HOST-SPECIFIC FUNCTIONS 

In CUDA, functions can broadly be categorized into three types declared with 

their own unique keywords as described below: 

 

3.6.1 __global__ 

The __global__ keyword is generally used for declaring kernel functions. These 

are called from the host (CPU) but are executed on the device (GPU). Threads are 

launched on a kernel function, and thus this type of function mostly marks the entry or 

starting point of all threads running on the GPU. For the simulator, since there is no 

actual GPU, it does not make sense to have any distinction as such. Thus, in the 

modification process, all instances of the __global__ keyword are removed from the 

CUDA source files.  

 

3.6.2 __device__ 

The __device__ keyword is generally used for declaring device functions. These 

are called from the device (GPU) and are executed on the device (GPU) as well. Again, 

for the simulator, since there is no actual device (GPU), the __device__ keyword has no 

real significance. Thus, in the modification process this keyword is modeled as an empty 

string, which does not add any keyword to the existing function. Thus, the function after 

compilation has the usual signature of a return type followed by the function name and its 

arguments. 
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3.6.3 __host__ 

The __host__ keyword is used for declaring host functions. In general if a 

function does not have any declaring keyword, it is assumed to be a host function. These 

are the functions that are called from the host (CPU) and are executed on the host (CPU) 

itself. Since C++ has no similar construct and everything is in actuality running on a host 

machine, this keyword is also modeled as an empty string. Thus, the function after 

compilation also has the usual signature of a return type followed by the function name 

and its arguments. 

It is worth noting that a function can have both __host__ and __device__ 

declarations in CUDA. But again, this has no effect on the simulator, since they are both 

modeled as empty strings. 

 

3.7 MODIFICATION OF MEMORY TYPES 

As discussed previously, CUDA has in total 5 different types of memory. Each 

thread has its own local memory. There is also a shared memory on a per-block basis and 

a global memory, which is shared across all blocks in all grids. Apart from these, there 

also exists constant memory and texture memory. Local memory is similar in concept in 

both GPUs and CPUs i.e. in a CPU running C++11 threads, each thread has its own local 

memory. Thus, local memory does not need to be specially modeled. In this section all of 

the memory types, namely shared memory, constant memory, global memory and texture 

memory have been discussed.  
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3.7.1 Shared Memory 

This is shared between all threads in a block. It is declared using the keyword 

__shared__ with a variable which declares it in a block’s shared memory. The declared 

shared variable is visible to all the threads in a block, and exists for the lifetime of the 

block. In the simulator, in order to share a variable between all the threads in a block, the 

variable is modeled as a static variable. This makes sure that the variable is initialized 

only once, and is visible across all parallel threads in a single block. Also, since blocks 

have been serialized in the modification process, this prevents the sharing of the variable 

across blocks. An example of the modification of the source code has been shown in 

Figure 12.  

 

  
(a) CUDA source kernel with a shared variable. 

 

 
(b) Modified kernel with shared variable modeled as static. 

Figure 12: Transformation of CUDA shared variable. 
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3.7.2 Global Memory 

As stated previously, global memory is shared between all threads across all 

blocks. The keyword __device__ declares a variable in the global memory of a device 

(GPU). It is accessible by all threads across all blocks. This is similar to a global variable 

in a CPU which is visible across all possible threads. Thus, the previous modeling of 

__device__ as an empty string is still valid for the simulator, and needs no further 

modification. 

 

3.7.3 Constant Memory 

Constant memory is used for data that does not change over the course of kernel 

execution. The keyword __constant__ declares a device variable in constant memory. 

They are accessible across all threads in all blocks within the lifetime of the application. 

This is similar to global memory in CPU, and thus the modification process involves 

declaring all the __constant__ variables in a separate header file, and including the header 

file wherever the variable is used. This way, all threads have access to that variable 

across all blocks and it is alive for the duration of the application. In order to read from 

and write to constant memory, CUDA uses constructs like cudaMemcpyToSymbol and 

cudaMemcpyFromSymbol. These will be discussed later in this Chapter. 

 

3.7.4 Texture Memory 

Texture memory is another type of memory in the CUDA programming model 

which is particularly useful for graphics applications. It is useful for data that exploits 

spatial locality, and also for data that is updated rarely but read very often. The various 
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operations associated with texture memory and their modeling for the simulator will be 

described in Section 3.8. 

 

3.8 MODIFYING MEMORY OPERATIONS 

The CUDA programming model adds its own memory management functions on 

top of the existing functions used in C for memory operations. These functions are used 

to transfer data from the host (CPU) to the device (GPU), and also from the device to the 

host. In case of the simulator, since a device (GPU) is not considered to be in existence, 

these memory operations have been modeled so that they reflect transfer of data from the 

host to the host itself. This is not ideal since it wastes some memory space. In the future, 

the simulator might be optimized further to save memory space and not perform any 

memory transfer at all. This section describes the CUDA-specific memory operations and 

how they have been modeled. 

 

3.8.1 cudaMalloc 

This function is used to allocate memory of specified bytes in the device and 

returns a pointer to the newly allocated memory. This is simply modeled as malloc, 

which allocates the same amount of memory in host. 

 

3.8.2 cudaFree 

This function is used to free the memory space pointed to by a pointer. Since it 

behaves in a similar fashion as free in C, it has been modeled as such. The memory space 

in the host previously allocated via cudaMalloc is freed by calling the native free(). 
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3.8.3 cudaMemcpy 

This function copies a specified number of bytes from a source to a destination. 

There are four possible directions in which the copy can take place: host-to-host, host-to-

device, device-to-host and device-to-device. This too is specified as an argument to the 

function. For the simulator, since there is no distinction between host and device, the 

direction of memory transfer becomes irrelevant. Thus, this is modeled as memcpy that 

transfers a fixed size of memory from a source to destination. The fourth argument about 

the direction of transfer is ignored in this case. 

 

3.8.4 cudaMemcpyToSymbol 

This function is generally used to copy data from the host to the device’s constant 

memory. It can also be used to transfer to the device’s global memory. Thus, there are 

only two directions in which the data transfer can take place: host-to-device and device-

to-device. For the simulator, this is again modeled using memcpy since there is no device, 

and direction of the transfer is irrelevant. 

 

3.8.5 cudaMemset 

 This function fills the first specified number of bytes of memory pointed to by a 

specified pointer with a specified value. Since this is similar to memset in C, it has been 

used to model this function in the simulator.   

 

3.8.6 tex1D and tex1Dfetch 

A texture reference defines which part of texture memory is being fetched. It can 

have an attribute with respect to dimensions. Thus, a texture can be addressed as a one-
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dimensional array using one texture co-ordinate, as a two dimensional array with two 

texture coordinates, and as a three-dimensional array using three texture coordinates. This 

is represented as tex1D, tex2D and tex3D respectively. For our purpose, we can simply 

represent an array as an array itself. So tex1D is modeled as a simple array. 

tex1Dfetch (texref, i) returns the (i-1)th element from the array texref. This is 

mostly used to read from the texture memory. Thus, this function is modeled simply as a 

function returning texref [i] in case of the simulator. 

 

3.8.7 cudaBindTexture 

This function is used to bind memory.  The cudaBindTexture function specifically 

binds the specified texture reference of specified size to a specific memory area on device 

pointed to by a specified pointer. For the simulator, since there is no device, there is no 

texture memory. Thus, this is simply modeled as memcpy that transfers the specified size 

of bytes from the array (texture reference) to the memory location specified by the 

pointer. If cudaBindTexture is used successively on the same pointer, it is supposed to 

overwrite the original data, which is similar in function to memcpy as well. 

 

3.9 COMPILING AND EXECUTING THE MODIFIED SOURCE CODE 

The compilation process for CUDA source code has already been discussed in 

Chapter 2. Once the CUDA source code is translated, we use a normal C++ compiler as 

the host compiler. For our purpose, we have used g++ version-4.8 since it is compatible 

with C++11 threads. The compilation process is similar to that of the CUDA compiler 

with the exception that instead of using NVCC, we use g++ -std=c++11 –pthread. The 

std switch is used to specify the standard that the input source files have to follow. The 
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pthread switch is used to enable the usage of std::threads, which are essential for the 

simulator’s multithreading functionality. Apart from this, instead of the CUDA’s default 

include path, we have to specify our own include path that contains the necessary header 

files for the source code to compile and run.  

Once the modified source is compiled, g++ generates an executable capable of 

running on the host machine. We simply have to run the executable along with suitable 

arguments (if any), and the CUDA source code should run successfully, and give the 

same functionality as it would on an actual GPU. An example of the completely modified 

CUDA source code, its compilation, and console output of an example CUDA source 

code in shown in Figure 13. Figure 13(a) shows the original CUDA source code. Figure 

13(b) shows the modified (converted) C++ code, and Figure 13(c) shows the compilation 

procedure and the console output of the modified code. 
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(a) Sample CUDA Source code. 
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(b) Modified C++ code of CUDA source code. 

 

 
(c) Compiling and running the modified C++ code. 

Figure 13: Example of CUDA source modification. 
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Chapter 4  

Basic Block Tracing  

Basic blocks [19] are straight lines of code that have a single entry and a single 

exit point with no branches in between. Any program can be divided into a number of 

basic blocks. In our case, basic block information is important to re-trace how the 

program would have executed on a real device (GPU). The sequence in which the basic 

blocks are executed in a program for a given input can be used to estimate and determine 

the execution time of the program on the GPU without the need for an actual device. 

simCUDA has an extended functionality for identifying basic blocks. This chapter 

describes how the basic blocks are identified from PTX Intermediate Representation (IR) 

of a CUDA source code. Once the basic blocks are identified, they can be used to back-

annotate the source code, which then prints out the basic block sequence of all the threads 

combined when being simulated [20]. Since this represents a large dataset, and all threads 

in a warp actually run in a lock-step manner, the more important information is how 

basic-blocks are executed in a warp rather than on a thread-by-thread basis. Since there is 

no concept of warps in a CPU, this chapter also describes how the basic-block sequence 

of a warp is computed from the basic block sequence of individual threads. 

 

4.1 PTX  

PTX is a virtual GPU instruction set that is by design, independent of the 

underlying architecture. The PTX achieves interoperability between architectures through 

a hierarchical model of parallelism, and a set of constructs that ease translation.  
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PTX itself is very similar to an intermediate-representation of a compiler, which 

makes the process of identifying useful information and translating them across 

architectures relatively simple. PTX is used as an IR in our case to identify the basic 

blocks. Since there are options to get the debug information from the PTX, we use this 

debug information to back-annotate the source code with the identified basic-blocks. 

 

4.2 IDENTIFYING BASIC-BLOCKS 

The IR of the CUDA source code in the form of PTX is used to identify the basic 

blocks of the kernel. The point of interest is the basic block sequence executed by the 

kernel, since that is the part of the CUDA code that runs on the device. From the PTX, 

the basic blocks are identified. Basic block identification uses simple regular expression 

matching. If a statement is a branch statement or the statement is the start of a function, it 

marks the entry-point of a basic block. A second branch statement or the end of a 

function marks the exit-point of a basic block. Also, if a branch target is in between two 

branches then the basic block is split, where the branch target is considered as the entry 

point to the new basic block. If the above methods are repeated for the entire PTX code 

of the CUDA source code, we can easily identify the number of basic blocks and the 

basic block boundaries. We use Perl to identify the basic blocks from PTX using regular 

expressions. 

 

4. 3 BACK-ANNOTATING CUDA SOURCE CODE 

When the PTX is dumped from a CUDA source code, NVCC has the option of 

dumping the debug information as well. This debug information in the PTX code 

provides us with the information about the location of the files that are part of the PTX 
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code, as well as the line-number of the line which PTX code segment represents. Again, 

Perl is used to extract the file-location and the line-number of the PTX code, and 

whenever a basic block boundary is reached we annotate the corresponding line-number 

in the corresponding file with the basic block number. Each kernel has its own basic 

block numbers and boundaries. The back-annotation generally includes writing the 

thread-ID, along with the basic block number(s) to a file. This way, the basic block 

sequence of all the threads that were active at some point of time get dumped to a file, 

from where they can be processed further. 

 

4.4 EXTRACTING BASIC-BLOCK SEQUENCE OF WARP 

Chapter 2 describes how each thread inside a warp executes in a lock-step 

fashion. This makes finding the basic block sequence of execution on a per-warp basis 

much more important and useful than on a per-thread basis. Unfortunately, the host does 

not have any concept of warps as such, but we do have data for the basic block sequence 

of execution of all threads. Generally, 32 threads constitute a warp, and warps still exist 

in a block. Thus, all the threads in a block can be grouped, where each group of 32 

constitutes a warp. This is the basis for modeling a warp in simCUDA. In order to make a 

group of 32 threads model a lock-step execution, the idea is to take the union of all the 32 

threads in their basic block execution sequence based on the basic block number. We use 

Perl to recursively take the union of 32 threads, which gives the lock-step sequence in 

which the basic blocks of all the threads in a single warp execute.  
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4.5 EXAMPLE OF BASIC BLOCK TRACING FROM PTX 

Figure 14 walks through the complete basic block tracing procedure using 

simCUDA. Figure 14(a) shows an example of a CUDA source code with branching 

statements. It computes the number of odd and even elements in an array, as well as the 

number of elements greater than limit and less than or equal to limit in an array.  

NVCC is then used to generate the PTX for the CUDA source code. The 

corresponding PTX for the CUDA source code is shown in Figure 14(b). The basic block 

information is identified as discussed in Section 4.2. The debug information from the 

PTX includes specific files which have to be annotated, given by the file number, and the 

exact line number which corresponds to a part of the PTX code. The .loc keyword in the 

PTX denotes the file number and the line number of the source file to which the PTX 

segment belongs. From the PTX, seven basic blocks are identified in this example, as 

highlighted in yellow in the figure. Their corresponding line numbers are highlighted in 

green. The summary of the basic block boundaries is shown in Figure 14(c). This is the 

output of simCUDA extension that shows the basic block numbers, their corresponding 

line numbers and the files that are annotated. 

This information is used to find a suitable place for annotating the source code 

with the basic block information. Figure 14(d) shows the back-annotated CUDA source 

code with the basic block information. As can be seen from the figure, the basic blocks 

are annotated at the nearest valid location of the line-number extracted from the PTX. 

Once we get the back-annotated CUDA source code, we use simCUDA’s 

functional framework to generate the corresponding C++ code. The modified C++ code is 

then compiled using a host compiler (g++-4.8). This generates a file that contains the 

basic block execution sequence for each thread. This file containing the execution 

sequence of each thread is post-processed as discussed in Section 4.4 to generate the 
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basic block execution sequence of the warp. The basic block execution sequence for each 

of the threads derived from the back-annotated CUDA source code, and the 

corresponding execution sequence of a warp computed by taking the union of all the 

threads is shown in Figure 14(e).  

 

 

 
(a) Sample CUDA source code. 
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(b) Corresponding PTX IR for CUDA source code. 
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(b) Corresponding PTX code for CUDA source code (contd.). 

 

 
 (c) Basic block locations in their corresponding CUDA source file. 
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(d) Back-Annotated CUDA source code with basic block information. 
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(e) Basic block execution sequence of all threads and the corresponding warp. 

Figure 14: Example of basic block tracing of a CUDA source code. 

As seen from Figure 14(e), the warp sequence derived by taking the union of all 

the threads in the warp, represents a lock-step execution. This is consistent with the real-

world behavior of a warp executing on a GPU, where all the threads in a warp execute in 

a lock-step fashion as discussed in Section 2.5.  

 

  



 44 

 

Chapter 5  

Results 

We tested our simCUDA simulation framework on a state-of-the-art CUDA 

benchmark suite. This section first describes the benchmark suite and its general 

characteristic. The description is followed by a performance evaluation of the simulator 

in terms of functionality and execution time. 

 

5.1 RODINIA BENCHMARKS 

Rodinia [25] is a benchmark suite for heterogeneous computing, which includes 

applications and kernels that target multi-core CPU and GPU platforms. For our 

purposes, we used the applications that were specifically targeted towards an NVIDIA 

GPU. The applications, after translation and modification through simCUDA, were 

simulated in a multi-core CPU. The Rodinia benchmark suite has been used since it 

covers a wide range of data sharing and parallelism characteristics, and also spans across 

different types of behavior. The diverse applications make it an ideal test-suite since it 

sheds light on the capabilities of the simulator with respect to the types of applications, 

amount of data and parallelism that it can support. The benchmarks used to test the 

simulator are described below: 

1. Back Propagation: A machine learning algorithm based on a layered neural network. 

It computes the weights of connecting nodes on the neural network [27]. 

2. Breadth-First Search: This algorithm traverses all the nodes in a graph one level at a 

time [28].  
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3. B+ Tree: An application with numerous internal commands for maintaining 

databases and processing queries, of which J and K commands were ported to CUDA 

and other parallel languages. The current implementation uses the same algorithms 

for both commands to expose fine-grained parallelism [29]. 

4. CFD Solver: An unstructured grid finite volume solver for the three-dimensional 

Euler equations for compressible flow [30]. 

5. Discrete Wavelet Transform: A library implementing forward and reverse DWT 9/7 

and 5/3 transforms [31]. 

6. Gaussian Elimination: For each iteration, values are computed in parallel and then 

the algorithm synchronizes between each iteration solving the variables of a linear 

system in a row-by-row fashion. 

7. Heart Wall: This application tracks the movement of a mouse’s heart over a 

sequence of 104 609x590 ultrasound images recording responses to the stimulus [32]. 

The benchmark involves three stages – an initial stage involving image processing to 

detect initial, partial shapes of inner and outer heart walls. Full shapes of heart walls 

are reconstructed by the program by generating ellipses that are superimposed over 

the image and sampled to mark points on the heart walls. In its final stage, movement 

of surfaces is tracked by detecting the movement of image areas under sample points. 

8. HotSpot: A tool to estimate processor temperature based on an architectural floorplan 

and simulated power measurements. The benchmark involves re-implementation of a 

transient thermal differential equation solver [33]. 

9. Hybrid Sort: A sorting procedure involving a parallel bucket-sort that splits the list 

into enough sub-lists to be sorted in parallel using merge-sort [26]. 
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10. K-Means: A clustering algorithm that identifies related points by associating each 

data point with its nearest cluster. It then computes new cluster centroids, and keeps 

on iterating until it converges [21]. 

11. LavaMD: An implementation to compute particle potential and relocation due to 

mutual forces between particles within a large three-dimensional space. 

12. Leukocyte: An algorithm for tracking moving white blood cells in video microscopy 

of blood vessels across many frames [22]. The maximal Gradient Inverse Coefficient 

of Variation (GICOV) of each pixel is computed across a range of ellipses and a 

Motion Gradient Vector Flow (MGVF) matrix is calculated for the area surrounding 

each cell. 

13. LUD: An algorithm to calculate the solutions of a set of linear equations, wherein a 

matrix is decomposed as the product of a lower triangular matrix and an upper 

triangular matrix. 

14. Myocyte: Simulates the behavior of cardiac myocyte according to the work in [32]. 

15. Nearest Neighbors: An algorithm that computes the k-nearest neighbors in an 

unstructured data-set, based on the Euclidian distance from a given target latitude and 

longitude. 

16. Needleman-Wunsch: A non-linear global optimization method for DNA sequence 

alignment [23]. 

17. Particle Filter: An algorithm that statistically estimates a target object’s location 

from a noisy measurement setup and an idea of the object’s path in a Bayesian 

framework [24]. 

18. Shortest Path (Pathfinder): Finds a path from the bottom row to the top row of a 

two-dimensional grid with the smallest accumulated weights, where each step of the 

path moves straight ahead or diagonally ahead, using dynamic programming. 
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19. Speckle Reducing Anisotropic Diffusion:  Based on partial differential equations, it 

is used to remove locally correlated noise, known as speckles, without destroying 

important image features [32]. 

20. Stream Cluster: An algorithm for solving the online clustering problem which finds 

a pre-determined number of medians so that each input point is assigned to its nearest 

center [34]. 

 

5.2 EXPERIMENTAL RESULTS 

The benchmarks discussed in the previous section were run on the simulator to 

compute the error percentages with respect to outputs from the GPU. Table 2 lists the 

error percentages of the benchmarks running on an Intel Core i5-5200 CPU compared to 

the results from a GPU, and the execution times of all the benchmarks on a GPU. For 

some of the benchmarks, it was not possible to quantify an error percentage since the 

output produced was a pictorial one, as is the case for benchmarks dwt2d and srad_v1. 

The error percentages are computed with respect to the same benchmark running on a 

system with a native GPU. The most plausible explanation of the difference in outputs of 

the simulator and the system with a native GPU is non-determinism in the order in which 

threads are scheduled on the CPU. Since the number of threads running in parallel in a 

CPU is lower and the thread-scheduling is handled by the OS itself, the outputs may have 

a minor deviation as indicated by the error percentage.  
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Benchmarks GPU Execution Time (seconds) Error Percentage (%) 

B+ Tree 0.106 0 

Back propagation 0.093 0 

BFS 0.173 0 

CFD Solver  0.841 0 

DWT2D 0.192 (Pictorial Output) 

Gaussian  0.125 0 

Heart Wall 0.697 0 

HotSpot 0.389 0.009317 

Hybrid Sort 0.109 0 

K-means 1.478 0 

LavaMD 0.175 2.714286 

Leukocyte 0.139 0.000491 

LUD 0.096 0 

Myocyte 0.340 0.333077 

Nearest-Neighbors 0.103 0 

Needleman-Wunsch 0.137 0 

Particle filter 0.224 1.576896 

Pathfinder 0.993 0 

SRAD (v1) 0.108 (Pictorial Output) 

SRAD (v2) 0.101 3.463221 

Stream Cluster 0.282 0 

Table 2: GPU Execution times and error percentages of benchmarks 
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The benchmarks were executed on an NVIDIA GeForce GTX TITAN Black GPU 

and their execution times were noted. For the execution time of the benchmarks in multi-

core CPUs, an Intel Core i7-920 CPU, an x64-based quad-core processor with hyper-

threading functionality, and an Intel Core i5-5200 CPU, an x64-based dual-core 

processor with hyper-threading functionality were used. For the tests, 5 different 

configurations were used across both CPUs as listed in Table 3. 

 

Test Name CPU Configuration 

c4_ht_on All 4 CPU cores active with Hyper-Threading enabled. 

c4_ht_off All 4 CPU cores active with Hyper-Threading disabled. 

c2_ht_on 2 CPU cores active with Hyper-Threading enabled. 

c2_ht_off 2 CPU cores active with Hyper-Threading disabled. 

c1 Only one CPU core active with no Hyper-Threading 

Table 3: CPU configurations used for testing benchmarks. 

The execution times of the benchmarks running on an Intel Core i7-920 CPU 

normalized against execution times on the GPU for different configurations are shown in 

Figure 15. Similarly, the comparison of execution times of the benchmarks running on an 

Intel Core i5-5200 CPU normalized against the execution times on the GPU for different 

configurations are shown in Figure 16.  
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Figure 15:  Slowdown of benchmarks on Intel Core i7-920 with respect to GPU. 

 

CPU Configuration 
Average CPU Slowdown w.r.t GPU for all benchmarks 

Intel Core i7-920 Intel Core i5-5200U 

c4_ht_on 324 Not Applicable 

c4_ht_off 295 Not Applicable 

c2_ht_on 347 193 

c2_ht_off 296 195 

c1 175 156 

Table 4: Average CPU slowdown across different configurations. 
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Figure 16:  Slowdown of benchmarks on Intel Core i5-5200U with respect to GPU. 

In general, the average ratio of execution time of a benchmark on an Intel Core 

i7-920 CPU to the execution time of the same benchmark on a GPU is 287 for all the test 

configurations of the CPU. Across all configurations of the Intel Core i7-920 CPU, the 

minimum observed slowdown is 3x, for the benchmark LUD, when only one core is 

active and Hyper-Threading is disabled. The maximum observed slowdown is 3230x for 

the Leukocyte benchmark when 2 cores are active and Hyper-Threading is enabled. The 

average ratio of execution time of a benchmark on an Intel Core i5-5200U CPU to the 

execution time of the same benchmark on a GPU is 182 for all the test configurations of 

the CPU. Across all configurations of the Intel Core i5-5200U CPU, the minimum 

observed slowdown is 3.2x, again for the benchmark LUD, when only one core is active 
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and Hyper-Threading is disabled. Similarly, the maximum observed slowdown is 1940x, 

for the Leukocyte benchmark when 2 cores are active and Hyper-Threading is disabled. 

The average slowdown for different CPU configurations on both the Intel Core i7-920 

CPU, and the Intel Core i5-5200U CPU are shown in Table 4. 

 

 

Figure 17: Scaling of CPU performance on Intel Core i7-920 CPU. 

The CPU performance for different configurations were also measured against the 

same CPU’s single active core configuration. The scaling of CPU performance on the 

Intel Core i7-920 is shown in Figure 17, while that of Intel Core i5-5200U is shown in 

Figure 18. 
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Figure 18: Scaling of CPU performance on Intel Core i5-5200U CPU. 

From the experimental results, we see that execution times of the benchmarks on 

a CPU are dependent on its implementation and do not necessarily scale with the number 

of cores in a CPU. The vast difference in the observed GPU-normalized execution times 

is mainly due to serialization of blocks. Since different benchmarks have different 

number of blocks (which run in parallel in the GPU), and they are run sequentially by the 

simulator, the number of blocks in a particular benchmark also dictates its CPU 

performance. Furthermore, depending on the implementation of the application, some 

benchmarks were observed to have an increase in performance as the number of cores 

increased, while many benchmarks suffered a performance degradation. This may be 
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explained by additional synchronization and communication overhead negating the gains 

achieved by running in parallel on multiple cores.   

We also see that the performance degradation in case of the Intel Core i7-920 

CPU compared to the Intel Core i5-5200U is much worse. A plausible explanation might 

be the more modern and optimized architecture, especially when it comes to the cache, 

memory and communication/synchronization/coherency architecture of the Intel Core i5-

5200U, which is a 14nm processor based on Intel’s Broadwell architecture. The Intel 

Core i7-920 CPU design is a 45nm processor based on Intel’s Nehalem architecture. But 

this needs further experimentation to point out the exact cause of the difference in 

performance.    

Table 5 summarizes the execution times of all the benchmarks on an Intel Core 

i7-920 CPU for different configurations. Similarly, Table 6 summarizes the execution 

times of all the benchmarks on an Intel Core i5-5200U CPU for different configurations.  

Also, for all the benchmarks, the basic block identification procedure was 

successfully completed. For the basic-block annotation procedure, CUDA 4.0 was used to 

generate the PTX. The PTX was used to identify the basic blocks, and then annotate the 

source code accordingly. After annotation, the annotated source code was passed through 

the simulator to generate the basic block execution sequence of individual threads. After 

post-processing the basic block execution sequence of each individual thread, the basic 

block execution sequence of each warp was successfully computed for all the 

benchmarks.  
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Benchmarks 

CPU Execution Time (seconds) 

c1 c2_ht_off c2_ht_on c4_ht_off c4_ht_on 

B+ Tree 0.777 0.989 0.990 0.896 0.961 

Back propagation 11.361 20.434 21.658 19.917 22.477 

BFS 29.295 46.110 49.864 46.803 40.475 

CFD Solver 21.383 25.390 24.780 23.614 23.378 

DWT2D 26.784 34.781 46.450 40.108 45.360 

Gaussian 118.537 133.107 151.289 128.629 139.091 

Heart Wall 4.633 5.649 4.953 4.811 4.864 

HotSpot 13.094 22.209 23.633 22.028 23.707 

Hybrid Sort 25.331 33.492 31.600 29.051 28.250 

K-means 332.803 416.861 590.128 557.431 489.608 

LavaMD 58.228 92.104 77.745 59.956 53.590 

Leukocyte 133.657 349.151 449.650 359.651 444.906 

LUD 0.285 0.604 0.728 0.641 0.733 

Myocyte 4.920 8.008 8.320 8.022 7.407 

Nearest-Neighbors 0.590 0.577 0.753 0.643 0.684 

Needleman-Wunsch 15.123 38.469 41.578 40.388 40.433 

Particle filter 1.208 1.615 1.877 1.741 1.870 

Pathfinder 47.063 116.166 124.870 126.096 129.059 

SRAD (v1) 2.595 3.031 3.481 3.443 3.468 

SRAD (v2) 6.864 11.916 12.750 11.827 12.995 

Stream Cluster 52.056 46.087 58.450 48.724 45.605 

Table 5: Execution times of benchmarks for all configurations of Intel Core i7-920. 
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Benchmarks 
CPU Execution Time (seconds) 

c1 c2_ht_off c2_ht_on 

B+ Tree 0.763 0.733 0.707 

Back propagation 8.956 11.405 11.142 

BFS 26.083 21.066 21.554 

CFD Solver 16.971 15.878 16.209 

DWT2D 25.286 25.290 22.718 

Gaussian 87.483 79.699 78.406 

Heart Wall 4.785 4.327 4.540 

HotSpot 10.020 11.393 10.931 

Hybrid Sort 23.371 19.799 20.631 

K-means 326.819 333.331 333.721 

LavaMD 26.984 25.847 23.737 

Leukocyte 154.257 269.948 269.493 

LUD 0.306 0.431 0.442 

Myocyte 3.733 3.604 3.757 

Nearest-Neighbors 0.428 0.388 0.382 

Needleman-Wunsch 14.560 22.327 24.034 

Particle filter 1.210 1.308 1.297 

Pathfinder 54.487 81.761 72.969 

SRAD (v1) 2.552 2.597 2.587 

SRAD (v2) 5.418 6.211 6.080 

Stream Cluster 48.839 45.308 46.114 

Table 6: Execution times of benchmarks for all configurations of Intel Core i5-5200U. 
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Chapter 6  

Summary and Conclusions  

The simCUDA project had two main aims – first, developing a functional 

simulator to execute GPU code on a multi-core CPU, and second, to model and estimate 

the sequence of execution of warps in a GPU. The functional simulator has been 

successfully developed such that it can run on any existing platform that supports C++11 

threads. The simulator does not require any available GPU for simulation. Instead, it 

translates the CUDA application into functionally equivalent C++11 code, and it relies on 

C++11 threads to achieve parallelism through multi-core CPU architectures. Thus, 

simCUDA proves to be a useful tool for host-compiled simulation of GPU applications. 

Also, the simulator extension of extracting the basic-blocks works on an intermediate 

representation that is hardware agnostic. Thus, in essence almost no modification is 

required for it to be used on a variety of target platforms. 

The project has been developed after a good understanding of the CUDA 

programming model, its requirements as well as its challenges. Also, a good knowledge 

of C++11 threads and their existing features was required to aptly model CUDA 

constructs of C++. Unfortunately, the documentation for the thread support library has 

been lacking in many aspects, which proved to be a major hurdle for overcoming issues 

and complications in the initial stages.  

The simulator has been developed using Perl, and it uses complex regular 

expressions to make the necessary modifications. The project has been developed with 

the intent of keeping it as modular as possible so that it can be modified easily to suit the 

needs of the end-user as and when required.  
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The simulator has been successfully tested with the Rodinia benchmark suite, 

both as a functional simulator, and for generating the basic block execution sequences of 

warps. This was done to model real-world usage and applications. The execution times of 

the benchmarks differed depending on the number of cores, and the specific 

implementation of the application. For some applications, the performance scaled with 

the number of cores, while for some, performance degradation was observed. 

It is possible to extend the simulator’s functionalities in future depending on the 

requirements of a particular application. Also, it might be possible to extend the simulator 

to support different languages as well. Since the simulator relies on regular expressions to 

modify the source directly, supporting a new language is a possibility by simply adding 

new regular expressions. As another possibility, the underlying language can also be 

changed (e.g., to use C-Pthreads instead of C++11 threads). This is feasible, since it 

requires modifying the source code with a new equivalent construct.  

In conclusion, this project has established itself as a viable concept for directly 

modifying source code in order to support mapping between different GPU and CPU 

architectures, and it provides a framework to support mapping between different 

architectures irrespective of the underlying hardware.  
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