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ABSTRACT
High-performance processors use more transistors to deliver
better performance. This comes at a cost of higher power
consumption, often lowering energy efficiency. Conventional
approaches mitigate this problem by adding heterogeneous
energy-efficient cores for matching tasks. However, reduc-
ing high-performance components, such as caches or out-of-
order processing capabilities, broadly affects performance.
In this paper, we instead explore opportunities to increase
energy efficiency by providing cores with restricted function-
ality, but without necessarily impacting performance. We
aim to achieve this by removing support for complex but less
frequently executed instructions. Since instruction mixes
used by real-world workloads are often heavily biased, the
potential to remove unused or less frequently used instruc-
tions is relatively high.

To explore such opportunities, we investigate which in-
structions are worthwhile to remove, how frequently they are
used, and how much performance degradation is expected
after removing direct hardware support. We analyze a sub-
set of instructions in the ARM ISA and their correspond-
ing logic burden in the microarchitecture. Furthermore, we
present instruction profiling results and show performance
degradation when candidate instructions are removed. Ex-
perimental results show that removing most of the identified
complex instructions has negligible impact on performance
except for NEON instructions, which result in large perfor-
mance degradations for floating-point-oriented workloads.

We further propose a heterogeneous-ISA system to achieve
energy efficiency without performance degradation using a
system architecture that combines both full- and reduced-
ISA cores. Results show that by providing the flexibility of
heterogeneous-ISA cores, the proposed system can improve
energy efficiency by 12% on average and up to 15% for ap-
plications that do not require NEON support, all without
performance overhead.

1. INTRODUCTION
Current mobile systems-on-chips (SoCs) incorporate nu-

merous heterogeneous computing resources in an effort to
improve energy efficiency. Specialized processing elements
provide energy-efficient computing by offloading various types
of computations onto dedicated accelerators. For general-
purpose workloads, architects have traditionally spent avail-
able transistors to increase processor performance. However,
this also leads to increased power consumption, often dete-
riorating energy efficiency. The conventional approach to
handle this problem is to take advantage of heterogeneity at
the system level by switching between high-performance and
energy-efficient cores [3]. Such heterogeneous systems match
application demands with core types to maximize energy ef-
ficiency. In such systems, the heterogeneity lies in the mi-

croarchitecture. In bigger cores, more transistors are spent
on components that improve performance, such as caches,
branch predictors, and out-of-order processing capabilities.
In small cores, reducing the amount of performance-relevant
resources can, however, be detrimental to some workloads.

An alternate approach is to implement energy-efficient
cores by restricting functionality instead of giving up per-
formance. Specifically, by reducing resources that have less
impact on performance, power dissipation can be alleviated
without losing significant performance. The benefit of imple-
menting certain features in the Instruction Set Architecture
(ISA) is highly dependent on workloads. Not all instruc-
tions are frequently used by every workload. If a particular
workload favors specific instructions that are not directly
supported by the hardware, performance dramatically de-
creases. By contrast, there is little performance degradation
if those instructions are not frequently used.

In this paper, we explore opportunities for systems com-
prised of heterogeneous reduced-ISA cores to improve energy
efficiency. We first identify a subset of instructions that are
complex to implement, but are less frequently used. We find
that ISAs are often broadly inclusive in that they incorpo-
rate instructions to support a variety of workloads across
processor generations. However, once instructions are de-
fined in an ISA, backwards compatibility requires all future
processors to implement them whether they are frequently
used or not. These less frequently used components add
complexity inside the microarchitecture while contributing
little to overall performance.

We identify candidate instructions that are complex to im-
plement and profile how frequently the selected instructions
are used in state-of-the-art ARM-based systems. Results
show that workloads are biased towards certain instructions
depending on the application or program phase. Basic in-
structions for essential data processing such as add, branch,
move, load, and store are frequently used across all bench-
marks. However, subsets of instructions are selectively or
less frequently used, suggesting opportunities to remove di-
rect hardware support for them. Since instruction selection
depends on the compiler, we investigate results from major
compilers, where results show minimal variances.

We further evaluate performance degradations if candi-
date instructions are removed. If performance degradation
is large, it is not worthwhile to consider removing them
despite the potential power benefit. We evaluate system
performance with a reduced instruction set running several
benchmarks. Results show that some subsets of instructions
are critical to performance while others are not essential
since in most cases, their usage frequency is low enough to
not impact performance significantly.

Lastly, we propose a heterogeneous-ISA architecture to
obtain energy benefits while maintaining performance across
a wide range of workloads. In our proposed system ar-



chitecture, reduced-ISA cores remove hardware support for
complex instructions, which increases energy efficiency but
requires trapping and emulating of non-supported instruc-
tions. When unsupported instructions are infrequent, a work-
load runs on the reduced-ISA core to reduce energy. By
contrast, when unsupported instructions are prevalent, the
workload is migrated to a traditional full-ISA core. This
dynamic core switching allows the system to avoid the per-
formance degradation and energy inefficiency of software-
emulated instructions. As long as they are not performance-
critical, a compiler can thereby optimize binaries to remove
unsupported instructions and thus maximize residency on
the reduced-ISA core. Our results show that workloads with-
out performance-critical instructions spend most of their ex-
ecution time on reduced-ISA cores, achieving energy savings
of up to 15%. Workloads with frequent use of unsupported
instructions execute exclusively on full-ISA cores with no
change in performance or energy consumption. On average,
12% energy savings at little to no performance cost are ob-
served across a variety of benchmarks, where applications
migrate between reduced- and full-ISA cores depending on
dynamically varying instruction usage.

2. ISA ANALYSIS
In this section, we discuss the relationship between per-

formance and the versatility of an ISA. Furthermore, we
analyze the influence of instructions as a source of logic.
As a case study, we select the ARM V7 ISA, and one of
the performance-oriented ARM processors, Cortex-A15, as
a baseline. The general concept and methodology can, how-
ever, be applied to any target.

2.1 Instructions and Performance
The performance of a processor can be determined from

various factors using the so-called iron law of processor per-
formance as follows:

ExecT ime

Program
=

Instructions

Program
× Cycles

Instruction
× T ime

Cycle
(1)

To reduce execution time, compacting the instruction se-
quences is helpful for many workloads. Accordingly, in-
structions are carefully defined to reduce the code required
for specific workloads as much as possible. In other words,
removing support for specific instructions may cause an in-
crease in instruction count, potentially hurting performance.

However, since they are not completely independent, the
performance loss of one factor can be compensated by others.
For instance, by removing support for certain instructions,
the cycle time, i.e. cycles per instruction (CPI) can be im-
proved. Moreover, as most modern processors have multiple-
issue widths, any benefit from reducing a specific data path
is multiplied. Even if performance benefits and losses break
even, it may still be worthwhile to remove instruction sup-
port since the processor has reduced logic, leading to better
energy efficiency. Exploring this trade-off is one of the goals
of this research.

Minimizing the increase in instruction count due to the
removal of instructions is a way to improve the energy ef-
ficiency further. Applications often show diverse character-
istics. Even a single application can have diverse phases
throughout its execution. One characteristic is the instruc-
tion utilization pattern. Not all instructions are fully uti-
lized by individual applications or phases. Thus, by meticu-

lously selecting the instructions required to support a range
of workloads, we can reduce the number of instructions re-
quired in a processor.

2.2 Instructions as a Source of Logic
To maximize the benefit of reducing instructions, iden-

tifying instructions that greatly impact logic complexity is
essential. Removing instructions that do not result in logic
reductions unnecessarily increases the danger of code bloat.

We find that the overall number of instructions in an ISA
is not as crucial for logic reduction as we first expected.
While macro-operations are directly related to the logic in
the decode stage, the rest of the pipeline is more driven by
micro-operations. Basic micro-operations share many com-
mon datapath resources, such ALUs, that can not be re-
moved. Our study rather focus on the specific semantics
required by particular instructions that contribute to large
logic within the microarchitecture. Since the processor is un-
aware of the instruction until decoded, we regard the fetch
stage as an irrelevant block to consider for our analysis.

In the decode stage, the number of decodable instructions
is a major source of logic. In order to shorten the cycle time,
parallel logic is commonly used to determine the fetched
instructions. For superscalar machines, the logic reduction
effects are multiplied through duplicated decoder blocks. In
case of the ARM ISA, multiple instruction sets, ARM and
Thumb, mandate separate decoding blocks.

One specific category of instructions that incurs complex-
ity are load and store multiple (LDM/STM) instructions.
Determining possible source or destination registers for cor-
responding micro-operations is difficult to implement within
one pipeline stage in a multiple-issue machine. Instead, col-
lecting possible data values is done speculatively for all in-
structions in parallel with decoding them. Moreover, there
is overhead for propagating of decoded instruction seman-
tics through the pipeline and for exception handling of such
long-running instructions in the execution back-end.

Another source of logic are predicated instructions [5].
Predicated instructions can be implemented as simple selec-
tion logic in the write-back stage. However, to avoid stalls
due to data dependencies, modern high-performance pro-
cessors carry both old and new data values simultaneously
through the pipeline. This incurs overhead for pipeline reg-
isters and wires. In case of floating point operations, data
size is doubled or quadrupled.

DSP-like instructions (QADD, SSAT, etc.) [2] complicate
data paths in the integer pipeline. The various types of in-
structions, which combine consecutive add and multiply op-
erations, help compact the instruction set. However, since
normal integer operations are most commonly used, archi-
tects tend to keep pipeline stages as short as possible, forc-
ing a parallelized approach of implementing DSP operations.
This places additional logic burdens on the pipeline.

The NEON instruction set extensions in ARM support
floating-point (FP) and SIMD operations, but are a large
source of logic [1, 8]. NEON instructions require extra logic
blocks for FP and SIMD functionality. Additionally, pred-
ication combined with NEON operations aggravates logic
complexity. A register alias table and an extra register file
for NEON instructions incurs logic in dispatch stages. Data
paths, including data passing, write-back and forwarding of
the execution result also make the routing complex. Lastly,
a separate decoding block for NEON instructions is required.
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Figure 1: Instruction analysis of mobile workloads.

3. PROFILING INSTRUCTIONS
After identifying a few candidate categories of instructions

to potentially remove (LDM/STM, predicated instructions,
DSP-like instructions, and NEON), we provide detailed pro-
filing results to observe overall instruction usage of our tar-
get instructions in this section. For comprehensive explo-
ration, we run mobile Android workloads and SPEC2006
CPU benchmarks for profiling and performance evaluation.

3.1 Instructions in Android
To observe the frequency of our target instructions, we

present detailed analyses of instructions for two mobile ap-
plications, BBench[15] and Angry Birds, running on Android
4.2 (using the Dalvik JIT compiler). We collect selective
instruction information from BBench and Angry Birds, run-
ning SimPoints on gem5 with replay of previously recorded
user interactions [22]. All of the macro instructions are
dumped and parsed with custom Python scripts. Since this
approach takes advantage of SimPoints to reduce simula-
tion time, analysis results are appropriately scaled accord-
ing to SimPoint weights. One minor disadvantage of gem5
is the absence of a GPU model, resulting in software-based
openGL support.

Figures 1(a) and 1(b) show histograms of individual in-
struction frequencies including overall mix of instruction
types separately for integer and NEON instruction cate-
gories. To better interpret the numbers, we also provide

dynamic instruction counts that account for more than 0.1%
and 0.0001% of all instructions. Interestingly, the amount
of instructions that show up frequently and thus may affect
performance is small. Less than 30% of integer instructions
are used for more than 0.1% of dynamic instructions. In
case of NEON instructions, Angry Birds uses almost none
while BBench takes advantage of limited NEON support.
This is attributed to the biased selection of instructions by
the compilers depending on the workload.

Figures 1(c) and 1(d) show detailed breakdowns for the
four sets of candidate instruction categories. We find that
only a limited amount of NEON instructions is used. NEON
coverage measures how many NEON instructions are used
for each 1000 instruction interval (i.e., 5% means 50 out of
1000 instructions are NEON). For BBench, no NEON in-
struction exists for 72% of the total execution time while,
again, Angry Birds uses almost none. For the predication
category, we can see that predicated instructions are preva-
lent in the ARM ISA while a small number of IT (If-Then)
instructions exists for Thumb. Since branches have condi-
tional fields but are not classified as predicated, we excluded
branch instructions from these results. Without branches,
about 3% to 5% of instructions are predicated in total.

Interestingly, the number of instruction types (opcodes)
used in both benchmarks are similar (Decodable Instruc-
tions, Figures 1(c) and 1(d)). We counted the instructions
that appeared more than once during the whole execution.
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Figure 2: Instruction analysis of SPEC CPU2006 integer benchmarks.

This allows us to measure how efficiently the instruction
set is used. It turns out that only a limited number of in-
structions are selected by the compiler on Android. Viewed
another way, this implies that the logic for unused instruc-
tions can be removed. Compilers might generate some in-
structions very rarely. In theory, the logic for even rarely
used instructions must exist to ensure proper functionality
of processing those instructions. However, if we control the
compiler or modify the OS to not generate or trap and em-
ulate those instructions, the corresponding logic to support
them is unnecessary.

Finally, there are a limited number of LDM/STM instruc-
tions. In total, less than 4% of instructions are load/store
multiples for BBench. For Angry Birds, only a limited
amount is used. DSP-like operations are rarely used in either
application. Among them, only the sign/zero extension vari-
ants and bit manipulation instructions are frequently used.
Others are almost never generated by the compiler.

3.2 Instructions in SPEC
We performed a similar profiling and analysis for SPEC

CPU2006 [10] benchmarks. Observing the instruction pat-
terns of these benchmarks allow us to learn the general dis-
tribution of instructions for the broader spectrum of work-
loads in SPEC [21]. We ruled out Fortran-based bench-
marks because of compiler issues and consequently select 13
benchmarks (9 INT and 4 FP). We use test input sets for

instruction and power analysis and the reference inputs for
performance evaluation.

Compilers translate high-level source code into various in-
struction patterns. These instruction patterns can depend
on and vary between compilers. To measure the variances
in generated patterns, we compare the output of the two
most prominent compilers, GCC [7] and LLVM [17]. In
our paper, all SPEC binaries are generated using -O3 and
-mcpu=cortex-a15 flags with static library linking.

Figure 2 shows detailed results of our analysis. We weighted
each benchmark equally using arithmetic means. In addi-
tion, to avoid interference from different types of workloads,
we show analysis results for integer benchmarks only. Due
to space limitations, FP benchmark results are excluded.
The instructions generated by the two compilers are sim-
ilar but not identical. Even though instructions account-
ing for more than 5% are the same in both compilers (Fig-
ures 2(a) and 2(b)), the distribution and other minor in-
structions are different. For instance, while GCC prefers
to use more branches, LLVM favors predicated instructions
and moves more data. Both compilers use a similar propor-
tion of NEON instructions, where LLVM spreads the NEON
instructions more evenly across the execution phases com-
pared to GCC. Interestingly, the number of instructions used
more than once are similar, showing that both compilers uti-
lize a limited number of instructions in the end.
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4. REDUCED-ISA PERFORMANCE IMPACT
Based on profiling results in Section 3 and the identified

relationship between instructions and logic overhead in Sec-
tion 2, we define a few reduced instruction sets as case stud-
ies and observe the performance overhead of each with SPEC
CPU2006 benchmarks. For this study, we modify the com-
piler to generate binaries in which candidate instructions are
removed. In general, rather than relying on subsequent in-
struction emulation, compilers can be controlled to produce
desired instruction patterns. By removing unsupported in-
structions without otherwise affecting the overall program
flow, benefits can be maximized. We modified LLVM to
generate all binaries with some minor changes to limit the
generation of specific instructions. A dynamic instruction
trace was generated the same way in Section 3. The exe-
cution time was measured on an Arndale board (dual-core
Cortex-A15) [6]. We ran the benchmarks as a single thread
one at a time on Linux. In addition, to avoid possible CPU
throttling, the processor was set to run the applications at
1.2GHz while measuring total execution time.

4.1 Performance Trade-off
Since removing instruction support might be detrimen-

tal to performance, care should be taken when refining in-
structions. The benefit should be larger than the loss. The
benefit is in logic reduction and lower power consumption
reduction while the loss is in performance.

Measuring the performance loss is a challenging task. In-
struction patterns are so delicate that a small change in ei-
ther the source code or compiler options may result in quite
different patterns. Due to the fragility of patterns, the out-
put of binaries can vary a lot. Nevertheless, despite such
differences, the number of instructions that are frequently
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Figure 5: Performance of ISA without Load/Store Multiple
instructions.

used is still limited. Hence, with millions of instructions
from several benchmarks, we can measure the overall role of
certain instructions and the effects of removing them.

NEON instructions are a large source of logic to sustain
performance. In other words, the performance loss from re-
moving NEON instructions is also large if they are heavily
used. To measure the performance impact of NEON in-
structions, we compare the execution time of SPEC bench-
marks with and without NEON instructions. Note that
since we could not fully remove all NEON code from some
of the pre-compiled libraries, there still exist a negligible
number of NEON instructions. Figure 3 shows the detailed
performance loss and original NEON instruction usage for
each benchmark. For consistency with Figures 1(c)/(d) and
2(c)/(d), we report NEON coverage here as the fraction of
1K instruction intervals that contain NEON instructions.

For floating-point benchmarks, the performance slowdown
is significant, ranging from about 6 to 23 times. When re-
moving floating-point support in the ISA, there is no other
choice for the compiler than to resort to soft-float emula-
tion. By contrast, for integer benchmarks, which sporadi-
cally use NEON instructions, the performance degradation
is less than 7% with the exception of omnetpp. Since om-
netpp contains a large number of NEON instructions, the
37% performance degradation is understandable. These pro-
filing result match prior work [11].

Figure 4 shows results for a reduced ISA that excludes
predicated instructions. Avoiding to use of conditional in-
structions is done by disabling the SimplifyCFG optimiza-
tion pass in LLVM. When removing this optimization pass,
the compiler also loses the chance to generate optimal code.
Thus, the slowdown is not solely from removing conditional
instructions. However, since we observed that only a very
small number of instructions are changed compared to full-
ISA binaries, we regard such effects as negligible.

Overall, the performance loss is less than 5% except for
hmmer. Removing conditional instructions results in an in-
creased amount of branches in the code. Results indicate
that the branch predictor of a modern high-performance
mobile processor is good enough to handle the removal of
predicated instructions. In case of hmmer, further analysis
showed that the single hot loop in which most of the execu-
tion time is spent shows significantly worse branch predictor
performance, causing the severe performance degradation.

Load and store multiple instructions provide a way to re-
duce a number of consecutive load/store operations. How-
ever, since modern instruction prefetch/fetch and out-of-
order logic can hide such an increase in instruction count, the
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Figure 6: Microarchitectural sensitivity of reduced ISAs to changes in sizes of different microarchitectural components.

penalty of replacing them with separate load/store instruc-
tions is somewhat mitigated. Figure 5 shows the detailed
performance with and without load/store multiple instruc-
tions. The performance loss is negligible across benchmarks.

We find that current compilers hardly use DSP-like in-
structions for most types of workloads. Some of them are
never used by the LLVM compiler back-end in the first
place. Consequently, it is meaningless to conduct perfor-
mance comparison with or without these DSP-like instruc-
tions. However, despite the fact that we skipped the perfor-
mance evaluation, a reduced ISA without DSP-like instruc-
tions to reduce the logic burden is still valid.

4.2 Microarchitectural Sensitivity
The role of high-performance microarchitecture compo-

nents such as caches or branch predictors is to streamline the
flow of instructions. Normally, architects design and opti-
mize them under the assumption of implementing all instruc-
tions defined in the ISA. However, since we limit and change
the patterns of the instruction stream, pre-optimized param-
eters might not be valid with a reduced ISA. The possibility
of suboptimal configurations may affect performance as well
as energy efficiency. If the reduced ISA increases pressure
on the branch predictor due to the additional branches with-
out conditional instructions, the branch predictor should be
reinforced, potentially negating the benefits that we get.

To evaluate these effects, we measure the sensitivity of a
reduced ISA to changes in microarchitectural components
using fractional factorial experiments [22] on SPEC bench-
marks in gem5 (Figure 6). Such experiments have been
used in the past for identifying microarchitectural compo-
nents critical to performance. They measure the normalized
performance impact of variations in component parameters
over a range of experiments. We use this setup to identify
how much each reduced instruction set can potentially ben-
efit from an increase in various microarchitectural resources.
Our experiments show that the synthetic change of reduced
instruction patterns does not benefit from nor require any
additional hardware in the high-performance components.

5. HETEROGENEOUS-ISA SYSTEM
In this paper, we propose adding heterogeneity at the ISA

level. Reducing the ISA, instead of high performance com-
ponents, creates an energy-performance trade-off along a
different dimension. Since applications show diverse char-
acteristics, not all instructions in the ISA are required for
every application. Some workloads require a very small sub-
set of instructions, while others take advantage of most in-
structions in the ISA. In particular, frequently executed hot
functions often show preference to a small amount of instruc-
tions, providing the potential to run them on a reduced-

ISA core. Figure 7(a) shows the concept of a heterogeneous
system with reduced-ISA cores in comparison to traditional
heterogeneous systems. In the remainder of the paper, we
define rISA as the reduced ISA with all the previously men-
tioned instructions removed.

5.1 Full- and Reduced-ISA Cores
We propose a heterogeneous system that contains a com-

bination of both full- and reduced-ISA cores (Figure 7(b)).
Traditional full-ISA cores execute applications with no change
in performance or energy consumption. By contrast, by cut-
ting down on the instructions supported by the underlying
microarchitecture, the logic complexity of reduced-ISA cores
is decreased. This allows such cores to achieve lower power
consumption. At the same time, unsupported instructions
need to be trapped and software-emulated. As discussed in
Section 4, a compiler can create binaries that are optimized
for execution on the reduced-ISA core. Nevertheless, if re-
moved instructions are critical, as is the case with NEON
instructions for floating-point workloads, performance suf-
fers severely.

For workloads with unsupported instructions that are sen-
sitive to performance, a heterogeneous-ISA system can al-
leviate the performance degradation. When running an ap-
plication in which performance-sensitive instructions are not
prevalent, it is better to run it on reduced-ISA cores. How-
ever, when the application is in a phase where it includes
performance-sensitive instructions, the application switches
to the full-ISA core where it does not lose any performance.
The core switching overhead depends on the granularity and
subsequent frequency of switching. We present evaluation
results for varying core switching granularities in Section 6.

5.2 Dynamic Core Switching
Dynamically monitoring the instruction streams and switch-

ing cores based on performance is the best way to maxi-
mize energy savings. In this approach, the process scheduler
can dynamically map applications to an appropriate ISA
core based on the information from hardware performance
counters, such as the number of NEON instructions exe-
cuted during the current scheduling period. As mentioned
above, we assume that unsupported instructions are exe-
cuted using emulation after undefined instruction exceptions
in the reduced-ISA core. This will only be acceptable for in-
frequent use of the software-emulated instructions. Once
the number of software-emulated instructions exceeds a cer-
tain threshold within a certain time period, the application
should be migrated to a full-ISA core to avoid further perfor-
mance degradation. On a full-ISA core, on the other hand,
the same instructions are also monitored. If the instructions
are not used during a certain time period, the application is
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Algorithm 1 Dynamic Core Switching

function Schedule()
if neon cnt ≤ neon threshold then

if fISA core then
if neon low ticks ≥ switch threshold then

next core← rISA
else

neon low ticks← neon low ticks + 1
end if

end if
else . NEON instructions more than threshold

if rISA core then
next core← fISA
neon low ticks← 0

end if
end if
neon cnt← 0

end function

migrated back to the reduced-ISA core.
For optimal energy and performance balance, dynamic

core scheduling is imperative. Algorithm 1 shows an exam-
ple of core scheduling in case of heterogeneous systems with
and without NEON support. At the end of each scheduling
period, the scheduler determines which core the application
should run on based on NEON instruction counts. If there
are more NEON instructions than a predetermined thresh-
old, it is better to run the application on a full-ISA core to
reduce performance loss. In the opposite case, it is better
to run the application on a reduced-ISA core for energy effi-
ciency. Since we are predicting the next period based on the
current one, instant switching from full- to reduced-ISA core
might induce a ping-pong switching situation. Therefore, we
add an optional switch threshold variable. We evaluate how
different switch thresholds affect overall performance in our
experiments (see Section 6.1). Core switching happens when
there are consecutive periods where NEON instructions are
above or below the neon threshold. For these experiments,
we assume that there are two cores, full- and reduced-ISA,
respectively, and no other programs are running.

5.3 Estimation of Power Reduction
Reducing the ISA will reduce the amount of logic. How-

ever, the effectiveness varies depending on the target ISA,
target instruction, implementation methodology, microar-

chitecture, etc. In particular, the benefit of reducing logic
and routing complexity depends on how aggressive the per-
formance target is. The higher the targeted clock frequency
is, the larger the benefit of a reduced-ISA core. Thus, we
explore the benefit of a reduced ISA in the context of a high-
performance baseline, targeting the reduction of power con-
sumption and proposing a new heterogeneous system that
attains the maximum benefit from such reduced-ISA cores.

While implementing a real reduced-ISA core is the best
way to prove energy efficiency benefits, designing an actual
new processor is extremely challenging. Thus, we use Mc-
PAT [18] to estimate power consumption. To quantify the
benefits of reduced-ISA cores, we first present implementa-
tion details of cells and clock distribution networks.

Cells, either standard or customized, have diverse char-
acteristics depending on the design goal. For less power-
hungry processors, high or standard threshold voltage (HVt
or SVt) cells can deliver relatively less leaky logic and small
area at the expense of higher gate delay. By contrast, low
threshold voltage (LVt) cells have relatively faster gates, but
require higher leakage power and larger area. Thus, a simple
way to achieve both performance and low-power consump-
tion is to implement logic with HVt and SVt cells and later
optimize only the timing-critical paths with LVt cells [12].
Unfortunately, LVt cells not only have higher area and power
themselves, but also have a negative compounding effect on
pre-existing cells. The replaced cells aggravate wire delays
since the area expansion of cells in congested areas increases
the distance to other cells. Subsequently, with a larger de-
sign, disproportionately more LVt cells are needed to com-
pensate for the increased delay, causing significant increases
in power during the final stages of physical design.

Clock networks are another source of dynamic power con-
sumption. Since synchronous logic requires a common clock
source across the whole design, clock trees must be designed
with special care. With larger logic, additional buffers are
needed to adjust the jitter for stability and maximum per-
formance. Due to its toggling nature, the clock distribution
network is a large source of dynamic power consumption.

In summary, additional logic often comes with a large
overhead, requiring additional area, wiring, expensive cell
types and larger clock trees. Conversely, a logic reduction
can help reduce static and dynamic power significantly.

Unfortunately, there are limitations when estimating power
consumption using McPAT. First, it has no notion of im-
plementation details such as cells types. Also, parameter-



Table 1: Estimated rISA logic and area reduction.

Logic Reduction Affected Area

ISA ID RE EX CK ID RE EX

nocond 1% 3% 3% 10% 1 1 0.3
noldm 10% 10% 5% 5% 0.2 0.4 1
nodsp 0% 0% 10%(Integer) 10%(Integer) 1 1 0.5

noneon 40% 50% 10% 10% 0.3 1 1

Clock distribution network area: 0.2

LVt cells: 0.1(pes)/0.3(normal)/0.5(opt) of total cells with 10% reduction.

Synergistic combined LVt reduction: 0.02(pes)/0.05(normal)/0.1(opt) of total cells
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Figure 8: Power estimation of reduced ISA (SPEC CPU2006
INT).

ized models abstract away physical information and effects
of logic reductions after actual place and route is done. We
estimate such effects by adjusting numbers under certain
assumptions about physical and implementation details.

In general, we consider logic, wire and clock reduction
effects as well as subsequent replacement of LVt cells for
power modeling (Table 1). We use estimates of the affected
area and corresponding logic reductions to obtain power re-
duction factors by which we scale static and dynamic power
estimates from McPAT for instruction decoding (ID), re-
name/dispatch (RE), and execution (EX) blocks. In addi-
tion, we apply estimated power reductions in the clock distri-
bution network (CK) of each block using clock tree area and
logic estimates. Finally, we consider savings due to wiring
and LVt cell reductions, where we account for additional
synergistic savings when all rISA variants are combined.

As accurately quantifying power consumption is challeng-
ing, we give a range of power estimates: opt (optimistic)
indicates that the effect of the logic reduction is assumed to
be relatively large while pes (pessimistic) means the oppo-
site (Table 1 and Figure 8). The runtime power reduction
for removing most instruction types is about 2% each, ex-
cept for NEON instructions, which show about 9% improve-
ment. Due to the orthogonality of removed instructions, we
assume that the logic related to each instruction type is in-
dependent, and, thus, that power reductions are additive.
Our rISA core shows about 15% power reduction compared
to the full-ISA one.

6. EXPERIMENTS AND RESULTS

6.1 Performance
To observe the performance degradation based on the

core switching scenario, we evaluate SPEC CPU2006 inte-
ger benchmarks using QEMU [9] while collecting a trace of
all NEON instructions. We focus on NEON instructions
as other removed instructions have little impact on perfor-
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Figure 10: Core residency of SPEC CPU2006 bzip2.

mance as previously shown. We simulate core switching us-
ing the previously shown scheduling algorithm that accounts
for the number of NEON instruction in each scheduling pe-
riod. Since switching is not free, each core switching incurs
a fixed instruction overhead. Furthermore, since emulating
NEON instructions leads to additional instructions, every
time a NEON instruction is executed, an associated instruc-
tion penalty is added to the total instruction counts.

Table 2 shows the detailed parameters used for our evalu-
ation. For optimal scheduling decisions (Algorithm 1), two
parameters are important. First, the neon threshold de-
termines the appropriate core for the next scheduling pe-
riod. To evaluate how it affects energy and performance, we
vary the NEON threshold throughout our experiments. By
contrast, we observed negligible performance differences as
we change the switch threshold. Thus, we fix its value to
one. Core switching overhead is estimated from ARM’s big-
LITTLE scenario, where we account for the amount of task
state to be migrated. We observed negligible performance
differences under varying switching overheads.

Reducing the emulation penalty is crucial for removing
instructions. Ideally, it is desirable for an application to en-
tirely run on the reduced-ISA core. However, we find that
the penalty to emulate NEON instructions is critical to per-
formance (Figure 9). We estimate the NEON instruction
penalty in increments of 20 instructions corresponding to the
maximum 20x performance degradation of FP benchmarks
in Section 4. An increase in the penalty per NEON instruc-
tion from 20 to 80 directly affects overall performance.

Figure 10 details the fraction of scheduling periods bzip2
is running on each core and the corresponding number of
core switches. The higher the NEON threshold for schedul-
ing, the longer the application can run on the reduced-ISA
core. This, however, results in more NEON instructions
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Figure 11: Performance evaluation and energy estimation.

Table 2: Scheduling Parameters

Parameters Value
Scheduling Unit 1,000,000 instructions
Switch Threshold 1

NEON Instruction Overhead 20/40/80 instructions
Core Switching Overhead 3K instructions

requiring emulation, and, thus, an increase in instruction
counts. However, the increase is relatively small. In addi-
tion, the number of core switches is low. As such the switch-
ing overhead is not crucial for overall performance, and a
large switching overhead does not result in significant per-
formance degradation. In other words, lowering the penalty
allows more NEON instructions to run on the reduced-ISA
core. The performance evaluation of other workloads is dis-
cussed in Section 6.2.

6.2 Energy Estimation
Based on results from Sections 6.1 and 5.3, we estimate

the energy efficiency of our heterogeneous system. The esti-
mated average power of each benchmark is multiplied by the
total number of instructions and the square of total instruc-
tions to compute energy and energy delay product (EDP),
respectively, assuming a constant CPI per benchmark. Fur-
thermore, the computed energy is normalized to the energy
and EDP for the full-ISA core in order to observe how much
energy savings our system can achieve. These experiments
are conducted with a 20-instruction NEON penalty and a
core switching overhead of 3000 instructions.

Figure 11(a) shows the estimated performance and energy
for SPEC CPU2006 benchmarks. Among the integer bench-
marks, we exclude omnetpp and sjeng ; given their high por-
tion of NEON instructions, it is evident that they will run
mostly on the full-ISA core. Since dynamic scheduling de-
termines which core to run on next, other applications show
diverse scheduling behavior. hmmer runs on the full-ISA
core most of the time due to having more NEON instruc-
tions than the threshold for each period, resulting in no per-
formance degradation with no energy benefit.

At the opposite end of the spectrum, mcf, astar, and
libquantum run most of the time on the reduced-ISA core
with negligible performance degradation, but significant en-
ergy benefits. Interestingly, bzip2 and gcc show unbiased be-
havior. In these workloads, due to the broad range of NEON
instructions that vary between 500 and 5000 per period, our
scheduling algorithm switches cores frequently depending on
the NEON threshold. This aggravates the performance loss
with higher NEON penalties and thresholds, thus reducing
energy efficiency.

6.3 Compiler Optimizations
To optimize energy efficiency, it is better to run appli-

cations on the reduced-ISA core as much as possible with-
out losing any performance. This suggests that reducing
the amount of NEON instructions is beneficial not only to
maximize residency of workloads on reduced-ISA cores, but
also to reduce performance degradation. Thus, we further
limit the generation of NEON instructions by modifying the
LLVM back-end. Since we observe that vector load/store in-
structions are frequently used in instruction optimizations,
blocking such optimizations leads to less NEON instructions.
We measure the performance of the two binaries on full-ISA
cores on the real board and confirm that performance dif-
ferences of blocking such optimizations are negligible.

Figure 11(b) shows the performance and estimated en-
ergy of the modified binaries. The amount of time bzip2
and gcc run on the full-ISA core is reduced to zero. This
leads to a total energy efficiency equivalent to running solely
on the reduced-ISA core. hmmer still incorporates quite a
few NEON instructions, causing it to stay on the full ISA
core. Experimental results show that energy savings of up
to 15% are achieved for benchmarks that have negligible
NEON instructions. On average, about 12% energy sav-
ings are achieved across all evaluated benchmarks. Interest-
ingly, with the manipulation of the compiler, core switches
are completely avoided, further increasing energy efficiency.
This suggests that if a system has control over the compiler,
as is the case in Android Dalvik or ART, it is possible to



prefer and only use the limited set of instructions available
on the energy-efficient reduced-ISA core.

7. RELATED WORK
Kumar et al. first suggested the possibility of increas-

ing energy efficiency by proposing a single-ISA heteroge-
neous system [16]. ARM’s big.LITTLE architecture [3] sub-
sequently implemented this approach for mobile systems.
All of these approaches, however, only focused on the high-
performance components in the microarchitecture.

Recently, several notable approaches investigated hetero-
geneous ISA architectures. Blem et al. revisited the de-
bate about RISC versus CISC, comparing x86 and ARM
ISAs [13]. Their research quantifies each ISA and argues
that there is not much difference between x86 and ARM
ISAs. DeVuyst et al. [14] and Venkat et al. [23] proposed
a way of harnessing heterogeneous ISAs. However, their
research only focused on the diversities of each ISA and ar-
gued the benefits when finding the right ISA depending on
the workloads. Several prior works [19, 11] investigated OS
and software support for task migration between cores with
overlapping ISAs. However, their work does not discuss de-
tailed trade-offs in designing actual architectures for such
heterogeneous-ISA systems.

The fundamental idea of having a reduced instruction
set is the motivation for RISC processors starting from the
1980’s [20]. Simplifying the instruction set in order to obtain
the benefit of simplified hardware is the key point. However,
it only focuses on single processor architectures.

The ARM ISA inherently possesses heterogeneity in its de-
sign [4]. Thumb and ARM ISAs in 16-bit and 32-bit form,
respectively, allow for optimal instruction placement target-
ing either size or performance. This feature is beneficial for
the instruction memory footprint both in volatile and non-
volatile form. However, it may increase logic requirements
since the processor has to handle multiple ISAs even though
its internal semantics are similar.

8. CONCLUSIONS
Reducing the instruction set opens up a chance to run

high-performance tasks with better efficiency than current
systems can provide. By providing heterogeneity in sup-
ported instructions and their logic, the energy efficiency of
performance-oriented processors can be improved. In this
paper, we demonstrated this potential with a case study
of a reduced-ISA core and a heterogeneous system that in-
cludes both full- and reduced-ISA cores. Our results show
that certain complex instructions can be removed with little
performance overhead. We argue that in a heterogeneous
system that effectively migrates applications to match ISA
requirements, significant benefits in energy efficiency can be
obtained. By providing heterogeneity in functionality rather
than performance as in traditional systems, we can improve
energy efficiency with virtually no performance degradation.
Results show that our proposed system can improve energy
by up to 15% and by 12% on average, all with little to no
performance overhead.
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