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Abstract

In a chip design project, early design planning has a strong impact on the schedule 

and the cost of design. Power estimation is part of early design planning, and it greatly 

affects design decisions. Power modeling performed at a high level of abstraction is 

fast but inaccurate due to lack of circuit switching activity information. By contrast, 

power modeling performed at a low level of abstraction is more accurate as the 

synthesized circuit synthesis is known, but this simulation is typically slow. This 

report explores a power modeling approach performed at register transfer level (RTL). It 

exploits machine learning models in order to have a fast yet relatively accurate 

cycle-by-cycle power estimation. The approach is data-dependent, where cycle-

specific models are trained based on the switching activity of signals obtained from 

RTL simulation and cycle-by-cycle power values obtained from a reference gate-level 

simulation of an existing RTL design. Therefore, if any changes are applied to the RTL 

design, re-training of models is required. The approach aims at obtaining fast yet 

accurate power predictions for new invocations of a given trained model using signal 

activity information collected during simulation of the unmodified RTL. At a low 

level, the complete visibility of signals in a design unintuitively might cause 

overtraining the model leading to inaccurate estimation. 

The suggested model employs automatic feature selection in each cycle. Based on the 
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invocations used to train the cycle-by-cycle models, only signals that may switch during a 

given cycle will be selected as the features for their respective cycle-specific model. The 

method was tested on an 8-by-8 DCT design and the power estimates were within 6.5% 

of those from a commercial power analysis tool. This report also simulates and compares 

the approach of cycle-specific models to the approach of a single global model for all 

cycles and show that the cycle-specific approach is twice as accurate. 
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Chapter 1: Introduction 

Power consumption in intellectual property (IP) designs is a crucial limiting factor 

for both performance and chip density. Even though transistor scaling intensified the 

significance of static power consumption, dynamic power consumption still accounts for 

a significant portion of the power consumed in a chip. Moreover, with compact and 

portable designs, cooling mechanisms are quite difficult to embed, which leads to another 

problem posed by power consumption. At the same time, design complexity is growing 

continuously; directly translating into growth of design cost which makes design time of 

an essence. Given all these factors, early design planning (EDP) is becoming more and 

more important, but in an ideal design environment it is required to be completed rapidly. 

Early power estimation is a major part of EDP and could be done at different levels of 

abstraction.  

Depending on several factors, power modeling is performed at a functional model 

level, register-transfer level (RTL) or gate level. Mainly, there is a trade-off between 

speed of simulation and accuracy of estimation among these approaches. To obtain fast 

power estimates at a high level of abstraction, like a C/C++ functional model, several 

approaches have been proposed [1], [4], [8]. These approaches rely on coarse-grain state-

based methods yielding inaccurate yet fast power estimation. To obtain more accurate 

estimation, fine-grain slow simulations that capture the switching activity are performed 

either at the intermediate representation level [2], [9], [10], [11] or the RTL/gate level [3], 

[12], [13]. Research is always being conducted on how to improve this trade-off by 

employing a fast yet accurate power modeling approaches for early analysis of designs. 

This report investigates the effectiveness of a learning-based cycle-by-cycle power 

modeling approach performed at the RTL level. Dynamic power consumption is data-
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dependent as it is directly related to the switching activity of signals in a design. For that 

reason, switching activity of signals is important to estimate the power. This approach 

utilizes switching information available at the RTL level, for accurate power estimation. 

Cycle-specific models of a design are trained based on switching activity coming from 

RTL simulation and cycle-by-cycle power consumption values obtained from gate-level 

simulation. This makes the models specific to the RTL design on which training was 

applied and thus the approach is used to improve speed of estimation by performing 

accurate data-dependent power predictions. During prediction, for a given set of new 

inputs, RTL simulation is performed, and the switching activity of the signals is used by 

the trained models to predict the power.  

The main challenge in any learning-based approach is feature selection. In 

previous works as in [3] and [12], feature selection is either done manually or by trial-

and-error. In the new approach, relevant features are identified automatically during 

training. The effect of the size of the training set on the accuracy of the estimations is 

investigated for a given benchmark. Moreover, it is shown that having cycle-specific 

power models is better in terms of accuracy than a global model used across cycles.  

The remaining of the report is structured as follows: Chapter 2 includes an 

overview of previous work, Chapter 3 presents the design methodology, Chapter 4 shows 

experimental results, Chapter 5 lists a summary of possible future work and Chapter 6 

concludes the report with a recap. 
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Chapter 2: Previous Work 

Power modeling at a high level of abstraction has been extensively researched as 

it is the fastest approach to arrive at power estimates but is coarse-grain. As design 

complexity grows, it is not always feasible to simulate the entire design at the RTL level 

to obtain power properties. Typically, at high levels of abstraction, a power state machine 

approach is used for estimation, yielding inaccurate results. Thus, research mainly focus 

on extending the power state machine model to account for data dependency while 

keeping the model efficient. Lorenz et al. [1], is one example where they used Hamming 

distances of inputs and internal pipeline stage registers - in case of a pipelined design - to 

take into account the switching activity and consequently improve previous power state 

machine models. These approaches as well as others that are performed at a high level of 

abstraction attempt to lessen the limitation of internal information about switching 

activity being not entirely visible, by integrating novel methods while trying to keep the 

simulation rapid. 

One approach is to divide the design into separate components and simulating 

them independently is not enough as the interaction among these components is 

necessary for the power analysis [2]. Reference [2] presented an approach for estimating 

power consumption of hardware and software components of a multi-processor system-

on-chip through back-annotation of the power properties from the low-level to the 

functional model source code. Indirect back-annotation was performed by combining 

three separate approaches that dealt with software, custom hardware and black-box IP.  

At lower levels of abstraction, speed of simulation becomes the bottleneck. For 

that, several researches have proposed new methodologies that speed-up the simulation 

while maintaining the accuracy within an error range. In library-based approaches [9], 



 4 

[10], [11], estimation is based on pre-characterized component models. The limitation of 

such approach is that it does not capture the glue logic that represents interaction among 

the components and can have a great effect on power consumption. Learning-based 

approaches were proposed in [3], [12] and [13]. These approaches derive a regression-

based model of the design or macro-block, which is not necessarily accurate for complex 

architectures. FPGA-accelerated simulation [3], shows to increase speed in orders of 

magnitude while sacrificing accuracy slightly. 

Lee et al. presented in papers [5], [6], [7], a complete learning-based power 

modeling framework for system-level C/C++ hardware IPs, used for power estimation at 

three different levels of granularity: invocation-, basic block-, and cycle- level. At a 

coarse granularity, existing high-level synthesis flows were extended with automated 

back-annotation that allows for data-dependent cycle-accurate power estimations. 

Machine learning techniques were leveraged to increase accuracy of estimation and 

reduce complexities. Reference [6] targets black-box IPs where RTL models are not 

available and thus fine-grain power estimation is not possible. Although the work is 

presented at different levels of granularity, they all share the property of being data-

dependent and learning-based which enables fast fine-grain estimations. At the same 

time, the work targets power modeling at a high C/C++ level of abstraction. The 

approach presented in this report adopts the latter approach by leveraging state-of-art 

machine learning techniques to generate data-dependent cycle-by-cycle trained power 

models for a given RTL design for faster power predictions for new invocations. 
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Chapter 3: Design Methodology 

This chapter presents the design flow for the proposed power model approach 

shown in Figure 1. The design flow is separated into two distinctive parts: the training 

flow generates the cycle-by-cycle models for a given design and the prediction flow then 

uses the generated models to predict power estimates on new invocations.  

 

 

Figure 1: Proposed Power Modeling Flow.  

Dynamic power is dependent on the switching activity of signals in a given 

design, so Hamming distances of signals were utilized to train the machine learning 

models. As this approach is data-dependent, the training relies on a collection of 

invocations with different data inputs. During the training flow of a certain design, a 

value change dump (VCD) file is generated for a given number of invocations and then 

used to efficiently compute Hamming distances only for signals that changed in a given 

cycle. The VCD file is parsed and Hamming distances of signals are computed on a cycle 

basis. The same cycle in different invocations of the design, might have different signals 

that are switching; thus, for each cycle, the union of signals that had switching activity in 

this cycle across all invocations are considered as the potential signals that contribute to 
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dynamic power for that cycle. In the training step, a set of the simulated invocations is 

chosen to train the cycle-by-cycle model and the remaining invocations are used for 

cross-validation of the models. 

After well-trained cycle-by-cycle models have been generated for the given 

benchmark, the following prediction flow is followed to get cycle-accurate power 

estimates. A VCD file generated from simulation of RTL with the input data given by the 

invocations to be predicted is fed into the prediction framework, which outputs average 

cycle-by-cycle power estimates. Internally, the framework takes in the VCD file, extracts 

the Hamming distances of relevant signals for each cycle and these values are used by the 

trained models to generate the cycle-accurate power estimates. 

3.1 HAMMING DISTANCE COMPUTATIONS 

This section goes into further details of how the required pre-processing of data, 

to be used for both training the power models and prediction, is implemented. An RTL 

simulation of a design entails applying input vectors to the input ports and obtaining the 

output vectors from the output ports. Simply put, a design usually consists of a set of 

registers to store values and combinational logic. Consider that a testbench used to 

simulate the RTL consists of N invocations that drive the inputs of the design where each 

invocation completes in C clock cycles. In the testbench of the RTL simulation, the 

output signals of all the registers available in the design are dumped into a VCD file. The 

VCD file includes all switching activity of signals timestamped relative to the timescale 

provided in the testbench. The switching activity reported in the file is provided as new 

bit-vector values of only the signals that changed during a certain timestamp. A sample 

VCD file format is shown in Figure 2. 
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Figure 2: Sample VCD file annotated.   

The VCD file is then parsed. To efficiently find Hamming distances of signals 

from the VCD file, the skeleton of an open-source VCD parser Python script, was used 

and modified in order to incorporate computing the Hamming distances of signals and 

writing them into an output file while parsing the VCD file. 

To start with, a few terminologies are defined and will be used throughout this 

chapter. Let R represent the set of all 𝒓𝒊 in the RTL, where 𝒓𝒊 is the output bit-vector of 

register i in the design, as in Figure 3. Let 𝒓𝒊,𝒄 be the value of bit-vector 𝒓𝒊 in cycle c. The 

Hamming distance of 𝒓𝒊 in cycle c, 𝐻𝐷(𝒓𝒊,𝒄), is computed by finding the number of bit 

differences between 𝒓𝒊,𝒄−𝟏 and 𝒓𝒊,𝒄. In Figure 2, assuming that registers A and B did not 

change between timestamps 259ps and 399ps, the Hamming distance for timestamp 

399ps of registers A and B is 2 and 29, respectively. The pseudo-code of the parse, 

compute and store script is provided in Figure 4.  
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Figure 3: Illustration of an RTL design showing respective 𝒓𝒊.  

 

Figure 4: Pseudo-code of part of the VCD parser. 

Now that the Hamming distances of signals have been obtained with their 

corresponding timestamps, the output file containing all this information is given to a 

MATLAB script that applies some processing steps for feature selection before training 

the cycle-specific models, as presented in the next subsection.  
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3.2 PROCESSING DATA FOR FEATURE SELECTION AND MODEL TRAINING 

The file generated during the pre-processing step is imported into MATLAB to 

further process the data for feature selection. The data is split into blocks of C cycles 

where each block corresponds to an invocation n from the testbench since as mentioned 

earlier, each invocation n of the N total invocations equally consists of C cycles. This 

means that it is necessary to train C unique power models 𝑃𝑐. Each of these models would 

have different features based on which signals had Hamming distances during cycle c. As 

an RTL design behavior is generally data-dependent, it is possible to have different set of 

signals with non-zero Hamming distances for the same cycle across different invocations. 

Therefore, to obtain the set of features for cycle c, the following was applied. Let 𝑉𝑐 be 

the set of signals corresponding to the power model 𝑃𝑐. Then,  

𝒓𝒊 ∈ 𝑉𝑐  ⟺ ∃𝑛 𝑠. 𝑡. 𝐻𝐷(𝒓𝒊,𝒄) ≠ 0 

Now that the features have been selected for each cycle-specific model Pc, these models 

can be trained by learning a function 𝐹𝑐 for each cycle c. The values of the features that 

are used as inputs to learn the function 𝐹𝑐, are the Hamming distances of the elements of 

the set 𝑉𝑐, i.e. 𝐻𝐷(𝒓𝒊,𝒄) where 𝒓𝒊 ∈ 𝑉𝑐. If for a given invocation n and cycle c, there exists 

an 𝒓𝒊 ∈ 𝑉𝑐 with no Hamming distance for that specific invocation n, then the value of that 

feature is considered to be zero. The general formulation of the obtained power models 

can be written as follows: 

𝑃𝑐 ≡ 𝐹𝑐(𝐻𝐷(𝒓𝒊,𝒄) ∀𝒓𝒊 ∈ 𝑉𝑐) 

In MATLAB, 𝑉𝑐 ∀𝑐 across all N invocations is obtained and an 𝑛 × ‖𝑉𝑐‖ + 1 table is 

formed for each cycle c. These tables contain n rows corresponding to the different 

invocations and the columns contain the 𝐻𝐷(𝒓𝒊,𝒄) where 𝒓𝒊 ∈ 𝑉𝑐; with the last column 

containing power values obtained from gate-level simulation. Each of the tables are then 

used independently to train the model for the corresponding cycle by fitting the data 
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using a regression-based machine learning model; with predictor values being the first 

‖𝑉𝑐‖ columns and the response values being the last column. At this point, C cycle-

specific trained regression models, 𝑃𝑐, would have been synthesized based on a training 

set of size N invocations. As evident by the power modeling synthesis flow, the 

framework is fairly straight forward and could be easily modified to leverage any 

machine learning model. 

3.3 POWER PREDICTION USING TRAINED MODELS 

Although the prediction scheme is very similar to the training scheme, they are 

treated as separate entities as the actual performance metrics, i.e. speed and accuracy, are 

measured based on the prediction scheme performance. When the training phase is 

completed, and the cycle-by-cycle power models are available, they can be used to 

predict cycle-accurate power consumption for the same RTL design but new invocations. 

This approach aims at replacing the need for commercial power simulation tools that 

perform power estimation at the RTL or the gate-level when no changes have been 

applied to the RTL and a number of predictions needs to be done. To start with, the RTL 

design needs to be simulated with a testbench that provides the input data for which 

power prediction is required. This simulation produces the VCD file which is then passed 

through the VCD parser to compute the Hamming distances. Now that the feature 

selection process has been completed during the training phase based on the training 

invocations, only the relevant signals for each cycle are selected and other signals are 

disregarded. In other words, let 𝑇𝑐 be the set of features selected during cycle c, then: 

𝒓𝒊 ∈ 𝑇𝑐  ⟺ 𝒓𝒊 ∈ 𝑉𝑐  

The Hamming distances of these features are the inputs to the trained model 𝑃𝑐 where: 

𝐻𝐷(𝒓𝒊,𝒄) = {
𝐻𝐷(𝒓𝒊,𝒄), 𝒓𝒊 ∈ 𝑇𝑐

0, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
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Finally, cycle-accurate predictions of power 𝑃(𝑐) in cycle c for each invocation are 

obtained from the cycle-specific trained models 𝑃𝑐 as: 

𝑃(𝑐) = 𝑃𝑐 ((𝐻𝐷(𝒓𝒊,𝒄) ∀𝒓𝒊 ∈ 𝑉𝑐)) 

The next chapter presents results attained from applying this approach on a given 

benchmark. 
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Chapter 4: Results 

This chapter of the report, presents the results of applying the approach on a given 

RTL design. The design is an 8-by-8 Discrete Cosine Transform (DCT) composed of a 

state machine with 7 states and 14 registers of different bit lengths. The design was 

simulated in Mentor Graphics ModelSim, to generate the VCD file, with an input image 

of total size 256x256 pixels and thus 1024 8x8 blocks. This means that the total number 

of independent invocations was 1024, where each invocation took 1155 clock cycles to 

complete. The 1024 invocations were divided into a training set and a test set. The VCD 

parser was implemented as a Python script that reads in the VCD file and outputs a file 

that contains Hamming distances of signals, the corresponding cycle number and signal 

name. MATLAB was then used to process the data, by reading the file outputted by 

Python, and selecting appropriate features for each cycle. Decision Tree and Gaussian 

Support Vector Machine (SVM) regressors were the two different machine learning 

regression-models used to model the cycle-by-cycle power behavior of the circuit. 

Figures 5 and 6 show two samples of a trained regression decision tree model for two 

different cycles, where based on the given training data, signals 1, 6, 7 and signals 1, 2, 7 

are the selected features, respectively.  

The RTL was synthesized into gate-level netlist using Synopsys Design Compiler. 

The reference power values were obtained by simulating the gate-level netlist in 

Synopsys PrimeTime PX. To assess accuracy, the average relative error of predictions for 

the test set across all the cycle-by-cycle models was computed as follows: 

∑ (
∑ (

|𝐸𝑥𝑝𝑒𝑐𝑡𝑒𝑑 𝑃𝑜𝑤𝑒𝑟 − 𝑃𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑 𝑃𝑜𝑤𝑒𝑟|
𝐸𝑥𝑝𝑒𝑐𝑡𝑒𝑑 𝑃𝑜𝑤𝑒𝑟

)𝑁
𝑖=1

𝑁 )𝐶
𝑗=1  

𝐶
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Where N is the number of invocations and C is the number of cycles per invocation. The 

inner sum of the numerator term is the sum of the absolute relative errors of predictions 

across all test invocations for a given cycle-specific model. Then the average relative 

error of predictions is computed by taking the mean of the average absolute relative 

errors of predictions for each cycle-specific model.  

 

 

Figure 5: A trained decision tree regression model with three features (signal_1, 

signal_6 and signal_7). 
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Figure 6: A trained decision tree regression model with three features (signal_1, 

signal_2 and signal_7). 

4.1 POWER PREDICTION COMPARED TO EXPECTED POWER CONSUMPTION 

Figures 7 and 8 show the cycle-by-cycle average predicted power and the cycle-

by-cycle average measured power for a specific window of cycles. The predicted power 

values were generated based on a cycle-by-cycle gaussian SVM with training set size 

being around 25% of the total number of invocations used for training and testing. The 

choice of the window of cycles shown in the figures was in a way to show a case where 

prediction was perfectly aligned with the measured values (Figure 7) and a case where 

there was an error of prediction (Figure 8). 
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Figure 7: Window of cycles that show accurate predictions. 

 

Figure 8: Window of cycles that show inaccurate predictions. 
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4.2 COMPARISON OF DIFFERENT MACHINE LEARNING MODELS 

Figure 9, shows the cycle-by-cycle error of prediction for both the gaussian SVM 

and the decision tree models for all cycles. The gaussian SVM model was more accurate 

than the decision tree model, which can be seen as a general trend across cycles. Figure 

10, zooms-in into a range of cycles where the gaussian SVM model is evidently more 

accurate than the decision tree model. Figure 11, shows a range of cycles where both 

models behave equally inaccurately with relative percentage error going as high as 

22.5%. Possible reasons that could be behind this behavior are discussed in the future 

work chapter. 

 

 

Figure 9: Cycle-by-cycle relative error of prediction for both decision tree and 

gaussian SVM models. 
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Figure 10: A window of cycles that shows cycle-by-cycle relative error of prediction 

for both decision tree and gaussian SVM models and illustrates gaussian 

SVM model being better. 
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Figure 11: A window of cycles that shows cycle-by-cycle relative error of prediction 

for both decision tree and gaussian SVM models and illustrates the case 

where both models were inaccurate. 

4.3 EFFECT OF TRAINING SET SIZE ON DIFFERENT MACHINE LEARNING MODELS 

To test the effect of the training set size on the accuracy of the models, the 

average relative error of predictions was plotted against the size of the training set as 

shown in Figure 12. As expected, the accuracy increased as the size of the training set 

increased for both regression models. However, again, it is evident that the gaussian 

SVM was more accurate than the decision tree, but the simulation of the decision tree 

model approach was slightly faster as the size of the training invocations increased. Due 

to limitation in the total number of invocations available for training and testing, the 

training set size was not increased further although the simulated sizes are not considered 
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enough for obtaining a well-trained machine learning model. It is expected that with a 

much larger training set size even more accurate predictions could be obtained. 

 

 

Figure 12: The effect of the training set size on the average relative error of prediction 

for different machine learning models. 

4.4 COMPARISON OF CYCLE-SPECIFIC MODELS AND GLOBAL MODEL APPROACHES 

Normally, for a certain invocation, the cycle-by-cycle behavior of the RTL 

circuitry is different due to variety of signals switching during these cycles. For that 

reason, the design framework involves training independent cycle-by-cycle models with 

different features. The intuition behind this is that having one global model for all cycles 

is not going to be as accurate and effective; since considering the entire set of signals in 

the design as the features for the model would cause irrelevant features being selected for 

the power model, known as overfitting. This hypothesis is illustrated in Table 1, where an 

approach was simulated with cycle-by-cycle decision tree models versus an approach 
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with a single global decision tree model and measured the average relative error of 

predictions across different sizes of training sets. To start with, the accuracy of the cycle-

by-cycle models approach is always almost twice that of the global model approach. 

Moreover, with increasing the size of the training set the accuracy of the cycle-by-cycle 

models approach improves significantly as opposed to the global decision tree model 

which seems to saturate at the same value of accuracy. 

 

Size of Training 

Invocations  

(as % of constant 

# of total 

invocations) 

Average Relative Error of Predictions 

(%) 

Cycle-by-Cycle 

Decision Tree 

Models 

Single Global 

Decision Tree 

Model 

5 9.1147 13.6759 

7 8.3678 13.5838 

10 7.894 13.3625 

15 7.5225 13.3306 

20 7.3919 13.1893 

25 7.3052 13.1647 

30 7.1927 13.0799 

40 7.0047 12.9943 

Table 1: Comparison of average relative error of predictions between a cycle-by-

cycle decision tree models approach and a single global decision tree model 

approach with varying size of training invocations. 

4.5 RUN-TIME ANALYSIS 

The approach presented in this report, aims at improving the speed of power 

predictions performed using a trained model for a given unmodified RTL, when 

compared to commercial gate-level power simulation tools. This subsection presents the 

time overhead of training the models and a comparison between the simulation speed of 
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the generated models and that of the gate-level. Table 2 illustrates the run-time values 

recorded for different steps of the design flow, that are specific to the 8-by-8 DCT design 

with training and testing sets consisting of 250 and 774 invocations, respectively. For 

both the PTPX gate-level and RTL simulations, all the 1024 invocations were simulated, 

where the cycle-by-cycle power values and the VCD file were obtained, respectively. The 

VCD file parsing step includes reading the generated VCD file, computing the signals’ 

Hamming distances and writing the results to an output file. As for the feature selection 

step, the run-time reported includes the total time taken to perform appropriate feature 

selection, for each of the 1155 cycle-specific models that need to be trained, by 

considering the invocations from the training set. Similarly, the training step run-time 

includes the total time taken to train 1155 cycle-specific models with the given training 

set. Lastly, the prediction step run-time is the time taken to predict cycle-accurate power 

for the entire testing set, by simulating the trained cycle-specific models. In Table 2, the 

training and testing steps are analyzed for both the decision tree model (DT) and the 

gaussian SVM (GSVM) model. The run-time for both the training and prediction steps, is 

twice for the GSVM models when compared to the decision tree models. 
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Design Step 
Run-time 

(s) 

PTPX simulation 2920 

RTL simulation 58 

VCD file parsing 172 

Feature selection 384 

Training the cycle-specific 

models 

DT 12 

GSVM 23 

Cycle-accurate power 

predictions using the 

trained models 

DT 4 

GSVM 7 

Table 2: Total run-time values recorded for different steps of the design flow, that are 

specific to the 8-by-8 DCT design with a training set size of 250 invocations 

and testing set size of 774 invocations. 

Table 3 shows the speed of simulation of the proposed approach, under two 

different models, and the speed of gate-level simulation.  

 

Speed 

(Kcycles/second) 

RTL 

simulation 

VCD 

Parser 
DT GSVM Total DT 

Total 

GSVM 
Gate-level 

21 7 224 128 5.13 5.04 0.405 

Table 3: Speed of simulation of the trained models and gate-level power analysis. 
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The prediction flow involves RTL simulation, then parsing the generated VCD file, 

followed by the simulation of the trained models. Each of the first two steps, run at the 

speed of 21K and 7Kcycles/second, respectively. The speed of the last step in the 

prediction flow depends on the type of the regressor used to train the models, where the 

speed of prediction for the DT and GSVM cycle models is 224K and 128Kcycles/second, 

respectively.  

Given the speed of the individual steps of the prediction flow, the total speed of 

the prediction flow, for each of the trained DT and GSVM cycle models, was calculated. 

Although the speed of simulating the DT trained model is almost twice that of GSVM, 

this step is not the bottleneck of the flow thus, both models’ performance is 

approximately the same. The total prediction speed of both models is around 12x faster 

than the gate-level simulation. This shows the significant improvement in speed of 

simulation with the proposed approach. It is worth mentioning that while the performance 

of the RTL simulation step is limited by the commercial tools used, the performance of 

parsing the VCD file is probably improvable.  

The training flow involves the steps of gate-level simulation, RTL simulation, 

VCD parsing, feature selection and training the models. The gate-level simulation and the 

feature selection steps are the major overhead with them running at a speed of 405 and 

750 cycles/second, respectively. Although the total overhead of the training flow is 

significant, it is incurred once for a given unmodified RTL design. The proposed 

approach aims at achieving fast data-dependent predictions for new invocations based on 

a given trained model.  
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Chapter 5: Future Work 

This chapter aims at providing an insight into the various improvements and 

modifications that could be applied to the proposed approach. It is clear from the results 

section that more testing needs to be done both by increasing the number of the 

invocations and by applying the approach to different benchmarks. Moreover, based off 

the preliminary results it seemed that for some cycle-specific models, the Hamming 

distances of signals across different invocations is not correlated with the power 

consumption. Raw signal data might need to be additionally employed as part of the 

features. One reason is that for control registers, the value of the register is what 

determines the behavior of the controlled logic thus, for the same Hamming distance, a 

completely different switching activity of the controlled logic is possible. 

The results chapter presented a comparison of different machine learning models 

applied to the DCT benchmark. However, this might not always hold true for any 

benchmark. Therefore, by slightly increasing the training phase time, the flexibility of 

choosing the better model for the given benchmark could be implemented. One way of 

implementing that during the training phase is by running k-fold cross-validation [14] and 

choosing the model yielding a better accuracy for the given RTL. Moreover, the 

performance of the VCD parsing step, which is used during both the training and 

prediction flows, is a bottleneck in the latter and could probably be improved. One way 

of doing so is by integrating the VCD parser into the MATLAB framework, where the 

training and simulating of the models is performed, instead of performing this step in 

Python and transferring the data over to MATLAB. 

Lastly, the results were compared against the commercial PTPX tool provided by 

Synopsys. Ultimately, the approach is targeting designs that will run on an FPGA and 
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thus real average power measurements need to be collected by emulating the design on an 

FPGA and these measurements will be used as the true reference for the accuracy metric.  
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Chapter 6: Summary and Conclusions 

Early power estimation is critical for early design planning and it shapes design 

choices. This estimation is usually performed at different levels of abstraction, such as 

high-level C/C++ functional models, at the intermediate representation level, or for low-

level RTL designs. A speed versus accuracy trade-off exists between these levels of 

abstraction, where going lower in the levels of abstraction enables the exposure to more 

information at the expense of slower simulations. This report presented an approach that 

leverages machine learning tools to attain cycle-by-cycle power prediction models at the 

RTL level by attempting to improve the speed of simulation. The current initial design 

framework mainly relies on the Hamming distance of signals as it is considered to be the 

switching activity of the circuit, which is directly correlated with the dynamic power 

consumption. As machine learning continues to prove its success, importance and 

efficiency in various applications, and with the vast interesting future work that could be 

investigated, this approach seems to be promising. 
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