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CPUs

Ajay Krishna Ananda Kumar and Andreas Gerstlauer

Department of Electrical & Computer Engineering,

The University of Texas at Austin.

With the end of Dennard scaling, energy efficiency has become an im-

portant metric driving future processor architectures, particularly in the fields

of mobile and embedded devices. To support rapid, power-aware design space

exploration, it is important to accurately quantify the power consumption of

the different micro-architectural components of processors early in the design

flow and at a high level of abstraction. Existing CPU power models rely on

either generic analytical power models or simple regression-based techniques

that suffer from large inaccuracies. Recently proposed machine learning tech-

niques for accurate power modeling still require slow RTL simulations or have

only been demonstrated for fixed-function accelerators at higher levels.

In this report, we present a novel approach that uses machine-learning

to model cycle-accurate power consumption of programmable processors and

their internal structures at a high micro-architectural level. Using only high-

level information that can be obtained from micro-architecture simulations, we

extract representative features and develop low-complexity learning formula-

tions for different micro-architecture components that require a small number

of gate-level simulations for training. We further present a hierarchical power
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model composition methodology to build power models for complete CPUs.

Our composed models provide cycle-accurate and hierarchical power estimates

down to sub-block granularity.

We demonstrate the generality of our approach by modeling a simple in-

order core as well as a complex superscalar out-of-order core. Results show that

our hierarchically composed models for two RISC-V processor cores, RI5CY

core from the PULP platform and Berkeley Out-of-Order Machine (BOOM),

predicts cycle-by-cycle power consumption to within 2.2% and within 2.9%

of a gate-level power estimation on average, respectively. In addition, our

power model for the BOOM core, trained on micro-benchmarks, has an error

rate of less than 3.6% when predicting cycle-by-cycle power consumption of a

real-world application.
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Chapter 1

Introduction

With the breakdown of Dennard scaling, power consumption, especially

that of processors, is a first-order concern in all modern chips. Accurately

quantifying the power consumption through power analysis in early design

stages is crucial for power-aware hardware and processor design.

Accurate power estimation relies on gate-level analysis, which comes at

the cost of long simulation times and availability only in very late phases of the

design flow. At the register-transfer level (RTL), industry tools such as Power-

Artist and PowerPro can provide accurate aggregate power estimates sufficient

to highlight coarse-grain RTL power saving opportunities. Regression-based

approaches [1], [2], [3] support building power models at a finer granularity,

but at the expense of decreased accuracy. More recently, advanced machine

learning (ML) approaches using deep neural networks (DNNs) have demon-

strated the capability for highly accurate RTL power estimation [4]. However,

deep learning requires a large amount of training data to be obtained from

gate-level reference simulations. Furthermore, the need for slow RTL simu-

lations limits the usefulness and extent of design space exploration that is

possible with any RTL power estimation.
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Early design space exploration of CPUs is most commonly performed

at an abstract micro-architecture level. Traditionally, spreadsheet-based or

generic analytical power models [5] are used to provide power estimates at

this level. However, such models have been shown to be highly inaccurate [6].

Regression methods have also been applied instead to model power at higher

instruction and micro-architecture levels [7], [8], but they often similarly suf-

fer from larger inaccuracies due to the challenge of modeling the non-linear

power characteristics of the underlying circuits accurately at such high levels

of abstraction. Advances in machine learning have made it possible to accu-

rately capture such complex relationships. At the same time, training and

inference costs should not negate the speed benefits of working at a higher

abstraction level. This rules out expensive deep learning approaches. Instead,

dedicated learning formulations that can achieve high accuracy with low com-

plexity need to be developed. Such approaches have recently been provided

for fixed-function accelerators [9], but they have not yet been applied to model

programmable processors above RTL.

The goal of this report is to explore using simple machine learning algo-

rithms and functionality dependent feature engineering techniques to develop

low complexity power models of CPUs that can provide highly accurate power

estimates while working at a high-level of abstraction.
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1.1 Report Overview

In this report, we present a methodology to develop machine learning-

based micro-architecture level power models for CPUs that provides accurate

cycle-by-cycle power estimates. Using high-level activity information available

from micro-architecture simulations, we extract features and develop learning

formulations that can capture correlations with minimal training overhead

and complexity. Our models are trained on gate-level simulations of small

instruction sequences. Trained models can then provide highly accurate cycle-

by-cycle power estimates in a hierarchical fashion at the complete core level

and down to different CPU sub-blocks.

1.2 Contributions

The specific contributions of this report are as follows:

• We present a methodology for feature selection and engineering to model

common in-order and out-of-order CPU structures at micro-architectural

level.

• We explore advanced non-linear regressors for power modeling of differ-

ent micro-architectural blocks in CPUs with low training overhead and

high accuracy.

• We propose a hierarchical model composition approach that supports

power modeling down to sub-block granularity while accounting for glue

logic in super-block power modeling.
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• We demonstrate our power modeling approach on RI5CY, an in-order

RISC-V core and BOOM, a superscalar Out-of-Order (OoO) RISC-V

core. We identify key representative features for modeling of common

CPU blocks with high predictability and low complexity. Our hierar-

chically composed power models for RI5CY and BOOM cores have an

average error rate of 2.2% and 2.9% respectively.

1.3 Report Outline

The remainder of this report is organized as follows: Chapter 2 first

highlights related work and Chapter 3 then gives an overview of our power

modeling flow. Chapter 4 provides details of our CPU power modeling ap-

proach. Case studies and results are presented in Chapters 5 and 6. Finally,

Chapter 7 concludes the report and proposes directions of future research.
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Chapter 2

Related Work

In this chapter, we briefly review prior works in the field of power

modeling/analysis. Figure 2.1 categorizes key existing power modeling works

at different level of abstractions and shows their accuracy range with coloring,

where a darker color corresponds to an increase in accuracy. In the following

sections, we will further review and contrast the works in each category.

2.1 Analytical and Library-Based Power Models

Instead of slow SPICE simulations for power analysis, common prac-

tice to get highly accurate power estimates for a design is to use power-

characterized standard cell libraries with commercial tools such as Synopsys

PrimeTime PX [10] by feeding in gate-level netlist and simulation results. Even

though they are very accurate and can provide fine-grain power estimates, the

requirement for a netlist necessitates that such analysis occurs late in the

design process, where slow gate-level simulations hamper micro-architectural

exploration. Tools such as PowerArtist [11] and PowerPro [12] have been de-

veloped to speed-up the process of providing power feedback and can provide

a course grain power estimate at the register transfer level (RTL).
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Figure 2.1: Power modeling/analysis approaches.

However, early design space exploration of CPUs typically happens

at an abstract micro-architecture level. Analytical power models [5], [13],

[14] coupled with micro-architectural software simulators such as gem5 [15]

are generally used during this exploration phase. Tools such as McPAT [5]

analytically model the power at the physical technology level, using phys-

ical parameters of the devices and wires, and then map the sub-blocks to

commonly used circuit structures and underlying physical technology models.

Such approaches are generic, do not map well to one specific processor imple-

mentation. As such, they suffer from large inaccuracies if not carefully tuned

to the evaluated processor [16]. It is possible to calibrate analytical models

against low-level measurements [6], [17], but the parameter fitting will limit

interpretability at the sub-block level.
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2.2 Statistical & Regression-Based Models

Regression-based RTL models [1], [2], [3], [18] propose various ap-

proaches for selecting critical signals and registers strongly correlated with

power and build simple regression models trained from gate-level power anal-

ysis results. These approaches typically deploy simple linear models, which do

not capture the non-linear relationship in complex designs [4] and hence are

limited in accuracy.

Regression-based approaches at the architecture level rely on simulating

an implementation, sampling and fitting generic regression equations for mod-

eling CPU power at the pipeline or instruction level [7]. Methodologies based

on correlating performance counters to power by simple curve fitting is another

common power modeling approach at the architecture level [19], [20]. Other

works [8] combine analytical approaches with regression equations formulated

using pre-characterized power data from existing designs. However, all of

these simple models still suffer from inaccuracies in modeling data-dependent,

cycle-by-cycle power of a processor at fine sub-block granularity.

2.3 Advanced Machine-Learning Based Power Models

Several advanced ML-based approaches for power modeling have re-

cently been explored to capture the non-linear power-feature correlation. PRI-

MAL [4] uses a convolutional neural network (CNN) for modeling RTL power

trained from gate-level simulations using the combined activity of all registers

in a design. Such a CNN-based model is very accurate but requires a large
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amount of training samples and training time compared to simple regression

models. The proposed model also relies on details available only at RTL or

lower levels of abstraction during late design stages, and thus is not ideal for

early design space exploration.

Recent work [9] has shown the possibility of building ML-based power

models at a higher, C++/ SystemC level of abstraction. The work proposes

several feature selection and model decomposition techniques to enable highly

accurate prediction using low-complexity non-linear regressors. However, it

has only been demonstrated for fixed-function accelerator IPs. Our proposed

approach is motivated by [9] and aimed at modeling programmable CPUs by

adopting similar supervised learning based regression methods at the CPU

sub-block level, and then hierarchically composing such models.

8



Chapter 3

Power Modeling Methodology

This chapter describes the methodology used for developing and vali-

dating our architecture-level power models for CPUs.

3.1 Power Modeling Flow

Fig 3.1 shows an overview of our power modeling flow. The primary

inputs are the gate level netlist and a cycle-accurate model of a processor. In

this work, we generate a cycle-accurate C++ model from the RTL description

of the processor using the Verilator tool [21]. However, our approach only

requires high-level activity information, and the Verilator model can be easily

replaced with a high-level cycle-accurate, micro-architecture simulation model.

During the training phase, simulations are run at both gate and cycle-accurate

levels using the same micro-benchmarks. Cycle-by-cycle per block reference

power traces are generated using industry-standard gate-level simulations, and

activity traces are extracted from the cycle-accurate model simulation. In the

power model synthesis step, we extract features for the different functional

blocks and apply feature selection and decomposition techniques by analyz-

ing the functionality and attributes of the blocks. Using extracted features

9



Figure 3.1: Power modeling flow.

and reference power values, a ML regressor is trained to learn the correlation

between the decomposed features per block and the power consumed by that

block across cycles. These learned models are then stored to be used during

the prediction phase.

During the prediction phase, the full workload to analyze is simulated in

the cycle-accurate model. Feature extraction and decomposition is applied to

the activity information extracted from the simulation and previously trained

models are used to predict cycle-by-cycle power per block hierarchically up to

the full core level. Hierarchically decomposed power models down to the sub-

block level thereby enable micro-architecture level exploration as pre-trained

blocks can be arranged in different compositions and only blocks that are

modified need to be re-trained or analytically scaled.
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3.2 Model Validation

In order to evaluate the accuracy of our power models, we compare the

predicted power against cycle-by-cycle power traces obtained using a commer-

cial gate-level power estimation tool, which we take to be the ground truth

for evaluation. We use cycle-by-cycle mean absolute error (MAE) of values

predicted by each model compared to gate-level power estimation, normalized

to mean reference power of the block as our evaluation metric, given by the

below equation:

MAE [%] =
1
n

∑n
i=1 |Ppred(i)− Pref (i)|

1
n

∑n
i=1 Pref (i)

× 100 (3.1)

,where Ppred(i) is the predicted power in the ith cycle, and Pref(i) is the reference

power estimated by PrimeTime PX in the same cycle.

To evaluate the accuracy of our model in predicting the average power

of the CPUs, we compute a difference of the measured and predicted power

consumption over the whole simulation. The difference is normalized against

measured average power of the block using the following equation to compute

average error (AE):

AE [%] =

∣∣∣∣ 1n∑n
i=1 Ppred(i)− Pref (i)
1
n

∑n
i=1 Pref (i)

∣∣∣∣× 100 (3.2)

The limitations of our model are evaluated using a maximum error (ME) met-

ric, which captures the error in the cycles where the predicted power deviates

maximally from the measured power.

ME [%] =
maxi |Ppred(i)− Pref (i)|

1
n

∑n
i=1 Pref (i)

× 100 (3.3)
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Chapter 4

Power Modeling Approach

The effectiveness of supervised learning approaches depends on engi-

neering features that are highly correlated with the values to be predicted as

well as on selection of appropriate learning models that can capture underly-

ing correlations with low overhead. Power consumption of a circuit specifically

is sensitive to certain key contributor signals [1], [2]. ML-based hierarchical

power modeling of CPUs thus involves the following steps: (i) identification of

key contributing activity information, (ii) mapping of key contributing signals

to features and feature engineering, (iii) model selection for each block, and

(iv) super-block power model composition. This chapter presents our approach

for feature and model selection of common attributes and structures found in

the CPU blocks as well the handling of super-blocks for power modeling.

We limit feature selection to activity information that can be extracted

from cycle-accurate, micro-architectural performance models, such as MARSS

[22], SimpleScalar [23] or gem5 [15] augmented to trace the data activity. We

evaluate the following linear as well as non-linear ML regressors to model

the power consumption of different blocks in the CPU: (i) least-squares linear

regression (LR), (ii) linear regression with l2-norm regularization (LR-R), (iii)

12



linear regression with L1 prior regularization (LR-L), (iv) a linear model with

l2 regularization where the priors over the hyperparameters are chosen to be

gamma distributions (LR-B), (v) a decision tree based regressor (DT), (vi) a

gradient boosting model of equivalent complexity with a regression tree fitted

on the negative gradient of the loss function in each stage (GB), and (vii)

a random-forest with number of estimators fitted to match the decision-tree

on its complexity (RF). We compare our ML-based models against a model

predicting average power across the training set (Avg).

4.1 Block-Level Modeling

Components of a CPU have certain micro-architecturally visible char-

acteristics and features that determine the total power consumption as well as

the variance in power from the previous cycle. The performance of a power

model depends on how accurately it captures these underlying characteristics

or attributes. This section categorizes the basic set of attributes that differ-

ent types of CPU blocks possess and provides generic guidelines for modeling

those attributes with high accuracy.

4.1.1 Data Processing Blocks

The most common types of CPU blocks have circuit structures that

perform similar operations every cycle on multi-bit data signals. Intuitively,

the power consumption strongly depends on the activity of the data they

process. Hamming distance (HD) has been widely used as a feature to concisely
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Figure 4.1: ALU sub-block with signals selected for prediction.

capture such data activity. At the same time, hamming distance of the entire

multi-bit data has weak correlation to power. This is because of the difference

in the circuit components that each toggling bit can effectively activate. For

most of the commonly used datapath components, bits far off spatially (LSBs

vs. MSBs) differ significantly, while those closer together (e.g. bits 0 and 1)

show similar power behavior as a function of toggling activity. Based on this

observation, the multi-bit data can be decomposed into smaller contiguous

bit-groups and the hamming distance of these bit-groups can be separately

captured to obtain features with strong correlation to power consumed. The

optimal granularity of this decomposition needs further exploration.

Figure 4.1 shows a basic block diagram for the ALU sub-block in the

RISC-V core used in our experiments (see Chapter 6 for details). We select the

input operands as the only signals used for prediction and traced in the cycle-

accurate simulations. Figure 4.2 summarizes the mean absolute prediction

error (MAE) of using the hamming distance of varying bit-widths of operands

14



Figure 4.2: ALU feature and model selection.

(HD 64, HD 32, HD 16, HD 8, HD 4) for data inputs across different learn-

ing models at ALU block level. As results show, a decision tree based model

performs better in accuracy than other models and byte-wise hamming com-

putation provides power models with good accuracy (improves accuracy by an

additional 0.29% in this case). We also observe that DT starts overfitting for

nibble-wise decomposition and is slightly worse than byte-wise decomposition.

Based on this analysis, we propose to model the data processing blocks with

byte-wise decomposition of input signals, which provides good accuracy while

still retaining the simplicity of using hamming distance of byte groups in place

of single bit switching traces as features and avoiding overfitting.
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Figure 4.3: ALU block feature selection.

4.1.2 Control Modes

Multiple CPU blocks possess a key characteristic of having multiple

modes with significantly different operations depending on a control input or

a state available in the performance model. Each mode typically activates dif-

ferent portions of the circuit and hence can consume a very different amount

of energy. It is important to capture which specific portion of the circuit is

active or idle in each cycle to develop accurate power models. Also, mode

switches can cause large power variances at the cycle-by-cycle level. For ex-

ample, a shift from normal read to update mode of a branch predictor would

cause significant power deviation.

We propose to model the absolute power consumption by using the

current value of the control input and the power variance by using the hamming

distance of the control input as features for our underlying ML models. Figure

4.3 shows a basic block diagram for the ALU block in the RISC-V core (see

16



Figure 4.4: Buffer modeling.

Chapter 5 for details) and the ALU operands as well as the ALU operating

mode input being used as features for power modeling.

4.1.3 Buffering

Another common attribute of CPU blocks is having the capability to

store data, meta-data and control information such as micro-ops in buffers

with possibly multiple readers and writers. The majority of the sequential

component’s clock power has very low variance at cycle-level granularity and

can be very easily modeled as a constant bias term in regression models. The

variance in power consumption in these blocks is dominated by the switching

of muxes and routing logic driven by the data that is being written/read in the

current cycle. Based on this rationale, the read and write data and addresses

are selected as signals to model the buffering property as shown in Figure 4.4.
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Notably, such a buffering attribute is common in many superscalar out-

of-order CPU blocks, ranging from a branch target buffer to re-order buffer.

Even though the underlying sequential buffering logic is similar (varying only

in bit width and partition), these blocks have widely different read and write

characteristics - from having indexed read/write to fully associative read/write,

from partial data being processed on read to full data being used. Also, the

availability of corresponding signal features in high-level simulations varies

among blocks. For instance, addresses to a physical register file, that buffers

the operand data, can differ between high-level model and implementation

due to equivalent but different renaming implementations. Although an ideal

approach is to use all the inputs (data and addresses) as features, we limit

ourselves to features that are only available in a typical high level simulation.

4.1.4 Pipelining

CPU blocks can either be pipelined or un-pipelined, where the number

of pipeline stages is typically already decided at the micro-architecture level for

a majority of the blocks. Intuitively, the power consumption of such pipelined

structures does not only depend on the current input to the blocks but also

on the partially processed input stored in internal pipeline registers. However,

a high-level simulation model will typically not model the entire pipeline of

a sub-block accurately, and thus might not contain enough information for

developing a stage-by-stage power model. To model these structures with

available information, we can instead store and use the history of the last N
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Figure 4.5: Instruction word bitfields.

inputs as features [9]. The activity of internal pipeline registers and hence the

power of internal pipeline stages will be correlated to the previous primary

inputs of a block depending on the depth of the pipeline. By giving the

input history as features, the pipeline behavior as well as the impact on power

consumption can be learned together.

4.1.5 Mixed-Attribute Blocks

Most of the common CPU blocks possess one or more of the above

mentioned attributes in an independent fashion, and power models can be

developed by orthogonally modeling the associated features. However, a few

CPU blocks possess mixed characteristics for the same input or output signals

and hence need special handling. For example, for an instruction decoder,

the instruction word affects both the mode as well is the data that the de-
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Figure 4.6: Instruction decode stage feature and model selection.

code stage processes in each cycle. Figure 4.5 shows the different bitfields

in an instruction of the RISC-V IM instruction set. Rather than a generic

byte-wise decomposition, the instruction word is sliced based on the sub-field

boundaries in the instruction format to allow the model to learn the relation

of each sub-fields with power. Figure 4.6 shows the error trend across differ-

ent learning models with different feature decomposition techniques: HD 32

(hamming distance of the entire instruction word), HD 16 (hamming distance

of half-words), HD 8 (hamming distance per byte),HD BF (hamming distance

per bitfield), ST+HD BF (current value and hamming distance per bitfield).

Again, a decision tree model provides the best accuracy, where feeding both

the current value and hamming distance per bit field into the model provides

between 0.9% and 1.2% better accuracy than other decompositions.
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4.2 Gating Models

Gating is an RTL/implementation-level technique to prevent unnec-

essary toggles reducing the total energy consumed. Though efficient as a

power saving technique, it significantly affects the ability of high-level models

to capture the underlying circuit characteristic. In this section, we propose

approaches to capture these circuit level optimizations at a high level with

reasonable accuracy as a special case of our control attribute modeling.

4.2.1 Data Gating

Data gating is a common technique used to prevent unnecessary circuits

from toggling when the output is not needed. Typically, instead of mux-ing

the outputs, the enable signals of the input latches are disabled such that

whole sub-blocks will not toggle. Common examples include splitting the

input paths of different execution modules in a multi-function ALU and gating

specific paths based on the incoming micro-op as shown in Fig 4.7. The power

consumption of such gated circuit is thus dependent on the toggling of the

gated or control qualified signals rather than only the primary inputs. We

use the history of data applied to a data gated path and calculate hamming

distance per path based on the previous actively applied data input rather

than on the value in the previous cycle. The feature decomposition is still

based on the attributes that we associate the block with.
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Figure 4.7: Data gating modeling.

4.2.2 Clock Gating

Although data gating can be implemented by gating the clock that

feeds the input data latches, clock gating [24] is a general low-level circuit

design technique that can be automatically applied by synthesis tools to save

clock tree power. Different clock gaters with complicated conditions, as shown

in Fig 4.8 increase the variance in power consumption and thus make it much

more difficult to model power at a high level. The degree of power variance

due to the clock being switched between gated and ungated state depends on

its load. We propose the following approach to model combinational clock gat-

ing, commonly inserted on logic synthesis, on heavily populated buffer blocks

(blocks that possess only buffering attribute). These buffer blocks typically

have certain micro-architecturally visible conditions that determine usage of
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Figure 4.8: Clock gating modeling.

some segment or the whole of the buffer. For example, a branch snapshot

buffer might only be needed when there is an incoming branch mapped to the

specific branch tag. Such conditions can be formulated as features for model-

ing these clock gated buffer units. We recognize the complexity in modeling a

sequential clock gating circuit and we leave it for future work.

4.3 Hierarchical Model Composition

To handle super-blocks in hierarchical power modeling, there are two

possible approaches: (i) synthesize a separate power model for the super-

block, or (ii) compose a power model for the super-block from the component

power models. Though the first approach can generate accurate power mod-

els with the right set of features, the second approach has the advantage of
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reduced power model synthesis time and better architectural exploration sup-

port. However, the composition approach suffers from inaccuracies due to the

additional glue logic that is present in the super-block not being modeled.

Such glue logic can be a significant contributor to total super-block

power. From our gate-level analysis, glue logic at the core level can consume

about 5% of the average total power in a very simple CPU and can contribute

up to 10% on a cycle-by-cycle basis. Our approach to solving this problem is to

treat the glue-logic as a virtual block and synthesize a power model for it. This

is achieved by subtracting the sum of component powers from the total power

during training to obtain the reference power for the glue logic block. During

prediction, the glue logic block then forms a part of the composed super-block

power model. Super-block power modeling and model composition with and

without glue logic will be evaluated in Chapters 5 and 6.
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Chapter 5

Scalar In-Order Core Results

In this chapter, we first evaluate our proposed approach by model-

ing the power consumption of a simple in-order RISC-V based processor [25].

Specifically, we model the open-source RI5CY core that is part of the PULP

platform [26] developed at ETH Zurich and the University of Bologna. It

is a 4-stage, in-order 32-bit RISC-V processor core. It fully implements the

RV32IMFC ISA and many other PULP-specific extensions such as post incre-

menting load-store, MAC operations, and hardware loops. For this work, the

floating-point module was not instantiated.

5.1 Experimental Setup

Figure 5.1 shows the major blocks in the core. The open-source RI5CY

core RTL is synthesized with the Nangate 45nm PDK [28] using Synopsys

Design compiler (L-2016.03-SP5)[29]. Seven benchmarks from the pulpino test

suites listed in Table 5.1 are chosen for training and evaluation of the models.

The benchmarks are compiled using the riscv-gnu-toolchain and object code

is used for the simulations. Synopsys VCS [30] is used for the zero-delay gate-

level simulation of the RI5CY core (@25MHz) with the chosen benchmarks
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Figure 5.1: RI5CY core and its sub-block decomposition [27].

using provided inputs. Activity vectors at sub-block and per-cycle level are

then extracted from the simulation dumps, and Primetime PX (PTPX) [10]

is run in time-based power mode to generate cycle-by-cycle reference power

numbers. Table 5.2 shows the gate counts and power statistics of the top level

blocks when analyzed at the gate level using PTPX, while running all the

seven benchmarks back to back.

The Scikit-learn Python package [31] is used for model synthesis and

prediction.

5.2 Power Model

The hierarchical decomposition for power modeling purposes is high-

lighted with dotted boxes in Figure 5.1. For generality, the physical memory
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Table 5.1: Benchmarks.

Test Description Cycles
aes cbc Small code version of AES implementation 77332
conv2d 2D convolution 17713
fdctfst From ffmpeg libavcodec/jfdctfst.c 4863
fft Fast fourier transform 112370
fir 10 Coefficient FIR filter 48757
keccak Sha3 baseline implementation 607795
matmul Matrix multiplication 660901

Table 5.2: Power statistics of RI5CY core blocks.

Block Cells (cb/sq) Avg. Std. dev. Max Min
Fetch 3853 / 316 0.29mW 0.05mW 0.42mW 0.11mW

Decode 14561 / 1631 0.49mW 0.12mW 1.01mW 0.35mW
Execute 11248 / 123 0.21mW 0.05mW 0.58mW 0.17mW
LS unit 1250 / 42 0.03mW 0.02mW 0.13mW 0.02mW

CSR 5481 / 846 0.25mW 0.01mW 0.31mW 0.18mW
PMP 12643 / 1 0.16mW 0.06mW 0.54mW 0.12mW

Core 49904 / 3050 1.48mW 0.27mW 2.63mW 0.99mW

protection (PMP) unit and control and status register (CSR) block with all

the performance counters instantiated are also included for power modeling

purposes. However, the CSR is not included as part of Execute stage power

model, but as a separate block. We have also evaluated our approach for hier-

archical power modeling by further de-composing the execute stage into ALU

and MULT sub-blocks.

The list of the major blocks and their mapping to the basic power mod-

eling concepts introduced earlier is shown in the Table 5.3. The Fetch stage

of the RI5CY core is comprised of a prefetch buffer that interfaces with the

27



Table 5.3: Power modeling features of different RI5CY blocks.

Block Data Control Data Clock Buffer Pipeline
Gating Gating

Fetch stage X X
Decode stage X X X
Execute stage X X
LS unit X
CSR X
Pmp unit X
Glue X

instruction cache and holds logic that treats instruction word and address as

data. The Decode stage contains the instruction decoder (mixed attribute

block as explained in Section 4.1.5), register file (buffering attribute) and reg-

ister read logic, which handles the bypass data (data processing). Datapath

elements - the ALU and Multiplier - are the main components of the execute

stage. We employ byte-wise decomposition of the input data to model these

components. The multiplier of the RI5CY core maintains an internal state for

sub-word selection during the 4-cycle MULH (multiplication with upper word

result) operation. This sub-word selection signal is control input for subse-

quent cycles of a multi-cycle operation and as such included as feature. The

LSU unit handles the data interface between the execute stage and the cache,

and as such can be modeled as a data processing block with both address and

operand value as data. The CSR majorly contains the control and status reg-

isters and performance counters and is handled as a buffer block. The PMP

unit protects the memory by performing range checks on the incoming data

and instruction addresses, hence mapped to a data processing block.
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5.3 Cross-Validation Results

10-fold cross-validation is used for the evaluation of the feature correla-

tion and accuracy of the models on the cumulative data samples constructed

from the 7 benchmarks. This resampling procedure nullifies the model bias on

the data split and thereby allow us to evaluate the pure feature correlations

to power.

Figure 5.2 summarizes the 10-fold cross-validations results for the 6

core-level sub-blocks. We can observe that the decision tree (DT) based model

performs well compared to the linear models in all cases. As has been demon-

strated in earlier work [9], decision tree-based data representations efficiently

capture the inherent non-linear but typically discrete power behaviour of de-

sign blocks.

Gradient boosting based models are of similar complexity, but perform

poorly in most of the cases; this shows the necessity of more depth to capture

the non-linearity. As listed in Table 5.2, the CSR block has the least variance

in power in the modeled core, which explains the high accuracy of the power

models. On the other hand, low power but high variance blocks such as the

LS unit show poor accuracy in modeling with the evaluated models. Accu-

rately modeling the power consumption of the blocks in this category needs

more study and considered for future work. For this work, due to its small

contribution to the total power of the core, a model with 16.6% error rate for

the LS unit is sufficient for gaining high accuracy for the core composed power

model.
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(a) Fetch stage (b) Decode stage

(c) Execute stage (d) LS unit

(e) CSR (f) Pmp unit

Figure 5.2: 10-fold cross-validation results.
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Figure 5.3: Average accuracy of block models.

Table 5.4: Top decision tree features for different blocks.

Block Features (Importances)
Fetch stage HD(instr addr) (0.32), instr rdata (0.27), instr addr (0.22),

HD(instr rdata) (0.19)
Decode stage HD(instr[24:20]) (0.70), HD(alu a) (0.14), HD(instr[31:25]) (0.05), in-

str[11:7] (0.02), instr[24:20] (0.01), HD(instr[11:7]) (0.01), HD(alu b)
(0.01), instr[19:15] (0.01), instr[6:0] (0.01), instr[31:25] (0.01)

Execute stage HD(alu a[7:0]) (0.51), HD(alu a[23:16]) (0.19), HD(alu operator)
(0.10), HD(mult a[7:0]) (0.07), HD(alu b[23:16]) (0.03),
HD(alu b[7:0]) (0.02), HD(alu a[15:8]) (0.02), HD(alu b[31:24])
(0.02), HD(alu a[31:24]) (0.02), HD(mult b[7:0]) (0.01)

LS unit HD(data rdata[15:8]) (0.52), HD(b[7:0]) (0.20), HD(b[31:24]) (0.07),
HD(data rdata[7:0]) (0.04), HD(a[7:0]) (0.02), HD(a[15:8]) (0.02),
HD(b[15:8]) (0.02), HD(a[23:16]) (0.01), HD(a[31:24]) (0.01),
HD(data wdata[15:8]) (0.01)

CSR HD(csr wdata) (0.95), HD(pc if) (0.03), HD(branch i) (0.01)
Pmp unit HD(data addr) (0.95), HD(instr addr) (0.04)

Core HD(pc if) (0.69), HD(data addr) (0.16), HD(instr rdata[31:25]) (0.04),
HD(csr wdata) (0.02), instr rdata (0.01), HD(alu operator) (0.01),
HD(alu a) (0.01), instr addr (0.01), HD(data rdata[7:0]) (0.004),
HD(instr addr) (0.004)

5.4 Model Accuracy and Learning Rate

Figure 5.3 summarizes the accuracy of evaluated machine learning algo-

rithms in modeling different blocks in the RI5CY. Decision tree based models

are superior than the other linear variants in modeling the power consumption

and better than the boosting based model of equivalent complexity.

Table 5.4 lists the major features selected by the decision tree arranged
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Figure 5.4: Learning curve for different blocks.

in ascending order of importance (normalized to 1), where HD(x) denotes that

the hamming distance of x. This ranking can convey additional information

about the power behavior to drive power optimizations.

Figure 5.4 shows the training curve and learning rate of decision tree

based power models of different blocks for the best fold. The main learning

overhead is the time required for reference gate-level simulations. As Fig-

ure 5.4 shows, in all cases, the model is able to learn power behavior with less

than 300K cycle-level samples and hence instructions needing to be simulated,

compared to the 2.2M samples required to train the CNNs in [4].

Finally, Table 5.5 summarizes the performance of the decision tree (DT)

based power model for different blocks, including hierarchical composition of

the core using either a standalone model or as the sum of sub-block models

with and without a dedicated glue logic model. Modeling the core power with
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Table 5.5: Predicted power statistics of decision tree (DT) based power model.

Block Avg Pwr Max Pwr Min Pwr MAE ME AE
Fetch stage 0.29mW 0.42mW 0.11mW 5.38% 66.0% 0.26%
Decode stage 0.49mW 1.01mW 0.35mW 3.43% 58.0% 0.14%
Regfile 0.26mW 0.40mW 0.22mW 4.44% 64.0% 0.08%
Execute stage 0.21mW 0.58mW 0.17mW 1.84% 90.9% 0.02%
ALU 0.11mW 0.35mW 0.07mW 4.28% 147% 0.10%
Multiplier 0.09mW 0.49mW 0.09mW 0.30% 235% 0.09%
LS unit 0.03mW 0.13mW 0.02mW 16.65% 210% 0.34%
CSR 0.25mW 0.31mW 0.18mW 1.17% 16.9% 0.01%
Pmp unit 0.16mW 0.54mW 0.12mW 4.15% 114% 0.01%

Core (standalone) 1.48mW 2.63mW 0.99mW 1.07% 40.7% 0.04%
Core (composed) 1.48mW 2.63mW 0.99mW 3.37% 34.7% 2.83%
Core (w/ glue logic) 1.48mW 2.63mW 0.99mW 2.15% 34.8% 0.006%

single DT model has a mean absolute error of 1.07%. By contrast, building

a power model for core by composing block-level power models has a much

higher MAE of 3.37%. This can be compensated and made more accurate

by modeling the glue logic as a virtual block (with 2.15% MAE compared to

15.53% error rate on predicting the average power of the core every cycle).
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Chapter 6

Superscalar Out-of-Order Core Results

In this chapter, we further demonstrate our power modeling approach

by generating a power model for a complex superscalar out-of-order (OoO)

core. We integrate models of different general and OoO-specific micro-archi-

tectural components. We target the Berkeley Out-of-Order Machine (BOOM),

an open source RISC-V implementation of an out-of-order processor [32] in

its Medium configuration. BOOM implements the open-source RISC-V ISA

(RV64G) and its generator is written in Chisel hardware construction lan-

guage. BOOM implements a seven-stage pipeline consisting of the following

stages: Fetch, Decode/Rename, Rename/ Dispatch, Issue/RegisterRead, Exe-

cute, Memory and Writeback (Commit occurs asynchronously). More informa-

tion about the BOOM micro-architecture can be found in [33]. Configuration

parameters of the core used in our work are tabulated in Table 6.1.

6.1 Setup

Figure 6.1 shows the major blocks in the core. RTL for simulation and

synthesis is generated from the Chisel generator using the Chipyard frame-

work. The generated RTL is synthesized with the Nangate 45nm PDK [28]

34



Table 6.1: BOOM core features.

Frontend Parameters
Fetch Width 2 instructions

Branch Target Buffer 64 Sets x 2 Ways
Bi-Modal Table 1024 entries across 2 banks

Branch predictor Gshare - 4096 entries

Core Parameters
Issue width 4 uops (2 int, 1 mem, 1 fp)

Issue window size Int - 16, Mem - 16, FP - 16

Register file
Int - 80 phsyical registers - 6r3w
FP - 64 physical registers - 3r2w

Execution unit iALU + iMul + iFPU
iALU + iDiv
FMA + fDiv
AGU

Load/Store Unit 16 loads/ 16 stores
Max Branch count 8

ROB 64 entries

using Synopsys Design compiler (M-2016.12-SP4) [29], where clock gating is

automatically inferred during synthesis. The buffers in the core are synthe-

sized as flip-flop arrays. The clock tree is synthesized and the netlist is placed

and routed using Cadence Innovus (16.13-s045) [34]. For training and validat-

ing our power models, we use the micro-benchmarks from the riscv-tests suite

[35]. In addition, we validate our trained model on a segment of the CoreMark

benchmark suite, representing real-world applications. The list of benchmarks

and their brief description is given in Table 6.2. In our experiments, we focus

on running baremetal simulations and treat the address translation related

logic, such as the TLB, as overhead power as there are no actual translations

involved. Synopsys VCS (M-2017.03-SP2) [30] is used for running zero-delay

gate-level simulation of the placed-routed netlist (@333.3MHz) for the chosen
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Figure 6.1: BOOM block diagram [33].
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Table 6.2: Benchmarks.

Group Test Description Cycles

riscv-tests

dhrystone A synthetic embedded integer benchmark 242630
mm Performs a floating-point matrix multiply 289521
multiply A software implementation of multiply 70134
median Performs a 1D three element median 36735
vvadd Sums two arrays and writes into a third

array
21794

towers Solves the Towers of Hanoi puzzle recur-
sively

22094

spmv Double-precision sparse matrix-vector
multiplication

151015

qsort Sorts an array of integers using quick sort 450577
CoreMark list processing, matrix manipulation, state

machine, and CRC
475888

(segment)

benchmarks. The golden reference trace of cycle-by-cycle power used for train-

ing and validation, is obtained from PrimeTime PX [10] running in time-based

power mode. Table 6.3 shows the gate counts and power statistics of different

micro-architectural blocks running the CoreMark benchmark. To the best of

our knowledge, no highly correlated cycle-accurate simulator for BOOM cur-

rently exists. We instead use Verilator [21] models to extract signals needed

to construct features for the power models. We avoid using signals that will

not be available in a high-level simulation. Verilator models can be directly

replaced with a cycle-accurate simulator, once one exists. The Scikit-learn [31]

python package is used for model synthesis and prediction.
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Table 6.3: Power statistics of BOOM core blocks.

Block Cells (cb/sq) Avg. Std. dev. Max Min
Fetch controller 21567/4342 11.89 mW 3.90 mW 21.59 mW 2.13 mW
Branch Target
Buffer

39757/18330 12.22 mW 2.36 mW 26.13 mW 6.01 mW

Branch Predictor 20855/20493 22.67 mW 9.15 mW 56.77 mW 17.23 mW
Decode unit - 0 695/0 0.51mW 0.416mW 1.625mW 0.03mW
Decode unit - 1 685/0 0.52mW 0.38mW 1.59mW 0.03mW
Rename Stage -
Maptable

7819/1992 3.11 mW 2.13 mW 9.34 mW 0.76 mW

Rename Stage -
Freelist

3836/713 2.25 mW 1.21 mW 4.37 mW 0.24 mW

FP Rename Stage -
Maptable

7696/1768 2.59 mW 2.01 mW 8.57 mW 0.77 mW

FP Rename Stage -
Freelist

2999/569 0.64 mW 0.71 mW 2.70 mW 0.19 mW

Issue unit 18527/2130 6.73 mW 3.96 mW 22.96 mW 1.51 mW
Mem issue unit 12857/1570 3.61 mW 2.11 mW 13.34 mW 1.22 mW
Iregister file 57290/5177 11.15 mW 7.53 mW 45.84 mW 4.19 mW
Iregister read 3981/971 3.96 mW 0.82 mW 7.77 mW 2.61 mW
CSR 5080/1043 1.28 mW 0.96 mW 7.33 mW 0.63 mW
ALU 41190/1616 7.23 mW 2.94 mW 35.05 mW 3.55 mW
CSR Exe Unit 8125/349 1.28 mW 0.96 mW 7.33 mW 0.63 mW
FP Pipeline 89460/10148 9.23 mW 0.75 mW 37.77 mW 8.17 mW
LSU 26188/5449 7.62 mW 2.79 mW 20.37 mW 4.45 mW
ROB 9094/4329 5.08 mW 1.71 mW 10.68 mW 1.54 mW
GLUE 2119/227 19.09 mW 4.28 mW 47.91 mW 8.66 mW

Core 378440/81216 132.97 mW 27.48 mW 236.33 mW 71.99 mW

6.2 Power Model

The block clusters for power modeling purposes are highlighted with

dotted boxes in Figure 6.1. In this section, we analyze and map different blocks

in the BOOM core to the power modeling approaches discussed in Chapter 4.

Table 6.4 summarizes the different blocks and the approaches we follow to

model those blocks.
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Table 6.4: Power modeling features of different BOOM blocks.

Block Data Control Data Clock Buffer Pipeline
Gating Gating

Fetch controller (FC) X X X X
Branch Target Buffer (BTB) X
Branch Predictor (BPD) X
Decode unit - 0 (DEC0) X X
Decode unit - 1 (DEC1) X X
Rename Stage - Maptable (RNM) X X
Rename Stage - Freelist (RNF) X X
FP Rename Stage - Maptable (F RNM) X X
FP Rename - Freelist (F RNF) X X
Issue unit (ISS) X
Mem issue unit (M ISS) X
Iregister file (IRF) X
Iregister read (IRR) X
CSR X
ALU X X X
CSR Exe Unit (CSRX) X X X
FP Pipeline (FP) X X X X
LSU X X X
ROB X X
GLUE X

6.2.1 Frontend, Decode and Rename Blocks

The Fetch controller (FC) is comprised of the fetch buffer (FB) that

holds instructions for decode, the fetch target queue (FTQ) that tracks the

branch prediction information associated with the in-flight Micro-Ops, RVC

expanders that can expand compressed instructions, branch decoders comput-

ing target and branch type, and a branch checker that compares the predicted

target to the computed target. It is comprised of blocks working across 2 out

of 3 main fetch pipeline stages, and maps to our pipelined approach.

The Branch target buffer (BTB) module is comprised of data arrays

allocated for the bimodal predictors (BIM) and data and tag arrays for pre-

dicting the target address. We map all the individual structures to the buffer
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category and use corresponding modes, addresses as features.

The Gshare Backup predictor (BPD) is comprised of a counter table

with 4096 entries that maps to the buffer structure. Pessimistically, we as-

sume that the hash function can vary between the architecture-level model

and actual implementation and only use the control determining read/write

operation and the actual data value as features.

Decode units - 0 and 1 map to the mixed attribute blocks category

and are modeled by decomposing the instruction word as explained in Section

4.1.5.

Integer and floating point (FP) rename stage majorly comprises of

maptable, responsible for mapping the input logical registers to the corre-

sponding physical tags and freelist, responsible to allocate a physical tag for

the destination operand of the incoming uop from the list of free physical

tags. The BOOM core implements a rename snapshot methodology to facil-

itate single-cycle rollback on mispredictions. There exist 8 sets of snapshot

registers in the maptable and freelist, one for each outstanding branch that is

supported in the core. This architecture can be automatically and efficiently

transformed to clock gated buffers by the synthesis tool, which we confirmed

from our analysis of the synthesized netlist. Mapping to our clock-gating and

buffer approaches, we choose the conditions corresponding to the enable of the

clock gates as well as the logical destination (available from the instruction)

as features.
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6.2.2 Issue and Execute Blocks

Issue units hold the dispatched micro-ops until they are executed. Once

an operand is ready, the corresponding slot request bit is set. Among the slots

raising requests, an issue width number of slots are selected on age-based pri-

ority. For example, the integer issue unit has 16 issue slots, 2 dispatch and

issue interface and 5 wakeup interfaces that trigger comparison with all of

the occupied issue slots. The comparisons in the issue units are based on the

physical tags, which can differ between high-level model and an implementa-

tion, thereby cannot be used as features. Also, BOOM implements the issue

unit as collapsing queue, which makes it difficult to model unlike other nor-

mally indexed buffers. We have approximately modeled the unit based on the

number of slots that change occupancy status at this cycle along with the in-

coming micro-op code. The collapsing behavior of the queues is an interesting

attribute for power modeling, which we leave for future studies.

The unified integer physical register file (IRF) maps to the buffer cate-

gory. We limit our features to only data signals since the address is implemen-

tation dependent. The integer register read (IRR) block corresponds to the

bypass muxes before the execution unit. It collects operands from the register

file and the output of the execution units and can direct correct operands to

the inputs of the execution units based on the micro-op that is being issued in

the current cycle. We map this block to the data dominant circuit approach

and chose the byte-wise hamming of all the input data interfaces as features.

Finally, the integer ALU execution unit (ALU) is comprised of the

41



arithmetic and logical blocks, the integer to floating point unit and a pipelined

multiplier unit. Inputs to these blocks are data-gated based on the executed

micro-op. Based on this analysis, the ALU combines data-dominant, data-

gated and pipelined features. The CSR execution unit (CSRX) is comprised

of an integer arithmetic and logical block and an integer divider, which we

deal with a similar fashion as ALU. The floating point pipeline (FP) includes

the floating point register file and the floating point execution unit capable

of fused multiply-add and floating point to integer operations. Hence, it uses

data processing, data-gated, pipelined and buffered circuit features. For the

execute blocks, we further fine-tune our approach to model only the dominant

stage in the pipeline by using the corresponding input from the stored last N

inputs history as modeling all the stages resulted only in a small improvement

in the accuracy and comes with a higher complexity and training cost.

6.2.3 LSU and ROB

The Load store unit (LSU) is comprised mainly of the store address,

data and load address queues. The entire functionality can be referred to in

[33]. For power modeling, we focus on the key characteristics of enqueueing and

dequeueing the buffers (mapped to buffer circuits approach), triggering of store

address queue comparisons (dependent stores) when there is an incoming load,

triggering of comparisons of executed young loads when there is an incoming

store (for detecting memory ordering failure), and store queue hit. In addition

to modeling the control modes capturing the characteristics listed above, we
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model the data routing and selection logic involved as well.

The Reorder buffer (ROB) is implemented as a circular buffer enqueued

on tail on dispatch and dequeued from the head of the buffer as the oldest in-

struction completes. In addition, valid writebacks, the load store unit clearing

busy bits, branch misprediction, etc. can cause different operations to be car-

ried out in the associated cycle. We map ROB to the control dominant and

buffer features and chose the different control signals as well the micro-op that

is being written or read from. Similar to the approach for other blocks, we

did not choose features to model the interface dealing with the stale physical

destination tag.

6.2.4 Glue Power Model and Composition

We model the glue portion of the core, dominated by mostly the routing

structures, as a dataprocessing block with the instruction and data from the

dcache interface as features. We compose a core power model by integrating

all the sub-block level power models including the glue model.

6.3 Cross-Validation Results

10-fold cross-validation is used for the evaluation of the feature correla-

tion and accuracy of the models on the cumulative data samples constructed

from the 8 benchmarks in the riscv-tests suite. As in our experiments with the

RI5CY core, a decision tree based power model performs consistently better

than linear models as well gradient boosting and random forest based models
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(a) Frontend and Rename (b) Issue and execute (c) LSU, ROB and Core

Figure 6.2: 10-fold cross-validation results.

of equivalent complexity. This implies the capability of a deeper decision tree

to capture the non-linear power characteristics of different micro-architectural

blocks in CPUs. Figure 6.2 summarizes the 10-fold cross-validation results of

decision tree based models for the different sub-blocks. A decision tree based

power model for the fetch controller has an MAE of 6.22% on average. For

the branch target buffer, we observe that the BIM writes causes significant

power variance. The decision tree based model ranks the mode to be the most

important feature for power modeling and can predict cycle-by-cycle power

with an MAE of 5.88%. The write mode and value correlates more tightly to

the power variance in case of the backup predictor and a decision tree based

model could learn the correlation and has an effective average MAE of 1.58%.

Power models for the decode units 0 and 1 have an average MAE of

1.52% and 2.361%, respectively. Generated decision tree based power models

can capture the power variance due to clock gating and have MAEs of 3.634%,

8.061%, 5.184%, 10.25% for the integer freelist, maptable and floating point

freelist and maptable, respectively.
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Due to the limitation in modeling the collapsing queue behaviour and

not using the physical tags as features, integer issue unit and mem issue unit

power models have a higher MAE of 9.05% and 19%, respectively. By contrast,

by only modeling the data interface signals, our power model for the register

file can reach an accuracy of 95.16% (MAE - 4.84%). The model for the

integer register read has an MAE of 3.85% on average. The power models

for the execution units - ALU, CSRX, FP - have an average MAE of 8.97%,

11.091%, 6.041%, respectively.

Our generated power model can predict cycle-by-cycle power of the

LSU with an average MAE of 10.025%. Our analysis of a decision tree based

power model for LSU without data and address features shows a degradation of

accuracy by 11.5% (MAE - 21.625%), highlighting the significance of capturing

data dependent power characteristics in cycle-accurate power models. Note

that the address translation related logic is not modeled specifically as the

virtual memory is disabled in our bare-metal simulations. Our power model

for ROB has an average MAE of 7.762%.

Finally, a hierarchical power model for the BOOM core, built by in-

tegrating decision tree based power models for the micro-architectural blocks

and the glue logic, has an average MAE of 2.86%.

6.4 Model Accuracy

We validate our power models by training them on the riscv-test power

traces and testing the trained model on a segment of the CoreMark benchmark
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Figure 6.3: Accuracy of block models.

test. Figure 6.3 shows the MAE of the major blocks for different ML models

we evaluated.

In general, we observe that a deeper decision tree can learn the non-

linear power characteristics better than a linear model or a ensemble model of

similar complexity. It is noticeable from the Figure 6.3 that our decision tree

based models for different blocks can effectively learn the correlation between

the high level activity information and power consumption and have much

higher accuracy than just predicting the average power of the block every

cycle.

Table 6.5 summarizes the performance of decision tree based models

for different micro-architectural blocks. Power models for the ALU and CSRX

blocks have degraded accuracy when evaluated on an unseen workload, which

we attribute to the training set’s incomplete coverage in the data input space.

Preliminary results obtained by selectively moving around 50 cycles from the

CoreMark test set to the training set show an accuracy improvement of upto

2% for these blocks. Generation of training sets for all the CPU blocks with
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Table 6.5: Predicted power statistics of decision tree (DT) based power model.

Block Avg Pwr Max Pwr Min Pwr MAE ME AE
Fetch controller 11.36mW 19.81mW 2.45mW 10.86% 74.44% 4.48%
Branch Target
Buffer

11.96mW 22.66mW 6mW 7.18% 95.45% 2.17%

Branch Predictor 22.4mW 54.34mW 17.4mW 2.38% 21.38% 2.38%
Decode unit - 0 0.51mW 1.50mW 0.03mW 8.27% 155.90% 0.21%
Decode unit - 1 0.52mW 1.41mW 0.03mW 9.15% 182.98% 0.58%
Rename Stage -
Maptable

3.13mW 9.47mW 0.79mW 8.51% 80.22% 0.61%

Rename Stage -
Freelist

2.25mW 4.18mW 0.24mW 3.88% 46.08% 0.19%

FP Rename
Stage - Maptable

2.55mW 8.63mW 0.82mW 11.44% 66.35% 1.48%

FP Rename
Stage - Freelist

0.63mW 2.81mW 0.22mW 5.97% 260.65% 1.25%

Issue unit 6.19mW 22.02mW 2.03mW 17.92% 215.26% 6.11%
Mem issue unit 3.26mW 15.22mW 1.92mW 22.84% 229.04% 9.46%
Iregister file 10.9mW 42.17mW 4.29mW 9.34% 137.63% 2.2%
Iregister read 3.91mW 7.56mW 2.66mW 7.42% 81.27% 1.19%
CSR 0.91mW 3.32mW 0.66mW 9.1% 139.59% 3.25%
ALU 6.96mW 29.66mW 3.91mW 15.15% 362.82% 3.78%
CSR Exe Unit 1.30mW 8.13mW 0.68mW 16.85% 310.42% 1.07%
FP Pipeline 9.27mW 20.11mW 8.74mW 6.14% 263.18% 0.47%
LSU 7.72mW 21.64mW 5.7mW 16.27% 132.35% 1.32%
ROB 5.08mW 9.26mW 1.76mW 13.24% 117.78% 0.09%

Core (composed) 117.05mW 199.78mW 68.12mW 14.14% 41.79% 12.14%
Core (w/ glue
logic)

136.01mW 221.56mW 77.62mW 3.59% 26.88% 0.23%

good coverage of the signal activity space is left for future work.

Our hierarchically composed core level power model can predict the

power of the evaluated segment of CoreMark workload per cycle to within

3.59% of a gate-level power estimate (compared to 14.62% MAE of predicting

average core power), all by just using the features that are available in a high-

level simulation.
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Chapter 7

Summary and Future Work

This chapter briefly reviews and summarizes the report. Then, we

discuss future research opportunities.

7.1 Summary

In this report, we presented a hierarchical power modeling approach

that supports development of simple yet accurate power models for CPUs

and their internal components at micro-architecture levels of abstractions.

We presented a methodology for feature selection and engineering that en-

ables using low complexity learning formulations to accurately model common

micro-architectural sub-blocks in CPUs. Our core power model, synthesized

by integrating these sub-block level models, provides cycle-accurate power es-

timates at sub-block granularity with low training overhead using features that

are extracted from micro-architecture simulations. Results show that decision

tree based hierarchically composed models, built using our approach, can pre-

dict cycle-by-cycle power consumption with less than 2.2% and 2.9% error

rate for RI5CY core and BOOM core, respectively. Resultant BOOM core

power models can also predict cycle-by-cycle power consumption of an unseen

workload (CoreMark) to within 3.6% of a gate-level power estimate.
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7.2 Future Work

In our work so far, we have been able to build accurate power models

for CPUs at cycle-level of granularity. In the following, we outline the possible

future research directions to extend and augment our work:

• The performance of supervised learning algorithms heavily depends on

the training set quality. Limitations of insufficient training showed up

as large maximum error values in our experiments. An ideal approach

in assessing the training set quality is to analyze its coverage at the

circuit level. This potentially leads to challenges in high-level power

modeling where all circuit level details are still unavailable. One possible

direction of future work is to come up with a proper training assessment

methodology and automatic generation of training sets that have good

coverage.

• Our primary focus in this work was to generate accurate cycle-level power

traces for the processors and hence, providing a cycle and bit-accurate

high level model for the CPUs. However, micro-architecture simulators

often approximate the implementation. The resulting performance mod-

els are no longer cycle-accurate, but correlate only over larger number of

cycles or over a benchmark segment. To couple with these approximate

high-level performance models, our approach needs to be modified to

predict average power rather than at the cycle-level. Based on prelimi-

nary results with our setup, we found that splitting the total power of
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the blocks into its circuit-level components - clock tree power, sequential

power, combinational power, etc. - and following an ensemble learning

approach that trains different models for each component is promising

as a potential average power modeling methodology. For example, for a

source clock gated block, the clock tree power is linear over the number

of cycles the clock gate is enabled, which can be easily learned with a

linear ML model.

• Our general power modeling based on the attributes of the blocks can be

easily extended to other processors including massively parallel proces-

sors such as GPUs. Extending it over other domains of processor families

can be a potential future research direction.
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Appendix 1

BOOM Power Modeling Features List

This appendix contains the list of features used for generating power

models for different blocks in the BOOM core described in Chapter 6. The

notation used in the tables are as follows: X denotes the value of the signal

X in the current cycle, DEL(X) denotes value of the signal X in the previous

cycle and HD(X) denotes hamming distance between values in the current and

previous cycle of signal X . The importance of each feature in a decision tree

based power model are presented in brackets next to the feature.

Table 1.1: Fetch controller features

Features (importances) Description
HD(BranchDecode.io inst[31:24]) (0.007)

Input instruction to
the branch decoder
from RVC expander
module.

HD(BranchDecode.io inst[23:16]) (0.001)
HD(BranchDecode.io inst[15:8]) (0.002)
HD(BranchDecode.io inst[7:0]) (0.002)
HD(BranchDecode 1.io inst[31:24]) (0.005)
HD(BranchDecode 1.io inst[23:16]) (0.002)
HD(BranchDecode 1.io inst[15:8]) (0.001)
HD(BranchDecode 1.io inst[7:0]) (0.027)
HD(BranchDecode 2.io inst[31:24]) (0.006)
HD(BranchDecode 2.io inst[23:16]) (0.001)
HD(BranchDecode 2.io inst[15:8]) (0.002)
HD(BranchDecode 2.io inst[7:0]) (0.001)
HD(BranchDecode 3.io inst[31:24]) (0.001)
HD(BranchDecode 3.io inst[23:16]) (0.001)

52



Features (importances) Description
HD(BranchDecode 3.io inst[15:8]) (0.002)
HD(BranchDecode 3.io inst[7:0]) (0.003)
RVCExpander.io rvc (0.004)

Compressed
instruction control
signal

RVCExpander 1.io rvc (0.003)
RVCExpander 2.io rvc (0.002)
RVCExpander 3.io rvc (0.003)
HD(bchecker.io aligned pc[39:32]) (0)

Pipelined version of
raw PC at fetch
controller level

HD(bchecker.io aligned pc[31:24]) (0)
HD(bchecker.io aligned pc[23:16]) (0)
HD(bchecker.io aligned pc[15:8]) (0.001)
HD(bchecker.io aligned pc[7:0]) (0.007)
HD(bchecker.io br targs 0[39:32]) (0)

Computed branch
targets in the branch
decode module

HD(bchecker.io br targs 0[31:24]) (0.001)
HD(bchecker.io br targs 0[23:16]) (0.006)
HD(bchecker.io br targs 0[15:8]) (0.001)
HD(bchecker.io br targs 0[7:0]) (0.766)
HD(bchecker.io br targs 1[39:32]) (0)
HD(bchecker.io br targs 1[31:24]) (0.001)
HD(bchecker.io br targs 1[23:16]) (0.001)
HD(bchecker.io br targs 1[15:8]) (0.001)
HD(bchecker.io br targs 1[7:0]) (0.001)
HD(bchecker.io br targs 2[39:32]) (0)
HD(bchecker.io br targs 2[31:24]) (0.001)
HD(bchecker.io br targs 2[23:16]) (0.004)
HD(bchecker.io br targs 2[15:8]) (0.001)
HD(bchecker.io br targs 2[7:0]) (0.001)
HD(bchecker.io br targs 3[39:32]) (0)
HD(bchecker.io br targs 3[31:24]) (0.001)
HD(bchecker.io br targs 3[23:16]) (0.001)
HD(bchecker.io br targs 3[15:8]) (0.001)
HD(bchecker.io br targs 3[7:0]) (0.001)
HD(bchecker.io btb resp bits target[38:32]) (0)

Branch target
predicted by the
branch target buffer

HD(bchecker.io btb resp bits target[31:24]) (0.001)
HD(bchecker.io btb resp bits target[23:16]) (0)
HD(bchecker.io btb resp bits target[15:8]) (0.001)
HD(bchecker.io btb resp bits target[7:0]) (0.019)
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Features (importances) Description
HD(bchecker.io fetch pc[39:32]) (0)

Fetch PC at current
cycle

HD(bchecker.io fetch pc[31:24]) (0)
HD(bchecker.io fetch pc[23:16]) (0)
HD(bchecker.io fetch pc[15:8]) (0.001)
HD(bchecker.io fetch pc[7:0]) (0.011)
HD(bchecker.io jal targs 0[39:32]) (0)

Computed jump
targets in the branch
decode module

HD(bchecker.io jal targs 0[31:24]) (0.001)
HD(bchecker.io jal targs 0[23:16]) (0.001)
HD(bchecker.io jal targs 0[15:8]) (0.001)
HD(bchecker.io jal targs 0[7:0]) (0.001)
HD(bchecker.io jal targs 1[39:32]) (0)
HD(bchecker.io jal targs 1[31:24]) (0.001)
HD(bchecker.io jal targs 1[23:16]) (0.001)
HD(bchecker.io jal targs 1[15:8]) (0.001)
HD(bchecker.io jal targs 1[7:0]) (0.001)
HD(bchecker.io jal targs 2[39:32]) (0.001)
HD(bchecker.io jal targs 2[31:24]) (0.001)
HD(bchecker.io jal targs 2[23:16]) (0.001)
HD(bchecker.io jal targs 2[15:8]) (0.001)
HD(bchecker.io jal targs 2[7:0]) (0.001)
HD(bchecker.io jal targs 3[39:32]) (0)
HD(bchecker.io jal targs 3[31:24]) (0.001)
HD(bchecker.io jal targs 3[23:16]) (0.001)
HD(bchecker.io jal targs 3[15:8]) (0.001)
HD(bchecker.io jal targs 3[7:0]) (0.001)
HD(bchecker.io req bits addr[39:32]) (0)

F4 stage - request
address

HD(bchecker.io req bits addr[31:24]) (0)
HD(bchecker.io req bits addr[23:16]) (0)
HD(bchecker.io req bits addr[15:8]) (0.001)
HD(bchecker.io req bits addr[7:0]) (0.001)
HD(fb.io enq bits exp insts 0[31:24]) (0.001)

Instructions enqueued
into fetch buffer every
cycle

HD(fb.io enq bits exp insts 0[23:16]) (0.082)
HD(fb.io enq bits exp insts 0[15:8]) (0.026)
HD(fb.io enq bits exp insts 0[7:0]) (0.001)
HD(fb.io enq bits exp insts 1[31:24]) (0.001)
HD(fb.io enq bits exp insts 1[23:16]) (0.001)
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Features (importances) Description
HD(fb.io enq bits exp insts 1[15:8]) (0.001)
HD(fb.io enq bits exp insts 1[7:0]) (0.001)
HD(fb.io enq bits exp insts 2[31:24]) (0.001)
HD(fb.io enq bits exp insts 2[23:16]) (0.001)
HD(fb.io enq bits exp insts 2[15:8]) (0.001)
HD(fb.io enq bits exp insts 2[7:0]) (0.001)
HD(fb.io enq bits exp insts 3[31:24]) (0.001)
HD(fb.io enq bits exp insts 3[23:16]) (0.001)
HD(fb.io enq bits exp insts 3[15:8]) (0.002)
HD(fb.io enq bits exp insts 3[7:0]) (0.002)
HD(ftq.io enq bits bpd info[26:24]) (0)

Branch predictor
information - control
flow instruction
index, counter entry,
PC and history used
for branch prediction
enqueued into Fetch
Target Queue

HD(ftq.io enq bits bpd info[23:16]) (0)
HD(ftq.io enq bits bpd info[15:8]) (0.001)
HD(ftq.io enq bits bpd info[7:0]) (0.002)
HD(ftq.io enq bits fetch pc[39:32]) (0)
HD(ftq.io enq bits fetch pc[31:24]) (0)
HD(ftq.io enq bits fetch pc[23:16]) (0)
HD(ftq.io enq bits fetch pc[15:8]) (0.001)
HD(ftq.io enq bits fetch pc[7:0]) (0.001)
HD(ftq.io enq bits history[22:16]) (0.001)
HD(ftq.io enq bits history[15:8]) (0.001)
HD(ftq.io enq bits history[7:0]) (0.001)

Table 1.2: Branch Target Buffer features

Features (importances) Description
HD(bim.bim data array .RW0 addr[8:0]) (0.13)

Bimodal
predictor array -
address, mode
and number of
bits to be
written in
current cycle

bim.bim data array .RW0 wmode (0.01)
bim.bim data array .RW0 wmask 0 (0.01)
bim.bim data array .RW0 wmask 1 (0.01)
bim.bim data array .RW0 wmask 2 (0.01)
bim.bim data array .RW0 wmask 3 (0.01)
bim.bim data array .RW0 wmask 4 (0.01)
bim.bim data array .RW0 wmask 5 (0.01)
bim.bim data array .RW0 wmask 6 (0.01)
bim.bim data array .RW0 wmask 7 (0.01)
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Features (importances) Description
bim.bim data array .RW0 en (0.02)
HD(bim.bim data array 1.RW0 addr[8:0]) (0.21)
bim.bim data array 1.RW0 wmode (0.01)
bim.bim data array 1.RW0 wmask 0 (0.01)
bim.bim data array 1.RW0 wmask 1 (0.01)
bim.bim data array 1.RW0 wmask 2 (0.01)
bim.bim data array 1.RW0 wmask 3 (0.01)
bim.bim data array 1.RW0 wmask 4 (0.01)
bim.bim data array 1.RW0 wmask 5 (0.01)
bim.bim data array 1.RW0 wmask 6 (0.01)
bim.bim data array 1.RW0 wmask 7 (0.01)
bim.bim data array 1.RW0 en (0.01)
HD(btb.btb data array.RW0 addr[5:0]) (0.57)

Branch target
buffer - address,
data and modes

HD(btb.btb data array.RW0 wdata target[37:32]) (0)
HD(btb.btb data array.RW0 wdata target[31:24]) (0.01)
HD(btb.btb data array.RW0 wdata target[23:16]) (0)
HD(btb.btb data array.RW0 wdata target[15:8]) (0.01)
HD(btb.btb data array.RW0 wdata target[7:0]) (0.01)
btb.btb data array.RW0 wmode (0.01)
HD(btb.btb data array 1.RW0 wdata target[37:32]) (0)
HD(btb.btb data array 1.RW0 wdata target[31:24]) (0)
HD(btb.btb data array 1.RW0 wdata target[23:16]) (0)
HD(btb.btb data array 1.RW0 wdata target[15:8]) (0.01)
HD(btb.btb data array 1.RW0 wdata target[7:0]) (0.02)
btb.btb data array 1.RW0 wmode (0.01)
btb.btb tag array.RW0 wmode (0.01)
HD(btb.btb tag array.RW0 wdata[19:0]) (0.01)
btb.btb tag array 1.RW0 wmode (0.01)
HD(btb.btb tag array 1.RW0 wdata[19:0]) (0.01)

Table 1.3: Branch Predictor features

Features (importances) Description
counter table.R0 en (0.01)

Counter table
read interface

HD(counter table.d R0 data cfi idx[1:0]) (0.01)
HD(counter table.d R0 data counter[1:0]) (0.01)
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Features (importances) Description
counter table.W0 en (0.01)

Counter table
write interface

HD(counter table.d W0 data cfi idx[1:0]) (0.13)
HD(counter table.d W0 data counter[1:0]) (0.87)

Table 1.4: Decode unit - 0 features

Features (importances) Description
io enq uop inst[31:25] (0.01)

Instruction word
in bit-field
decomposed
fashion

HD(io enq uop inst[31:25]) (0.18)
io enq uop inst[24:20] (0.01)
HD(io enq uop inst[24:20]) (0.02)
io enq uop inst[19:15] (0.01)
HD(io enq uop inst[19:15]) (0.01)
io enq uop inst[14:12] (0.01)
HD(io enq uop inst[14:12]) (0.01)
io enq uop inst[11:7] (0.01)
HD(io enq uop inst[11:7]) (0.01)
io enq uop inst[6:0] (0.01)
HD(io enq uop inst[6:0]) (0.8)

Table 1.5: Decode unit - 1 features

Features (importances) Description
io enq uop inst[31:25] (0.01)

Instruction word
in bit-field
decomposed
fashion

HD(io enq uop inst[31:25]) (0.16)
io enq uop inst[24:20] (0.01)
HD(io enq uop inst[24:20]) (0.02)
io enq uop inst[19:15] (0.01)
HD(io enq uop inst[19:15]) (0.01)
io enq uop inst[14:12] (0.01)
HD(io enq uop inst[14:12]) (0.01)
io enq uop inst[11:7] (0.01)
HD(io enq uop inst[11:7]) (0.02)
io enq uop inst[6:0] (0.01)
HD(io enq uop inst[6:0]) (0.8)
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Table 1.6: Rename Stage - Maptable features

Features (importances) Description
io remap reqs 0 ldst[5:0] (0.01) Logical destination and

delayed version for clock
gating modeling at cycle
accurate level

DEL(io remap reqs 0 ldst[5:0]) (0.01)
io remap reqs 1 ldst[5:0] (0.01)
DEL(io remap reqs 1 ldst[5:0]) (0.01)
io remap reqs 0 valid (0.02)

Input request valid control
signals

DEL(io remap reqs 0 valid) (0.08)
io remap reqs 1 valid (0.01)
DEL(io remap reqs 1 valid) (0.01)
io ren br tags 0 valid (0.4)

Branch valid control signals
DEL(io ren br tags 0 valid) (0.41)
io ren br tags 1 valid (0.01)
DEL(io ren br tags 1 valid) (0.02)
io ren br tags 0 bits[2:0] (0.01)

Branch tags to model the
clock gating for snapshots

DEL(io ren br tags 0 bits[2:0]) (0.01)
io ren br tags 1 bits[2:0] (0.01)
DEL(io ren br tags 1 bits[2:0]) (0.01)
io brinfo mispredict (0.02) Mispredict control signal to

denote recovery operation
from snapshot

DEL(io brinfo mispredict) (0.05)

Table 1.7: Rename Stage - Freelist features

Features (importances) Description
io reqs 0 (0.01)

Input request control signals
DEL(io reqs 0) (0.5)
io reqs 1 (0.01)
DEL(io reqs 1) (0.28)
io alloc pregs 0 valid (0.01)

Allocation valid control
signals

DEL(io alloc pregs 0 valid) (0.01)
io alloc pregs 1 valid (0.01)
DEL(io alloc pregs 1 valid) (0.01)
io dealloc pregs 0 valid (0.01)

De-allocation valid control
signals

DEL(io dealloc pregs 0 valid) (0.01)
io dealloc pregs 1 valid (0.01)
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Features (importances) Description
DEL(io dealloc pregs 1 valid) (0.02)
io ren br tags 0 valid (0.01)

Branch valid control signals
DEL(io ren br tags 0 valid) (0.16)
io ren br tags 1 valid (0.01)
DEL(io ren br tags 1 valid) (0.04)
io brinfo mispredict (0.01) Branch mispredict control

signalsDEL(io brinfo mispredict) (0.01)

Table 1.8: FP Rename Stage - Maptable features

Features (importances) Description
io remap reqs 0 ldst[5:0] (0.02) Logical destination and

delayed version for clock
gating modeling at cycle
accurate level

DEL(io remap reqs 0 ldst[5:0]) (0.01)
io remap reqs 1 ldst[5:0] (0.01)
DEL(io remap reqs 1 ldst[5:0]) (0.01)
io remap reqs 0 valid (0.01)

Input request valid - control
signals

DEL(io remap reqs 0 valid) (0.01)
io remap reqs 1 valid (0.01)
DEL(io remap reqs 1 valid) (0.06)
io ren br tags 0 valid (0.37)

Branch valid control signals
DEL(io ren br tags 0 valid) (0.43)
io ren br tags 1 valid (0.02)
DEL(io ren br tags 1 valid) (0.05)
io ren br tags 0 bits[2:0] (0.01)

Branch tags to model the
clock gating for snapshots

DEL(io ren br tags 0 bits[2:0]) (0.01)
io ren br tags 1 bits[2:0] (0.01)
DEL(io ren br tags 1 bits[2:0]) (0.01)
io brinfo mispredict (0.02) Mispredict control signal to

denote recovery operation
from snapshot

DEL(io brinfo mispredict) (0.04)

Table 1.9: FP Rename Stage - Freelist features

Features (importances) Description
io reqs 0 (0.01) Input request control signals
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Features (importances) Description
DEL(io reqs 0) (0.12)
io reqs 1 (0.01)
DEL(io reqs 1) (0.41)
io alloc pregs 0 valid (0.01)

Allocation valid control
signals

DEL(io alloc pregs 0 valid) (0.01)
io alloc pregs 1 valid (0.01)
DEL(io alloc pregs 1 valid) (0.01)
io dealloc pregs 0 valid (0.01)

De-allocation valid control
signals

DEL(io dealloc pregs 0 valid) (0.01)
io dealloc pregs 1 valid (0.01)
DEL(io dealloc pregs 1 valid) (0.02)
io ren br tags 0 valid (0.01)

Branch valid control signals
DEL(io ren br tags 0 valid) (0.23)
io ren br tags 1 valid (0.01)
DEL(io ren br tags 1 valid) (0.23)
io brinfo mispredict (0.01) Branch mispredict control

signalsDEL(io brinfo mispredict) (0.01)

Table 1.10: Issue unit

Features (importances) Description
HD(slots 0.slot uop fu code[9:0]) (0.01)

Micro-op functional unit
code

HD(slots 1.slot uop fu code[9:0]) (0.01)
HD(slots 2.slot uop fu code[9:0]) (0.01)
HD(slots 3.slot uop fu code[9:0]) (0.01)
HD(slots 4.slot uop fu code[9:0]) (0.01)
HD(slots 5.slot uop fu code[9:0]) (0.01)
HD(slots 6.slot uop fu code[9:0]) (0.01)
HD(slots 7.slot uop fu code[9:0]) (0.01)
HD(slots 8.slot uop fu code[9:0]) (0.01)
HD(slots 9.slot uop fu code[9:0]) (0.01)
HD(slots 10.slot uop fu code[9:0]) (0.01)
HD(slots 11.slot uop fu code[9:0]) (0.01)
HD(slots 12.slot uop fu code[9:0]) (0.01)
HD(slots 13.slot uop fu code[9:0]) (0.01)
HD(slots 14.slot uop fu code[9:0]) (0.01)
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Features (importances) Description
HD(slots 15.slot uop fu code[9:0]) (0.01)
HD(slots 0.slot uop uopc[8:0]) (0.01)

Micro-op code in slot

HD(slots 1.slot uop uopc[8:0]) (0.01)
HD(slots 2.slot uop uopc[8:0]) (0.02)
HD(slots 3.slot uop uopc[8:0]) (0.01)
HD(slots 4.slot uop uopc[8:0]) (0.01)
HD(slots 5.slot uop uopc[8:0]) (0.05)
HD(slots 6.slot uop uopc[8:0]) (0.01)
HD(slots 7.slot uop uopc[8:0]) (0.01)
HD(slots 8.slot uop uopc[8:0]) (0.01)
HD(slots 9.slot uop uopc[8:0]) (0.01)
HD(slots 10.slot uop uopc[8:0]) (0.01)
HD(slots 11.slot uop uopc[8:0]) (0.01)
HD(slots 12.slot uop uopc[8:0]) (0.01)
HD(slots 13.slot uop uopc[8:0]) (0.01)
HD(slots 14.slot uop uopc[8:0]) (0.03)
HD(slots 15.slot uop uopc[8:0]) (0.24)
HD(slots 0.state[1:0]) (0.03)

State - hamming represents
change in occupancy

HD(slots 1.state[1:0]) (0.01)
HD(slots 2.state[1:0]) (0.01)
HD(slots 3.state[1:0]) (0.01)
HD(slots 4.state[1:0]) (0.01)
HD(slots 5.state[1:0]) (0.02)
HD(slots 6.state[1:0]) (0.02)
HD(slots 7.state[1:0]) (0.06)
HD(slots 8.state[1:0]) (0.03)
HD(slots 9.state[1:0]) (0.03)
HD(slots 10.state[1:0]) (0.12)
HD(slots 11.state[1:0]) (0.03)
HD(slots 12.state[1:0]) (0.06)
HD(slots 13.state[1:0]) (0.02)
HD(slots 14.state[1:0]) (0.06)
HD(slots 15.state[1:0]) (0.19)
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Table 1.11: Mem issue unit

Features (importances) Description
HD(slots 0.slot uop fu code[9:0]) (0.01)

Micro-op functional unit
code

HD(slots 1.slot uop fu code[9:0]) (0.01)
HD(slots 2.slot uop fu code[9:0]) (0.01)
HD(slots 3.slot uop fu code[9:0]) (0.01)
HD(slots 4.slot uop fu code[9:0]) (0.01)
HD(slots 5.slot uop fu code[9:0]) (0.01)
HD(slots 6.slot uop fu code[9:0]) (0.01)
HD(slots 7.slot uop fu code[9:0]) (0.01)
HD(slots 8.slot uop fu code[9:0]) (0.01)
HD(slots 9.slot uop fu code[9:0]) (0.01)
HD(slots 10.slot uop fu code[9:0]) (0.01)
HD(slots 11.slot uop fu code[9:0]) (0.01)
HD(slots 12.slot uop fu code[9:0]) (0.01)
HD(slots 13.slot uop fu code[9:0]) (0.01)
HD(slots 14.slot uop fu code[9:0]) (0.01)
HD(slots 15.slot uop fu code[9:0]) (0.01)
HD(slots 0.slot uop uopc[8:0]) (0.01)

Micro-op code in slot

HD(slots 1.slot uop uopc[8:0]) (0.01)
HD(slots 2.slot uop uopc[8:0]) (0.01)
HD(slots 3.slot uop uopc[8:0]) (0.01)
HD(slots 4.slot uop uopc[8:0]) (0.01)
HD(slots 5.slot uop uopc[8:0]) (0.01)
HD(slots 6.slot uop uopc[8:0]) (0.01)
HD(slots 7.slot uop uopc[8:0]) (0.01)
HD(slots 8.slot uop uopc[8:0]) (0.01)
HD(slots 9.slot uop uopc[8:0]) (0.01)
HD(slots 10.slot uop uopc[8:0]) (0.01)
HD(slots 11.slot uop uopc[8:0]) (0.01)
HD(slots 12.slot uop uopc[8:0]) (0.01)
HD(slots 13.slot uop uopc[8:0]) (0.01)
HD(slots 14.slot uop uopc[8:0]) (0.01)
HD(slots 15.slot uop uopc[8:0]) (0.01)
HD(slots 0.state[1:0]) (0.02)
HD(slots 1.state[1:0]) (0.02)
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Features (importances) Description
HD(slots 2.state[1:0]) (0.01)
HD(slots 3.state[1:0]) (0.06)
HD(slots 4.state[1:0]) (0.04)

State - hamming represents
change in occupancy

HD(slots 5.state[1:0]) (0.04)
HD(slots 6.state[1:0]) (0.03)
HD(slots 7.state[1:0]) (0.07)
HD(slots 8.state[1:0]) (0.04)
HD(slots 9.state[1:0]) (0.02)
HD(slots 10.state[1:0]) (0.03)
HD(slots 11.state[1:0]) (0.12)
HD(slots 12.state[1:0]) (0.25)
HD(slots 13.state[1:0]) (0.06)
HD(slots 14.state[1:0]) (0.05)
HD(slots 15.state[1:0]) (0.17)

Table 1.12: Iregister file

Features (importances) Description
HD(io readports 0 data[63:56]) (0.01)

Read ports data interface

HD(io readports 0 data[55:48]) (0.01)
HD(io readports 0 data[47:40]) (0.01)
HD(io readports 0 data[39:32]) (0.01)
HD(io readports 0 data[31:24]) (0.01)
HD(io readports 0 data[23:16]) (0.01)
HD(io readports 0 data[15:8]) (0.01)
HD(io readports 0 data[7:0]) (0.01)
HD(io readports 1 data[63:56]) (0.01)
HD(io readports 1 data[55:48]) (0.01)
HD(io readports 1 data[47:40]) (0.01)
HD(io readports 1 data[39:32]) (0.01)
HD(io readports 1 data[31:24]) (0.01)
HD(io readports 1 data[23:16]) (0.01)
HD(io readports 1 data[15:8]) (0.01)
HD(io readports 1 data[7:0]) (0.01)
HD(io readports 2 data[63:56]) (0.01)
HD(io readports 2 data[55:48]) (0.01)
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Features (importances) Description
HD(io readports 2 data[47:40]) (0.01)
HD(io readports 2 data[39:32]) (0.01)
HD(io readports 2 data[31:24]) (0.01)
HD(io readports 2 data[23:16]) (0.01)
HD(io readports 2 data[15:8]) (0.01)
HD(io readports 2 data[7:0]) (0.01)
HD(io readports 3 data[63:56]) (0.01)
HD(io readports 3 data[55:48]) (0.01)
HD(io readports 3 data[47:40]) (0.01)
HD(io readports 3 data[39:32]) (0.01)
HD(io readports 3 data[31:24]) (0.01)
HD(io readports 3 data[23:16]) (0.01)
HD(io readports 3 data[15:8]) (0.01)
HD(io readports 3 data[7:0]) (0.02)
HD(io readports 4 data[63:56]) (0.01)
HD(io readports 4 data[55:48]) (0.01)
HD(io readports 4 data[47:40]) (0.01)
HD(io readports 4 data[39:32]) (0.01)
HD(io readports 4 data[31:24]) (0.01)
HD(io readports 4 data[23:16]) (0.01)
HD(io readports 4 data[15:8]) (0.01)
HD(io readports 4 data[7:0]) (0.01)
HD(io readports 5 data[63:56]) (0.01)
HD(io readports 5 data[55:48]) (0.01)
HD(io readports 5 data[47:40]) (0.01)
HD(io readports 5 data[39:32]) (0.01)
HD(io readports 5 data[31:24]) (0.01)
HD(io readports 5 data[23:16]) (0.01)
HD(io readports 5 data[15:8]) (0.01)
HD(io readports 5 data[7:0]) (0.01)
HD(io write ports 0 bits data[63:56]) (0.11)
HD(io write ports 0 bits data[55:48]) (0.01)
HD(io write ports 0 bits data[47:40]) (0.78)
HD(io write ports 0 bits data[39:32]) (0.01)
HD(io write ports 0 bits data[31:24]) (0.01)
HD(io write ports 0 bits data[23:16]) (0.03)
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Features (importances) Description
HD(io write ports 0 bits data[15:8]) (0.01)
HD(io write ports 0 bits data[7:0]) (0.02)
HD(io write ports 1 bits data[63:56]) (0.02)
HD(io write ports 1 bits data[55:48]) (0.01)
HD(io write ports 1 bits data[47:40]) (0.01)
HD(io write ports 1 bits data[39:32]) (0.01)
HD(io write ports 1 bits data[31:24]) (0.01)
HD(io write ports 1 bits data[23:16]) (0.01)
HD(io write ports 1 bits data[15:8]) (0.03) Write ports data interface
HD(io write ports 1 bits data[7:0]) (0.01)
HD(io write ports 2 bits data[63:56]) (0.01)
HD(io write ports 2 bits data[55:48]) (0.01)
HD(io write ports 2 bits data[47:40]) (0.01)
HD(io write ports 2 bits data[39:32]) (0.01)
HD(io write ports 2 bits data[31:24]) (0.01)
HD(io write ports 2 bits data[23:16]) (0.01)
HD(io write ports 2 bits data[15:8]) (0.01)
HD(io write ports 2 bits data[7:0]) (0.01)

Table 1.13: Iregister read

Features (importances) Description
HD(io rf read ports 0 data[63:56]) (0.01)
HD(io rf read ports 0 data[55:48]) (0.01)
HD(io rf read ports 0 data[47:40]) (0.01)
HD(io rf read ports 0 data[39:32]) (0.01)
HD(io rf read ports 0 data[31:24]) (0.01)
HD(io rf read ports 0 data[23:16]) (0.01)
HD(io rf read ports 0 data[15:8]) (0.01)
HD(io rf read ports 0 data[7:0]) (0.04)
HD(io rf read ports 1 data[63:56]) (0.01)
HD(io rf read ports 1 data[55:48]) (0.01)
HD(io rf read ports 1 data[47:40]) (0.01)
HD(io rf read ports 1 data[39:32]) (0.01)
HD(io rf read ports 1 data[31:24]) (0.01)
HD(io rf read ports 1 data[23:16]) (0.01)
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Features (importances) Description
HD(io rf read ports 1 data[15:8]) (0.01)
HD(io rf read ports 1 data[7:0]) (0.05)
HD(io rf read ports 2 data[63:56]) (0.01)
HD(io rf read ports 2 data[55:48]) (0.01)
HD(io rf read ports 2 data[47:40]) (0.01)
HD(io rf read ports 2 data[39:32]) (0.01)
HD(io rf read ports 2 data[31:24]) (0.01)
HD(io rf read ports 2 data[23:16]) (0.02)
HD(io rf read ports 2 data[15:8]) (0.01)
HD(io rf read ports 2 data[7:0]) (0.05) Register file read ports
HD(io rf read ports 3 data[63:56]) (0.01)
HD(io rf read ports 3 data[55:48]) (0.01)
HD(io rf read ports 3 data[47:40]) (0.01)
HD(io rf read ports 3 data[39:32]) (0.01)
HD(io rf read ports 3 data[31:24]) (0.01)
HD(io rf read ports 3 data[23:16]) (0.01)
HD(io rf read ports 3 data[15:8]) (0.01)
HD(io rf read ports 3 data[7:0]) (0.6)
HD(io rf read ports 4 data[63:56]) (0.01)
HD(io rf read ports 4 data[55:48]) (0.01)
HD(io rf read ports 4 data[47:40]) (0.01)
HD(io rf read ports 4 data[39:32]) (0.01)
HD(io rf read ports 4 data[31:24]) (0.01)
HD(io rf read ports 4 data[23:16]) (0.01)
HD(io rf read ports 4 data[15:8]) (0.01)
HD(io rf read ports 4 data[7:0]) (0.01)
HD(io rf read ports 5 data[63:56]) (0.01)
HD(io rf read ports 5 data[55:48]) (0.01)
HD(io rf read ports 5 data[47:40]) (0.01)
HD(io rf read ports 5 data[39:32]) (0.01)
HD(io rf read ports 5 data[31:24]) (0.01)
HD(io rf read ports 5 data[23:16]) (0.01)
HD(io rf read ports 5 data[15:8]) (0.01)
HD(io rf read ports 5 data[7:0]) (0.05)
HD(io bypass data 0[63:56]) (0.01)
HD(io bypass data 0[55:48]) (0.01)

66



Features (importances) Description
HD(io bypass data 0[47:40]) (0.01)
HD(io bypass data 0[39:32]) (0.01)
HD(io bypass data 0[31:24]) (0.01)
HD(io bypass data 0[23:16]) (0.01)
HD(io bypass data 0[15:8]) (0.01)
HD(io bypass data 0[7:0]) (0.12)
HD(io bypass data 1[63:56]) (0.01)
HD(io bypass data 1[55:48]) (0.01)
HD(io bypass data 1[47:40]) (0.01)
HD(io bypass data 1[39:32]) (0.01)
HD(io bypass data 1[31:24]) (0.01)
HD(io bypass data 1[23:16]) (0.01)
HD(io bypass data 1[15:8]) (0.01)
HD(io bypass data 1[7:0]) (0.01)

Bypass data interface
HD(io bypass data 2[63:56]) (0.01)
HD(io bypass data 2[55:48]) (0.01)
HD(io bypass data 2[47:40]) (0.01)
HD(io bypass data 2[39:32]) (0.01)
HD(io bypass data 2[31:24]) (0.01)
HD(io bypass data 2[23:16]) (0.01)
HD(io bypass data 2[15:8]) (0.01)
HD(io bypass data 2[7:0]) (0.01)
HD(io bypass data 3[63:56]) (0.01)
HD(io bypass data 3[55:48]) (0.01)
HD(io bypass data 3[47:40]) (0.01)
HD(io bypass data 3[39:32]) (0.01)
HD(io bypass data 3[31:24]) (0.01)
HD(io bypass data 3[23:16]) (0.01)
HD(io bypass data 3[15:8]) (0.01)
HD(io bypass data 3[7:0]) (0.02)

Table 1.14: CSR features

Features (importances) Description
HD(io rw wdata[63:56]) (0.01)
HD(io rw wdata[55:48]) (0.07)
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Features (importances) Description
HD(io rw wdata[47:40]) (0.01)
HD(io rw wdata[39:32]) (0.01)

Write data
HD(io rw wdata[31:24]) (0.01)
HD(io rw wdata[23:16]) (0.01)
HD(io rw wdata[15:8]) (0.67)
HD(io rw wdata[7:0]) (0.06)
HD(io decode 0 csr[11:0]) (0.15) Instruction from decode

stageHD(io decode 1 csr[11:0]) (0.04)

Table 1.15: ALU features

Features (importances) Description
HD(imul.inPipe bits in1[63:56]) (0.01)

Qualified, pipelined input of
multiplier

HD(imul.inPipe bits in1[55:48]) (0)
HD(imul.inPipe bits in1[47:40]) (0)
HD(imul.inPipe bits in1[39:32]) (0)
HD(imul.inPipe bits in1[31:24]) (0)
HD(imul.inPipe bits in1[23:16]) (0)
HD(imul.inPipe bits in1[15:8]) (0.06)
HD(imul.inPipe bits in1[7:0]) (0.01)
HD(imul.inPipe bits in2[63:56]) (0)
HD(imul.inPipe bits in2[55:48]) (0)
HD(imul.inPipe bits in2[47:40]) (0)
HD(imul.inPipe bits in2[39:32]) (0)
HD(imul.inPipe bits in2[31:24]) (0)
HD(imul.inPipe bits in2[23:16]) (0)
HD(imul.inPipe bits in2[15:8]) (0.01)
HD(imul.inPipe bits in2[7:0]) (0.01)
HD(alu.io in2[63:56]) (0.01)
HD(alu.io in2[55:48]) (0.01)
HD(alu.io in2[47:40]) (0.01)
HD(alu.io in2[39:32]) (0.01)
HD(alu.io in2[31:24]) (0.01)
HD(alu.io in2[23:16]) (0.03)
HD(alu.io in2[15:8]) (0.01) Qualified, pipelined input of

ALUHD(alu.io in2[7:0]) (0.08)
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Features (importances) Description
HD(alu.io in1[63:56]) (0.01)
HD(alu.io in1[55:48]) (0.01)
HD(alu.io in1[47:40]) (0.02)
HD(alu.io in1[39:32]) (0.02)
HD(alu.io in1[31:24]) (0.07)
HD(alu.io in1[23:16]) (0.01)
HD(alu.io in1[15:8]) (0.01)
HD(alu.io in1[7:0]) (0.72)
HD(ifpu.inPipe bits in1[63:56]) (0.01)
HD(ifpu.inPipe bits in1[55:48]) (0.01)
HD(ifpu.inPipe bits in1[47:40]) (0.01)
HD(ifpu.inPipe bits in1[39:32]) (0.01) Qualified and pipelined

input of integer to floating
point unit

HD(ifpu.inPipe bits in1[31:24]) (0.01)
HD(ifpu.inPipe bits in1[23:16]) (0.01)
HD(ifpu.inPipe bits in1[15:8]) (0.01)
HD(ifpu.inPipe bits in1[7:0]) (0.01)

Table 1.16: CSR Exe Unit features

Features (importances) Description
HD(alu.io in2[63:56]) (0.14)

Qualified, pipelined input of
ALU

HD(alu.io in2[55:48]) (0.01)
HD(alu.io in2[47:40]) (0.01)
HD(alu.io in2[39:32]) (0.01)
HD(alu.io in2[31:24]) (0.01)
HD(alu.io in2[23:16]) (0.01)
HD(alu.io in2[15:8]) (0.01)
HD(alu.io in2[7:0]) (0.75)
HD(alu.io in1[63:56]) (0.01)
HD(alu.io in1[55:48]) (0.01)
HD(alu.io in1[47:40]) (0.01)
HD(alu.io in1[39:32]) (0.01)
HD(alu.io in1[31:24]) (0.01)
HD(alu.io in1[23:16]) (0.01)
HD(alu.io in1[15:8]) (0.01)
HD(alu.io in1[7:0]) (0.02)
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Features (importances) Description
HD(div.io req bits in1[63:56]) (0.01)

Qualified, pipelined input of
divider

HD(div.io req bits in1[55:48]) (0.01)
HD(div.io req bits in1[47:40]) (0.01)
HD(div.io req bits in1[39:32]) (0.01)
HD(div.io req bits in1[31:24]) (0.01)
HD(div.io req bits in1[23:16]) (0.01)
HD(div.io req bits in1[15:8]) (0.01)
HD(div.io req bits in1[7:0]) (0.04)
HD(div.io req bits in2[63:56]) (0.01)
HD(div.io req bits in2[55:48]) (0.01)
HD(div.io req bits in2[47:40]) (0.01)
HD(div.io req bits in2[39:32]) (0.01)
HD(div.io req bits in2[31:24]) (0.01)
HD(div.io req bits in2[23:16]) (0.01)
HD(div.io req bits in2[15:8]) (0.01)
HD(div.io req bits in2[7:0]) (0.01)

Table 1.17: FP Pipeline features

Features (importances) Description
HD(fregfile.io read ports 0 addr[6:0]) (0.01)
HD(fregfile.io read ports 0 data[64:56]) (0.01)
HD(fregfile.io read ports 0 data[55:48]) (0.01)
HD(fregfile.io read ports 0 data[47:40]) (0.01)
HD(fregfile.io read ports 0 data[39:32]) (0.01)
HD(fregfile.io read ports 0 data[31:24]) (0.01)
HD(fregfile.io read ports 0 data[23:16]) (0.01)
HD(fregfile.io read ports 0 data[15:8]) (0.01)
HD(fregfile.io read ports 0 data[7:0]) (0.01)
HD(fregfile.io read ports 1 addr[6:0]) (0.01)
HD(fregfile.io read ports 1 data[64:56]) (0.01)
HD(fregfile.io read ports 1 data[55:48]) (0.01)
HD(fregfile.io read ports 1 data[47:40]) (0.01)
HD(fregfile.io read ports 1 data[39:32]) (0.01)
HD(fregfile.io read ports 1 data[31:24]) (0.01)
HD(fregfile.io read ports 1 data[23:16]) (0.01)
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Features (importances) Description
HD(fregfile.io read ports 1 data[15:8]) (0.01)
HD(fregfile.io read ports 1 data[7:0]) (0.01)
HD(fregfile.io read ports 2 addr[6:0]) (0.01)
HD(fregfile.io read ports 2 data[64:56]) (0.01)
HD(fregfile.io read ports 2 data[55:48]) (0.01)
HD(fregfile.io read ports 2 data[47:40]) (0.01)
HD(fregfile.io read ports 2 data[39:32]) (0.01) Floating point

register file
interface

HD(fregfile.io read ports 2 data[31:24]) (0.01)
HD(fregfile.io read ports 2 data[23:16]) (0.01)
HD(fregfile.io read ports 2 data[15:8]) (0.01)
HD(fregfile.io read ports 2 data[7:0]) (0.01)
HD(fregfile.io write ports 0 bits addr[6:0]) (0.01)
HD(fregfile.io write ports 0 bits data[64:56]) (0.01)
HD(fregfile.io write ports 0 bits data[55:48]) (0.07)
HD(fregfile.io write ports 0 bits data[47:40]) (0.01)
HD(fregfile.io write ports 0 bits data[39:32]) (0.01)
HD(fregfile.io write ports 0 bits data[31:24]) (0.01)
HD(fregfile.io write ports 0 bits data[23:16]) (0.01)
HD(fregfile.io write ports 0 bits data[15:8]) (0.01)
HD(fregfile.io write ports 0 bits data[7:0]) (0.01)
HD(fregfile.io write ports 1 bits addr[6:0]) (0.01)
HD(fregfile.io write ports 1 bits data[64:56]) (0.01)
HD(fregfile.io write ports 1 bits data[55:48]) (0.02)
HD(fregfile.io write ports 1 bits data[47:40]) (0.01)
HD(fregfile.io write ports 1 bits data[39:32]) (0.01)
HD(fregfile.io write ports 1 bits data[31:24]) (0.01)
HD(fregfile.io write ports 1 bits data[23:16]) (0.01)
HD(fregfile.io write ports 1 bits data[15:8]) (0.01)
HD(fregfile.io write ports 1 bits data[7:0]) (0.01)
HD(fpu.io req bits uop uopc[8:0]) (0.02)
HD(fpu.dfma.fma.io a[64:56]) (0.01)
HD(fpu.dfma.fma.io a[55:48]) (0.01)
HD(fpu.dfma.fma.io a[47:40]) (0.03)
HD(fpu.dfma.fma.io a[39:32]) (0.01)
HD(fpu.dfma.fma.io a[31:24]) (0.01)
HD(fpu.dfma.fma.io a[23:16]) (0.01)
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Features (importances) Description
HD(fpu.dfma.fma.io a[15:8]) (0.01)
HD(fpu.dfma.fma.io a[7:0]) (0.01)
HD(fpu.dfma.fma.io b[64:56]) (0.01)
HD(fpu.dfma.fma.io b[55:48]) (0.01)
HD(fpu.dfma.fma.io b[47:40]) (0.01)
HD(fpu.dfma.fma.io b[39:32]) (0.01)
HD(fpu.dfma.fma.io b[31:24]) (0.01) Qualified,

pipelined inputs
of fused multiply
add unit

HD(fpu.dfma.fma.io b[23:16]) (0.01)
HD(fpu.dfma.fma.io b[15:8]) (0.01)
HD(fpu.dfma.fma.io b[7:0]) (0.01)
HD(fpu.dfma.fma.io c[64:56]) (0.01)
HD(fpu.dfma.fma.io c[55:48]) (0.01)
HD(fpu.dfma.fma.io c[47:40]) (0.01)
HD(fpu.dfma.fma.io c[39:32]) (0.01)
HD(fpu.dfma.fma.io c[31:24]) (0.01)
HD(fpu.dfma.fma.io c[23:16]) (0.01)
HD(fpu.dfma.fma.io c[15:8]) (0.83)
HD(fpu.dfma.fma.io c[7:0]) (0.01)
HD(fpu.fpiu.in in1[64:56]) (0.01)

Qualified,
pipelined input of
floating point to
integer unit

HD(fpu.fpiu.in in1[55:48]) (0.01)
HD(fpu.fpiu.in in1[47:40]) (0.01)
HD(fpu.fpiu.in in1[39:32]) (0.01)
HD(fpu.fpiu.in in1[31:24]) (0.01)
HD(fpu.fpiu.in in1[23:16]) (0.01)
HD(fpu.fpiu.in in1[15:8]) (0.01)
HD(fpu.fpiu.in in1[7:0]) (0.01)
HD(fpu.fpiu.in in2[64:56]) (0.01)
HD(fpu.fpiu.in in2[55:48]) (0.01)
HD(fpu.fpiu.in in2[47:40]) (0.01)
HD(fpu.fpiu.in in2[39:32]) (0.01)
HD(fpu.fpiu.in in2[31:24]) (0.01)
HD(fpu.fpiu.in in2[23:16]) (0)
HD(fpu.fpiu.in in2[15:8]) (0)
HD(fpu.fpiu.in in2[7:0]) (0)
HD(fpu.fpmu.inPipe bits in1[64:56]) (0.01)
HD(fpu.fpmu.inPipe bits in1[55:48]) (0.01)
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HD(fpu.fpmu.inPipe bits in1[47:40]) (0.01)
HD(fpu.fpmu.inPipe bits in1[39:32]) (0.01)
HD(fpu.fpmu.inPipe bits in1[31:24]) (0.01)
HD(fpu.fpmu.inPipe bits in1[23:16]) (0.01)
HD(fpu.fpmu.inPipe bits in1[15:8]) (0.01)
HD(fpu.fpmu.inPipe bits in1[7:0]) (0.01) Qualified,

pipelined input of
fpmu

HD(fpu.fpmu.inPipe bits in2[64:56]) (0.01)
HD(fpu.fpmu.inPipe bits in2[55:48]) (0.01)
HD(fpu.fpmu.inPipe bits in2[47:40]) (0.01)
HD(fpu.fpmu.inPipe bits in2[39:32]) (0.01)
HD(fpu.fpmu.inPipe bits in2[31:24]) (0.01)
HD(fpu.fpmu.inPipe bits in2[23:16]) (0.01)
HD(fpu.fpmu.inPipe bits in2[15:8]) (0.01)
HD(fpu.fpmu.inPipe bits in2[7:0]) (0.01)

Table 1.18: LSU features

Features (importances) Description
io brinfo mispredict (0.01)

Control signals -
load, store mode
and valid signals

io brinfo valid (0.01)
io dis ld vals 0 (0.05)
io dis ld vals 1 (0.01)
io dis st vals 0 (0.03)
io dis st vals 1 (0.01)
io exe resp bits uop ctrl is load (0.01)
io exe resp bits uop ctrl is sta (0.01)
io exe resp bits uop ctrl is std (0.01)
io exe resp bits uop fp val (0.01)
io exe resp bits uop is load (0.04)
io exe resp bits uop is store (0.02)
io exe resp valid (0.01)
io forward uop fp val (0.01)
io forward uop is load (0.01)
io forward uop is store (0)
io forward val (0.01)
io fp stdata valid (0.01)
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Features (importances) Description
io mem ldSpecWakeup valid (0.02)
io memreq uop is load (0.01)
io memreq uop is store (0.01)
io memreq val (0.02)
io memresp bits is load (0.06)
io memresp valid (0.1)
HD(io exe resp bits addr[39:0]) (0.56)
HD(io exe resp bits data[15:8]) (0.01)
HD(io exe resp bits data[23:16]) (0.02)
HD(io exe resp bits data[31:24]) (0.01)
HD(io exe resp bits data[39:32]) (0.01)
HD(io exe resp bits data[47:40]) (0.01)
HD(io exe resp bits data[55:48]) (0.01)
HD(io exe resp bits data[63:56]) (0.01)
HD(io exe resp bits data[7:0]) (0.02)
HD(io forward data[15:8]) (0.01)
HD(io forward data[23:16]) (0.01)
HD(io forward data[31:24]) (0.01)
HD(io forward data[39:32]) (0.01)
HD(io forward data[47:40]) (0.01)
HD(io forward data[55:48]) (0.01)
HD(io forward data[63:56]) (0.01)
HD(io forward data[7:0]) (0.01) Address and data

interfaceHD(io fp stdata bits data[15:8]) (0.01)
HD(io fp stdata bits data[23:16]) (0.01)
HD(io fp stdata bits data[31:24]) (0.01)
HD(io fp stdata bits data[39:32]) (0.01)
HD(io fp stdata bits data[47:40]) (0.02)
HD(io fp stdata bits data[55:48]) (0.01)
HD(io fp stdata bits data[63:56]) (0.01)
HD(io fp stdata bits data[7:0]) (0.01)
HD(io memreq wdata[15:8]) (0.01)
HD(io memreq wdata[23:16]) (0.01)
HD(io memreq wdata[31:24]) (0.01)
HD(io memreq wdata[39:32]) (0.01)
HD(io memreq wdata[47:40]) (0.01)
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Features (importances) Description
HD(io memreq wdata[55:48]) (0.01)
HD(io memreq wdata[63:56]) (0.01)
HD(io memreq wdata[7:0]) (0.03)

Table 1.19: ROB features

Features (importances) Description
io enq valids 0 (0.42)

ROB enqueue
interface

io enq valids 1 (0.04)
HD(io enq uops 0 uopc[8:0]) (0.04)
HD(io enq uops 1 uopc[8:0]) (0.26)
io brinfo valid (0.02)

Branch related
control signals

io brinfo mispredict (0.01)
io brinfo btb made pred (0.01)
io brinfo btb mispredict (0.01)
io brinfo bpd made pred (0.01)
io brinfo bpd mispredict (0.01)
io wb resps 0 valid (0.02)

Writeback valid

io wb resps 1 valid (0.03)
io wb resps 2 valid (0.01)
io wb resps 3 valid (0.01)
io wb resps 4 valid (0.02)
io lsu clr bsy valid 0 (0.01)

Load store unit
control signals

io lsu clr bsy valid 1 (0.01)
io lsu clr unsafe valid (0.02)
io commit valids 0 (0.04)

Commit interface

io commit valids 1 (0.03)
HD(io commit uops 0 uopc[8:0]) (0.09)
HD(io commit uops 1 uopc[8:0]) (0.02)
io commit rbk valids 0 (0.01)
io commit rbk valids 1 (0)
io commit rollback (0.01)
io commit st mask 0 (0.01)
io commit st mask 1 (0.01)
io commit ld mask 0 (0.01)
io commit ld mask 1 (0.01)
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