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Abstract

A rising research challenge is running costly machine learning (ML)

networks locally on resource-constrained edge devices. ML networks with large

convolutional layers can easily exceed available memory, increasing latency

due to excessive swapping. Previous memory reduction techniques such as

pruning and quantization reduce model accuracy and often require retraining.

Alternatively, distributed methods partition the convolutions into equivalent

smaller sub-computations, but the implementations introduce communication

costs and require a network of devices. However, a distributed partitioning

approach can also be used to run in a reduced memory footprint on a single

device by subdividing the network into smaller operations.

This report extends prior work on distributed partitioning using tiling

and fusing of convolutional layers into a memory-aware execution on a single

device. Our approach extends prior fusing strategies to allow for two groups

of convolutional layers that are fused and tiled independently. This approach

reduces overhead via data reuse, and reduces the memory footprint further.
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We also propose a memory usage predictor coupled with a search algorithm to

provide fusing and tiling configurations for an arbitrary set of convolutional

layers.

When applied to the YOLOv2 object detection network, results show

that our approach can run in less than half the memory, and with a speedup

of up to 2.78 under severe memory constraints. Additionally, our algorithm

will return a configuration with a latency that is within 6% of the best latency

measured in a manual search.
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Chapter 1

Introduction

There has been a proliferation of complex machine learning (ML) prob-

lems in edge applications. As pointed out by [8], running ML applications

on the edge can increase privacy, improve latency, reduce cloud communica-

tion, and require less energy. However, most state-of-the-art ML networks

have significant memory requirements that can exceed available memory on

a resource-constrained edge device. Even with virtual memory enabled, ex-

ceeding memory bounds comes with severe latency penalties due to excessive

swapping between memory and disk. As a result, it is a significant challenge

to run networks locally on an edge device.

Numerous commonly used neural networks contain a series of convo-

lutional layers to process image data. Many convolutional layers, especially

layers earlier in the network are feature-heavy, with a large amount of memory

needed for inputs and outputs. Previous approaches to reduce memory foot-

prints of neural networks such as pruning [1], [5] and quantization [3], [6], [10]

modify the network model, require re-training, and experience accuracy degra-

dation. Meanwhile, distributed solutions such as [7] and [13] rely on partition-

ing convolutions into separate tasks and running them on separate devices,
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but they require additional communication and a network of devices. How-

ever, such approaches can also be used to reduce the memory footprint of a

computation locally on a single device.

In this report, we extend the fused tile partitioning (FTP) approach

outlined in [13] to present a memory-aware fusing and tiling (MAFAT) strategy

for the execution of large feature-dominated early stages of convolutional neu-

ral networks (CNNs) on a single resource-constrained edge device. The FTP

approach from [13] combines all layers into one large layer group and fuses

them all together in order to reduce communication. By contrast, MAFAT

creates two smaller layer groups and tiles and fuses them separately. The

smaller fusings and different tilings resulting from more layer groups can re-

duce the maximum memory footprint of a process. We also develop a model to

predict the maximum memory usage of a given MAFAT configuration. Finally,

using this predictor, we propose a search algorithm that uses this predictor

to return an optimized MAFAT configuration that fits within the provided

memory requirement.

Results of applying our approach to a CNN used for object detection [9]

show that MAFAT configurations can provide a speedup of up to 2.78 over

the original model in tighter memory constraints. Furthermore, our search

algorithm returns a configuration with a latency that is within 6 percent of

the best measured latency for any configuration.
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Figure 1.1: The original YOLOv2 implementation for varying memory con-
straints.

1.1 Motivational Example

Figure 1.1 depicts the latency and number of swapped bytes versus a

decreasing memory constraint from running the first 16 layers YOLOv2 [9] on

a Raspberry Pi3. The first 16 layers of the network are used because they are

the most feature-heavy and present the greatest feature challenge to memory.

The measurements and methods used to construct the graph are described in

Section 4.2.

Figure 1.1 shows a significant increase in the latency of an inference

at tighter memory constraints. It reveals that the CNN exceeds memory con-

straints at over 192 MB. Once the program goes over memory, the Operating

System must swap data between the memory and disk. This swapping pro-
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cess has a demonstrated adverse affect on latency. As the memory constraints

continue to shrink, the inference latency increases dramatically, with a 16MB

memory constraint over 6.5× slower than the original. This motivates a need

for optimizations as presented in this report to reduce the latency overhead

due to swapping.

1.2 Related Work

The primary approaches to reduce memory on a single device are prun-

ing and quantization. Pruning attempts to remove a portion of the model, such

as weights in a filter, but this can result in asymmetric computations that can

be difficult to implement [1]. Entire filters can be removed, too, such as in

[5]. In both of these cases, pruning severely degrades accuracy and expensive

retraining is required afterwards. Quantization of a CNN [3], [6] reduces the

number of bits necessary to store weights. Similarly, retraining is often needed

to get better accuracy [10]. Quantization also removes model information, i.e.

it also degrades the accuracy of the model. By contrast, MAFAT is able to

preserve model accuracy while decreasing the memory footprint.

MAFAT is orthogonal to both pruning and quantization. Because the

model is preserved, MAFAT can easily be applied to a pruned or quantized

network. Combinations of MAFAT and quantization or pruning have the

potential to shrink the memory footprint of convolutions significantly.

In addition to pruning and quantization, partitioning of models across

multiple devices has been applied distributed settings. For example, MoDNN [7]
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uses a one-dimensional partitioning scheme where a map-reduce algorithm can

execute many of the partitions in parallel. DeepThings [13] uses Fused Tile

Partitioning (FTP) to split layers into an even 2D grid and combines them

via a fusing process in order for corresponding grid sections to be executed

independently. Furthermore, DeepThings proposes data reuse and scheduling

approaches such that adjacent partitions can use previously computed data

where possible. However, all of these works are designed for computation

among several devices. Because of this, communication is a primary consider-

ation. Since MAFAT uses only a single device, alternative techniques such as

partial fusing and re-tiling after a certain number of layers can result in more

optimal memory usage.
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Chapter 2

Background

This chapter explains some of the techniques and background informa-

tion used in this report. It first discusses how FTP works in DeepThings [13],

followed by some background on YOLOv2 [9].

2.1 Fused Tile Partitioning

Fused tile partitioning allows a set of convolutional layers to be split

into multiple smaller sub-convolutions. In a given sub-convolution, there are

one or more sub-layers. Each layer has input and output data referred to as

the input and output tile, respectively. The output tile of layer l is equal to

the input tile of layer l+1. In the sub-convolutions across layers, multiple tiles

can be combined and fused to execute as one unit. This unit is referred to as

a task, and can be executed independently of all other tasks. All tasks must

have the same sub convolutions and tiles fused in order to have a consistent

input and output. Each task also needs to know all of the filter weights for

each fused layer.
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2.1.1 Tiling Convolutional Layers

A convolution operation is shown in the top portion of 2.1. For a given

layer with D0 channels, there are a D1 number of filters of some size F1 × F1.

Each filter has D0 arrays that correspond to one channel in the input. The filter

is then scanned across the image, moving sideways. These filters are shown

a the top right of the figure. Each element of the filter has a trained weight

to it. The discrete convolution is performed as the multiplication of the input

with the weights, and then the sum of all values. The corresponding output is

one point in the channel of the output. This operation is sometimes referred

to as a dot product. Since the filter relies on input data directly adjacent to

current coordinates for a computation, there is no need for input data that

is not close to the current region of the input to be present in memory. This

allows for an input to be split up, such that only portions of the input are

needed in memory at any given time.

The specific method and pattern of splitting a layer into sub-layers

is known as tiling. Tiling allows for partial execution and partial loading of

input data for a given layer. Tiling also splits convolutional layers along height

and width dimensions of the input. Splitting the layer in this way allows for

a similar split in the next layer, which means the next tile can be executed

immediately after (provided sufficient overlap is considered as discussed in

Section 2.1.2). In tiling, the smaller tiled computations are mathematically

equivalent to the original, and can be combined into an identical output.

In Figure 2.1, layer 4 is subdivided into an even 3× 3 grid. The figure
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Figure 2.1: An overview of the Fused Tile Partitioning method in [13].

also shows that each tile can be executed independently from the other tiles,

and therefore could be executed in any order. There is a small amount of

additional overhead for the parameters and other functions. Therefore, it is

usually quickest on a single device to use the least number of tiles possible.

2.1.2 Fusing

Fusing is the process of combining similar tiles into one task such that

they can be executed independently from other tiles. This fusing task requires

all necessary layer weights, which in the case of convolution is all filter weights

for each layer. To run, it also needs the input tile to the first layer. Fusing in

this manner is ideal for feature-heavy layers as the weights are relatively small
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compared to the feature being used.

Critically, since convolutional filters are generally larger than 1 × 1,

each convolution for a point requires the points surrounding it to be added to

the convolution. Around the outer edge of the image, this can be addressed

with zero-padding. However, on the edge of a tile that is adjacent to other

tiles, boundary information must be present to compute the correct output.

Therefore, we must pad the tiles with the feature information from an adjacent

tile. This produces overlapping data.

This phenomenon is shown in Figure 2.1. The tile size in layer 1 of

Figure 2.1 exceeds the bounds of the original grid shape. The larger the

number of layers fused, the more information that must be padded to the tile.

This overlap with other grids introduces redundant computation, and can add

latency.

2.1.3 Data Reuse

Data reuse mitigates the redundant computation introduced by fusing.

It shares the overlapped data between adjacent tiles so that one tile is freed of

that computation. Figure 2.2 depicts tile A executing first, and then tile B is

free to use that information without computing it. This allows high levels of

fusing to have comparable computational complexity to the original non-fused

and non-tiled variants.

Importantly, to maximize data reuse, it is necessary to develop an or-

dering of the tiles. The approach taken by [13] is simply to execute every other
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tile (for example 0, 2, 4, etc. when numbered from left to right) to maximize

the overlapped data that the other tiles (such as 1, 3) have access to.

2.2 YOLOv2

YOLOv2 is an object detection framework presented in [9]. Its convo-

lutional layers are representative of many modern CNNs. It uses the Darknet

network and inference engine. Statistics about the first 16 layers of this model

are shown in Table 2.1. This report uses the first 16 layers of the network only

to emphasize the feature-heavy optimization. Using MAFAT configurations

on weight-heavy later layers will not have any added benefit. For this reason,

a single partition or other methods should be considered if these layers exceed
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Table 2.1: Data and sizes for the first 16 layers of Darknet.

Layer Type Dimensions Weights Input Output Scratch Total
0 Conv 608x608x3 3456 4.23 45.13 38.07 87.43
1 Max 608x608x32 0 45.13 11.28 0.00 56.41
2 Conv 304X304x32 73728 11.28 22.56 101.53 135.45
3 Max 304x304x64 0 22.56 5.64 0.00 28.20
4 Conv 152x152x64 294912 5.64 11.28 50.77 67.97
5 Conv 152x152x128 32768 11.28 5.64 11.28 28.23
6 Conv 152x152x64 294912 5.64 11.28 50.77 67.97
7 Max 152x152x128 0 11.28 2.82 0.00 14.10
8 Conv 76x76x128 1179648 2.82 5.64 25.38 34.97
9 Conv 76x76x256 131072 5.64 2.82 5.64 14.23

10 Conv 76x76x128 1179648 2.82 5.64 25.38 34.97
11 Max 76x76x256 0 5.64 1.41 0.00 7.05
12 Conv 38x38x256 4717872 1.41 2.82 12.69 21.42
13 Conv 38x38x512 524288 2.82 1.41 2.82 7.55
14 Conv 38x38x256 4718592 1.41 2.82 12.69 21.42
15 Conv 38x38x512 524288 2.82 1.41 2.82 7.55

Note: The sizes are in Megabytes except for the Weights which are in bytes

memory requirements, which is out of the scope of this report.

The table displays the dimensions, sizes of the weights (the filter pa-

rameters), input size, output size, and the scratch memory. The scratch space

size of a given layer is the memory that Darknet allocates in order to do a

layer calculation. Given output width w, height h, filter length f , stride s and

number of channels c, the scratch size is defined for layer l as:

scratch =
w × h× (f)2 × c

s
(2.1)

Clearly, the largest combined memory for a given layer is layer 2. If
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that layer is loaded in its entirety, Table 2.1 states that the processor needs

at least 135 MB of memory for YOLOv2 to run cleanly. This is a potential

explanation for the increase in the time of Figure 1.1 in Section 1.1, even

though the input, weights and output only add up to 56 MB.
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Chapter 3

Memory-Aware Fusing and Tiling

This report proposes memory-aware fusing and tiling (MAFAT). In-

stead of fusing all layers to minimize communication, MAFAT separates lay-

ers into up to two layer groups to provide additional control over memory

usage. The advantage to multiple layer groups is greater tiling flexibility and

smaller overlaps. For example, if the early layers take up significantly more

data than the later layers, it may make sense to tile the earlier layers more

heavily. In this case, there is less memory being used in the earlier layers, but

there’s no significant added overhead in later layers from unnecessary tiling.

Additionally, for a smaller number of fused layers, the overlap incurred will be

less. This means that there is less redundant computation, and that the grid

of the earlier layers does not have large task size disparities. In a standard

3 × 3 fused tiling with data reuse, the middle task does not reuse any data.

Because of this, it is much larger than the surrounding tiles. This means that

the memory usage is disproportionately large for that task. The less overlap,

the less this phenomenon occurs, the more even the tasks are, and the less

maximum memory used.
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3.1 Methodology

MAFAT currently takes any set of n convolutional and maxpool layers

(layers which take the maximum value from a local set, and can also be tiled).

The layers are configured in a single layer group with all layers fused or two

layer groups separated by a cut < n. This cut is the point at which the two

layer groups are split. The first layer group will be from layer 0 to layer cut−1,

and the second will be from layer cut to layer n. In this way, each layer is part

of one of the two layer groups. Of course, there is some additional overhead.

Not only must additional parameters be stored, but the cut layer must be

merged in memory and re-tiled.

Potential cuts are determined in a memory-aware fashion. Collecting all

the tiled data into a single input tensor and re-tiling can be memory intensive.

To make this as efficient as possible, the cuts were chosen to be directly after

maxpool layers. After these layers, the tensors are signifiantly smaller, as

they have effectively just been down-sampled. In the YOLOv2 example in

Table 2.1, the potential cuts are at layers 2, 4, 8, and 12.

For the two layer groups, the tiling for each group is independent of the

other. This means that the first layer group could be tiled at 5× 5 while the

second could be tiled at 2 × 2. The potential tilings were all even on height

and width, and were 1× 1, 2× 2, 3× 3, 4× 4, and 5× 5.

14



3.2 Predicting Maximum Memory Usage

We also developed a predictor of the maximum memory usage of a

given MAFAT configuration based on the maximum memory usage of the

largest tile in each layer group. It was observed that layer groups would

generally exceed memory towards the beginning and middle of their execution.

Likely, the tasks were swapping due to the large memory requirements of the

early layers. Additionally, it was found that the factors that best predicted

maximum memory usage were the largest combination of:

• scratch space of tile t

• input to tile t

• output of tile t

• output of previous layer to tile t

While other parameters such as the size of data reuse and size of tasks

waiting in the processing queue were considered, these were found to nega-

tively affect the ability of the predictor to accurately predict memory usage.

Additionally, weights for all layers in the fusing are assumed to be in memory

constantly, as well as a significant amount of additional overhead devoted to

network parameters, system variables, and other data. A constant bias term

of 31 MB was empirically determined to account for these. The bias used is

expected to vary should the operating system, network or hardware change.
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Since there are two layer groups, both must be checked for the maxi-

mum memory that they require. Therefore, each tile in each group needs to be

checked in order to calculate the memory usage. The memory predictor is a

variation on the Fused Tile Partitioning Algorithm from [13], and is shown in

Algorithm 1. This algorithm predicts the maximum memory usage of a given

layer group and tiling strategy. The inputs to Algorithm 1 are the parameters

of a layer group spanning from layer top to layer bottom with an N ×M tiling

strategy, as well as a network configuration W,H,F,S with each layer l hav-

ing width Wl and height Hl, filters of size Fl and a stride of Sl. The stride is

how much the filter moves each computation.

The Grid function used in Algorithm 1 constructs an even tile grid

with no overlap, and assigns the appropriately indexed tile the coordinates and

dimensions. The upTile function calculates the dimensions of the previous tile

by calculating the additional overlap that is required due to the filter and the

stride used. The upTile function is outlined in [13] as the traversal function.

To cover both of the layer groups that are possible in the network, Al-

gorithm 2 runs the layer group prediction for both cuts and gets the maximum

of the two. The maximum of both runs is the maximum of the system. The

additional inputs required are a first layer group of size N1 ×M1 fused until

cut− 1, and a second layer group of size N2×M2 fused from cut until the end

of the layers.

Figure 3.1 depicts the predicted memory limit and the measured limit

for a single layer group. The measured limit was determined using the setup

16



Algorithm 1: Memory predictor for a single layer group

1 predictLayerGroup(N,M,W,H,F,S, top, bottom)
2 max← 0;
3 for i ∈ 0..N do
4 for j ∈ 0..M do
5 l← bottom;
6 tilel ← Grid(N,M,Wl, Hl, i, j);
7 while l ≤ top do
8 win, hin, wout, hout, cin, cout ← tilel;
9 scratch← wout × hout × cin × (Fl)

2/Sl;
10 input← win × hin × cin;
11 output← wout × hout × cout;
12 mem← scratch + output + (input× 2);
13 if mem > Max then
14 Max← mem;

15 if l < top then
16 tilel−1 ← upTile(tilel, N,M,Wl−1, Hl−1, Fl, Sl);

17 l← l + 1;

18 return Max + bias;

Algorithm 2: Memory predictor for the entire network

1 predictMem(N1,M1, N2,M2,W,H,F,S, cut, n)
2 top← 0;
3 bottom← cut− 1;
4 firstMem← predictLayerGroup(N1,M1,W,H,F,S, top, bottom);
5 top← cut;
6 bottom← n;
7 secMem← predictLayerGroup(N2,M2,W,H,F,S, top, bottom);
8 return Max(firstMem, secMem);

17



Figure 3.1: Predicting the memory usage for fully fused 16 layers.

Figure 3.2: Predicting memory usage for fused 8 layers with a 2x2 fused tiling
on layers 9-16.
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in Section 4.2 by decreasing the memory constraint in 1 Megabyte increments

until swaps were observed. Figure 3.2 shows the predicted values against the

measured values for the MAFAT configurations with a cut at layer 8 and a

2× 2 bottom tiling strategy. The predictor still performs well.

3.3 Configuration Algorithm

To determine the ideal MAFAT configuration, Algorithm 3 performs a

search over a subset of the configuration space. Its goal is to return a near-

optimal configuration of the network such that the end latency will be as

small as possible. The inputs to the algorithm are the layer parameters and

the memory limit. The relevant layer parameters are width (Wl), height (Hl),

filter size (Fl), stride (Sl), and the total number of layers to be fused (n). The

vector of potential cuts (Cuts) is specific to YOLOv2, due to the location of

the maxpool layers. The restriction of the search space is based on a manual

search of the configuration space and best results in that space. Specifically,

no latency advantage was found for cuts at layer 4, and when there were cuts

made, the best performing second layer group tiling was 2× 2. Therefore, the

search can be simplified dramatically. The tiling strategies are also currently

limited to even squares. The final restriction to the space is present on lines

9 and 10. It was observed that cuts at layer 12 and later with a large number

of tiles developed more overlapped data and overhead than smaller cuts, and

are never optimal. Thus, they are excluded from the search space.

Algorithm 3 returns the number of tiles for the first layer group LG1,

19



Algorithm 3: Configuration search algorithm

1 getConfig(W,H,F,S, n,MemoryLimit)
2 Cuts← {16, 12, 8};
3 Tiles← {1, 2, 3, 4, 5};
4 LG2 ← 4;
5 N2 ← LG2; M2 ← LG2;
6 l← getMaxLayer(NetworkParams);
7 for cut ∈ Cuts do
8 for tile ∈ Tiles do
9 LG1 ← tile;

10 N1 ← LG1; M1 ← LG1;
11 if cut ≥ 12 and tile > 2 then
12 continue;

13 else if predictMem(N1,M1, N2,M2,W,H,F,S, cut, n) <
MemoryLimit then

14 return LG1, LG2, cut;

15 return LG1, LG2, cut

the cut cut, and the tiling for the second layer group LG2. It performs the

modified search starting at the highest memory value, and slowly creates more

even configurations that require more overhead, but fit in smaller memory

footprints. If a configuration is found that fits in the memory limit, there is

no unexplored configuration in the search space that will produce a higher

memory prediction. Therefore, the latency returned should be the lowest. If

virtual memory is enabled, this algorithm assumes that any additional swaps

from the operating system will be slower than picking a better configuration.

If no configuration can be found, then the algorithm returns the most even

configuration: 5× 5 into 2× 2 with a cut at layer 8.
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The intuition behind the algorithm is based on additional tilings creat-

ing additional redundancy. Therefore, the algorithm greedily attempts to find

the fewest tiles it can use.
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Chapter 4

Experimental Results

We applied MAFAT to the YOLOv2 object detection network. The

measurements were all carried out on a Raspberry Pi3 running Raspian. The

Raspberry Pi was equipped with a quad-core 1.2GHz ARM Cortex-A53 proces-

sor and a total memory size of 1 GB. During the measurements, we restricted

the Raspberry Pi to a single core and a variable amount of memory from 16MB

up to 256MB.

This chapter describes the measurement process used, the manual ex-

ploration of the configuration space, as well as the results of automatically

optimized MAFAT against the standard Darknet implementation.

4.1 Measuring Swapping, Memory Usage, and Latency

A separate measurement thread was created to measure system swaps

in and out of memory each second. This gives information about likely places

for a bottleneck. This was achieved using the vmstat command. Due to the

vmstat only working at a full system level, it was crucial to keep the test

environment free of as many other running processes as possible. Despite this,

there is some noise in the swap measurement.
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To measure memory usage of just the process, an additional thread was

used that polled the process using the ps command. This way we could filter

out other processes without as much added system noise. This was useful in

seeing more accurately where the swapping would line up with the program.

Both of these threads however added some additional memory usage

and could potentially increase swaps or create conflicts with the process.

Therefore, when the latency for the process was calculated, internal measure-

ments were used via the chrono.h library in C++ for accurate, wall clock

times at a millisecond granularity. This also allowed for precise measurements

at the beginning and end of an inference. In this report, the latency was

measured before the input image was loaded and after the first 16 layers had

executed.

4.2 Constricting Memory and CPU Size

To mimic a smaller edge device with minimal effort, this report used

control groups. Specifically, the cpuset and memory control groups were used

to restrict the experiment to a single core and a smaller amount of memory,

respectively. This allowed for finer adjustments of memory constraints without

the need for rebooting. For predictability and reproducibility, as few active

processes as possible were running during final latency measurements.
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4.3 Manual Exploration

To develop the algorithm, and to better understand the configuration

performance, we first performed a manual search of different possible configu-

rations. In the following, a MAFAT configuration with a top layer group tiling

of N1 ×M1, a cut a layer c, and a bottom layer group tiling of N2 ×M2 is

written as N1 ×M1/c/N2 ×M2

Using prior knowledge, the search space of possible cuts was restricted.

As mentioned in Section 3.1, intermediate data is reduced the most by cutting

the network into two layer groups at layers 4, 8, and 12, or no cut at all. In

each case, all layers up to and after the cut were fused together. Additionally,

the final layers were split into either 2× 2 or 3× 3 tiles for reducing maximum

memory while still allowing for faster processing times. The tilings for the top

layer group were swept from 1× 1 to 5× 5.

Figure 4.1 shows the effect of top layer group tiling strategies on mea-

sured latency across a shrinking memory limit. Each line represents the tiling

of the top layer group, which is then cut at layer 8 and fed into a 2×2 bottom

layer group. Figure 4.1 demonstrates the superiority of finer tilings in smaller

memory footprints, but also the additional overhead they generate when more

memory is available. For high memory values in excess of 200 MB, the 1x1

tiling is best. On the other hand, using a 4 × 4 or 5 × 5 tiling scheme yields

much better results for lower memory values.

Figure 4.2 shows the effect of cut placement and bottom layer group
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Figure 4.1: Latency for different tilings on a cut at layer 8.

Figure 4.2: Latency for different cut configurations.
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tiling strategy on latency for varying memory limits. The top tiling for this

line is the tiling strategy (from 1× 1 to 5× 5) that yields the smallest latency

for the given cut and bottom tiling. The best top tiling for each configuration

is also annotated onto the graph at each memory point. For example, the

min/8/3 × 3 line represents a cut at layer 8 with the best top tiling and a

3× 3 bottom tiling. It can therefore be viewed as the optimized top tiling for

a given cut and bottom tiling. As seen in the graph, middle cuts at layer 8

have the fastest latency at tighter memory restrictions. It is also clear that the

absence of a cut becomes costly at tighter restrictions due to additional layer

overlapping. This figure also reinforces Figure 4.1 to show that finer tiling

perform better at tighter memory restrictions.

Figure 4.3 compares the best measured latency obtained by the MAFAT

manual exploration and search algorithm latencies to the original latencies

measured from the standard Darknet Implementation across decreasing mem-

ory limits. It is clear from the figure that MAFAT outperforms Darknet and

reduces the latency and swaps of an inference.

Interestingly, the minimum configuration for the algorithm, 5×5/8/2×

2, is predicted to have a maximum memory usage of 66 MB. Currently, there-

fore, there is not a MAFAT configuration that does not run in less than a 66

MB footprint without swapping. However, as memory restrictions get even

tighter, the latency increases at a much slower rate than Darknet. This shows

that the MAFAT configuration also performs much better under swapping due

to more even memory usage across the execution of the network.
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Figure 4.3: Darknet latency compared to algorithm and minimum latency
measured.

4.4 Algorithm Performance

Figure 4.3 also plots the measured performance for the configurations

produced by our optimization algorithm. The differences between the algo-

rithm and the best measured are shown to be minimal. The algorithm’s specific

configuration compared to the best measured can be found in Table 4.1. To

evaluate algorithm performance, the outputs of the algorithm were calculated

for the memory values in the table. This allowed for easy comparison with the

existing measured data. Notably, the latency values are quite similar and are

all within 6 percent of the best measured from manual exploration. Given how

the algorithm relies on prior knowledge and some of the data already recorded,

this level of performance is not surprising. However, the intuition behind the
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Table 4.1: Comparison of configurations and latencies.

Best Measured Algorithm
MB Configuration Latency (ms) Configuration Latency (ms)
256 1x1/NoCut 15065 1x1/NoCut 15065
192 1x1/NoCut 15023 1x1/NoCut 15023
128 2x2/12/2x2 16757 2x2/NoCut 16795
96 3x3/4/2x2 17048 2x2/12/2x2 17543
80 3x3/8/2x2 16968 3x3/8/2x2 16968
64 4x4/8/2x2 17753 5x5/8/2x2 18679
48 5x5/8/3x3 19749 5x5/8/2x2 19991
32 5x5/8/2x2 22215 5x5/8/2x2 22215
16 5x5/8/2x2 31095 5x5/8/2x2 31095

algorithm and the basic results should help apply it in other domains.
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Chapter 5

Summary and Conclusions

This report presents memory-aware fusing and tiling (MAFAT), an ex-

pansion of existing fusing and tiling strategies in order to make feature-heavy

convolutional neural network layers feasible on smaller edge devices. Origi-

nally, edge devices would have increasing latency measurements due to swap-

ping data between the memory and disk. Many edge devices cannot spare

200 MB to run early convolutional layers, so we break up each layer into

sub-convolutions that can then be grouped together and executed in a much

smaller memory footprint. This report shows that certain configurations of

tiling can offer a respectable 1.37 speedup compared to the naive approach at

64 MB and up to a 2.78 speedup with only 16 MB available.

Additionally, the intuition and structure behind the memory usage of

the process is explored, and a simple algorithm is proposed to predict the max-

imum memory usage of a MAFAT configuration. Given this, an appropriate

configuration can be returned for a user to use that is within 6 percent of the

best measured latency from a manual exploration.

The code used to take these measurements can be found at [2]. This

research area can be further improved by use variable tiling, where each end
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tile is not the same size. We believe this could allow for reduced task size

variation, and thus smaller footprints. We also want to explore this algorithm

and see how well the predictor applies to other CNNs on the edge. While the

intuition is useful and true, calculating the bias and the choice of variables

could restrict the algorithms’ overall efficacy. Currently, the end user must

get a feel for possible different measurements and what cuts make sense. Ad-

ditionally, more than two tiles and even larger tiling strategies, such as 6× 6

could be useful, especially in super-low memory constraints. Finally, more

sophisticated algorithms could be used to predict amounts of swapping as well

and make more optimal and exhaustive recommendations.
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