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Abstract—Computational studies of biological systems have
gained widespread attention as a promising alternative to reg-
ular experimentation. Within this domain, stochastic simulation
algorithms are widely used for in-silico studies of biochemical
reaction networks, such as gene regulatory networks. However,
inherent computational complexities limit wide-spread adoption
and make traditional software solutions on general-purpose
computers prohibitively slow. In this paper, we present a spe-
cialized stochastic simulation processor that exploits fine- and
coarse-grain parallelism in Gillepie’s first reaction method to
achieve high performance. The processor is designed to support
large-scale networks more than a million species and reactions
using external DRAMs. In addition, we introduce a dedicated
compiler that creates data locality for efficient memory access
and data reuse. Our performance evaluation using cycle-accurate
simulation shows that our approach achieves orders of magnitude
higher throughput for networks with different characteristics
of coupling, compared to best-in-class software algorithms on
a state-of-the-art workstation.

I. INTRODUCTION

In recent years, computational biology has become an
important tool, promising to enable new discoveries. Toward
this goal, one develops a model of the biological system
in question, which is in turn simulated on a computer to
predict its behavior. A popular class of models are for systems
where molecular species interact with another by means of
chemical reactions, forming biochemical networks of different
sizes. Among different computational approaches, stochastic
simulation lends itself well to capturing the random nature of
biochemical processes owing to spontaneous fluctuations in the
molecular interactions [1]. Generally, the interest is thereby in
generating trajectories that simulate network dynamics as the
time evolution of species populations.

Gillespie’s original stochastic simulation algorithms
(SSAs) [2], [3] evaluate reactions in a continuous, stepwise
fashion to execute the one most likely to occur next. Since
the algorithms simulate individual reactions over time, they
are accurate but computationally very intensive. They have
an algorithmic complexity of O(EM) for a single simulation
run, where E is the number of simulated events and M is the
number of reactions. In addition, the need for a large number
of Monte Carlo simulations over a long biological time
of interest makes traditional software solutions on regular
computers or supercomputers either prohibitively slow or
expensive. This severely limits the scope of possible studies,
especially for large and complex biological networks. For
example, simulating expression of one gene in one generation
of E. coli (with 30 min. simulated real time between cell

divisions) can take more than 20 h [4]. Simulation of the
whole cell, which encompasses more than 1014 events [5],
requires 30 years even on modern GHz-class workstations [6].

Various approaches have attempted to tackle the complexity
problem either through algorithmic enhancement or by real-
izing the algorithms on high-performance compute platforms.
Many optimized variants of SSAs have been developed, most
of which improve performance by leveraging dependency
information [7], [8] or by introducing efficient data structures
and search methods [9], [10], [11]. Their computational costs
vary between O(E logM) and O(E).

Researchers have also harnessed the compute power of dif-
ferent platforms including supercomputers [12], [13], compute
clusters [14], [15], and GPUs [16], [17]. All these approaches
utilize multiple compute nodes to exploit the potential massive
parallelism exhibited in SSAs, both coarse-grain across mul-
tiple simulation runs and fine-grain across concurrent evalua-
tions of multiple reactions in each time step [18]. However,
supercomputing-based solutions are expensive. Furthermore,
in all cases, large memory, bandwidth, or synchronization
demands limit achievable performance.

Previous approaches for custom hardware realizations of
SSAs on FPGAs [6], [19], [20], [21] have shown promising
results. However, the flexibility provided by reconfigurable
hardware fabrics limits their size and performance. Further-
more, FPGAs typically require difficult and time-consuming
redesign processes for each new problem instance, which
involves complex synthesis tools that are not intuitive to the
intended users in the natural sciences. While some approaches
allow for reconfiguration without the need to resynthesize [21],
they are limited to a particular SSA and impose tight restric-
tions on parameters such as network size.

Our long term goal is to provide life scientists with
computational tools that will allow them to study hitherto
infeasible, life-size networks. Toward this goal, we envision
special-purpose stochastic simulation processors that combine
many low-cost cores into a flexible and scalable design with
sufficient performance and capabilities to simulate large-scale
biochemical networks. In this paper, we present the hardware
design of an SSA processor core that can accommodate more
than a million reactions and species using external DRAMs.
Our processor is supported by a preliminary version of an
optimizing compiler that can map network descriptions in
standard SBML form [22] onto the SSA execution fabric.
Using cycle-accurate simulations, we compare performance
with best-in-class software algorithms running on state-of-the-



TABLE I
ELEMENTARY REACTIONS

Type Reaction Propensity am

Source (Src) ∅ c→ Products c

Unimolecular (Uni) S
c→ Products cx

Bimolecular (Bi1) 2S
c→ Products cx(x− 1)/2

Bimolecular (Bi2) S1 + S2
c→ Products cx1x2

art workstations. Furthermore, we show how characteristics
of simulated networks can affect design tradeoffs in relation
to compiler optimizations and performance-limiting factors
such as external bandwidth and data reusability. Results show
that our current design running at 400 MHz in cost-effective
legacy technology can outperform existing software solutions
by orders of magnitude in improved throughput.

The paper is organized as follows: In Section II, we first
review various SSAs and choose the algorithm that best suits
a hardware implementation based on analytical performance
models. In Section III and IV, we elaborate on the details of
our design and dedicated compiler. In Section V, we evalu-
ate and compare the performance with software simulation.
Finally, in Section VI, we conclude with a summary and an
outlook on future work.

II. ALGORITHM ANALYSIS

In the following, we analyze various SSAs in terms of
suitability for hardware acceleration [23]. We use throughput
as our comparison metric and define it as the number of
simulated time steps per unit simulation time. To achieve
speedups, we can parallelize stochastic simulations at two
different levels: (i) coarse-grain across multiple instances of
a Monte Carlo simulation and (ii) fine-grain across concurrent
evaluations of multiple reactions in each time step. Therefore,
we can naturally envision our hardware model as a coarse-
grain array of stochastic processing elements (SPEs) that each
contain a number of fine-grain reaction units (RUs).

In stochastic simulations, a biological network is described
as a set of chemical equations having M reactions and N
species with an initial state of molecular populations X =
[x1, . . . , xN ]. Each reaction Rm in the network occurs at
a rate cm, where a combination of reactant species yields
product species, i.e., populations are affected according to a
state-change vector V . For example, in a reaction DNA c→
RNA, DNA is transcribed to RNA, consuming one DNA
molecule and producing one RNA molecule at a rate of c,
thus V = [-1, 1]. The probability that a reaction will fire in
the next infinitesimal time interval dt is amdt, where am is
the so-called propensity for reaction Rm. Complex chemical
equations can be decomposed into elementary reactions each
having at most two reactants [1]. Corresponding propensity
functions are summarized in Table I [9].

A. Stochastic Simulation Algorithms

SSAs can mainly be classified into exact, approximate, and
hybrid methods. Our focus in this paper is confined to exact
SSAs only. In such algorithms, all reactions are repeatedly
evaluated at every time step by answering the following two

questions: What reaction (Rµ) will fire next and when (τ )
will the next reaction occur? Once Rµ and τ are found, the
simulated time is advanced by τ , and the selected reaction is
fired by adding the change vector Vµ to the state X .

Exact SSAs include the direct method (DM) [3] and the
first reaction method (FRM) [2]. In both algorithms, all M
propensities need to be evaluated in every time step. However,
in a regular sequential implementation, a DM is typically more
efficient. It randomly generates τ = − ln (r1)/a0 and samples
µ as the index satisfying

∑µ
m=1 am > a0r2, where r1 and r2

are unit uniform random numbers and a0 =
∑
am is the sum

of propensities over all reactions. By contrast, an FRM first
computes the predicted times τm = − ln (rm)/am followed by
a τ aggregation, which determines τ and µ as argminm{τm}.
This requires a larger number of random number generations,
which are expensive in software. In hardware, the situation
is reversed. There, computation of − ln (rm) and am can
be performed in parallel and the overhead for generating
random numbers is effectively amortized. Furthermore, while
the latency for parallel computation of τ is the same in a DM
and FRM, a DM requires an extra search to determine µ. Even
when using a parallel comparator with b banks of memory, the
cycle count required for this search still grows linearly with
M/b, significantly increasing the latency on the critical path.

Many optimized variants of the DM and FRM have been
proposed. One of the key insights is to only recompute
reactions for which propensities are affected by the firing
of the previous reaction. This includes the optimized direct
method (ODM) [8], the sorting direct method (SDM) [24],
and the logarithmic direct method (LDM) [25] as variants
of the basic DM, and the next reaction method (NRM) [7]
as an optimization of the FRM. Differences exist in the data
structures used to maintain an (ordered) history of previously
computed reaction data. Such methods can be implemented
as derivatives of the basic FRM and DM microarchitectures.
Dependency information can be stored as part of the global
reaction tables, and after receiving the final state-change vector
V from memory, a central controller can trigger execution only
for those reactions for which input species populations have
changed. The difficulty lies in realizing the history caches,
where we only consider the ODM and NRM as candidates for
hardware implementation.

In the ODM case, an additional memory stores the last
computed am and a0 values. In each iteration, only the
propensities ai that have changed will be recomputed and the
sum a0 is updated before following a regular DM computation.
In the NRM case, the τ -aggregator is modified to operate as a
priority queue that always delivers the index and value of the
currently smallest τ . In the original NRM, dependent τm are
recomputed by scaling their previous value with the ratio of
old and new propensities. This avoids the need for generating
a new random number but requires an additional am memory
with associated control overhead. In hardware, random number
generations are effectively hidden and it will be more efficient
to simply regenerate new τm. This has already been proven to
be statistically equivalent [7].
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Fig. 1. Throughput comparison of SSA hardware variants.

In dependency-based methods, a high overhead can exist for
maintaining the necessary data structures. Furthermore, they
are only effective for networks with low dependency ratios. In
recent years, several SSAs have been proposed with the goal
of achieving near-constant computational complexity in each
time step. DM variants using a composition-rejection method
(SSA-CR) [11] and partial-propensity-based direct methods
(PDMs) [10] group and refactor computations by propensities
or species to bound the search space or eliminate the need
to recompute unaffected subexpressions, respectively. Both
approaches suffer from exponential memory requirements,
however, which negates their gains in computational complex-
ity. Finally, a hashing technique for the NRM [9] can achieve
constant-time reaction insertions and lookups at the expense
of limited history space. Complexity remains a function of the
network dependency, however, and the limited size of hash
tables requires occasional refills via fallback to a full FRM.

B. Performance Analysis

We have developed analytical performance models for the
SSA variants considered for hardware implementation. We col-
lected cycle times of all the needed operators by synthesizing
Synopsys Designware libraries using a 45nm technology at the
worst corner case. Based on these results, we relaxed obtained
delay values by a factor of more than two to target a clock
frequency of 400 MHz. We assume that RUs are pipelined
to process one reaction per cycle. Depending on the method
being realized, the basic τ -processing pipeline in each RU
has a latency Ld of 40 to 60 cycles. Furthermore, issue of
reaction data and the τ -aggregator are realized by pipelined
binary trees that each take lgR cycles. Therefore, assuming an
average network dependency factor of D for the NRM (1 for
FRM), computation of M reactions in each time step requires
Ld + 2dlgRe + dDMR e cycles. DM and ODM computations
require additional cycles to sample the reaction index.

Fig. 1 compares throughput of various designs for different
configurations in terms of the number of independent SPEs
S and the number of RUs R per SPE. For small network
sizes, throughput ranges from around 10 Msteps/s for a single
SPE up to 1280 Msteps/s for a chip with 128 SPEs. For
larger network sizes, single SPE performance approaches a

projected peak rate of R reactions every cycle for a maximum
throughput of 400R million reactions or 400 RM million steps
per second. We can note that peak throughput for 128 SPEs
with a single RU is equivalent to the performance of a single
SPE with R = 128 (i.e., 51.2/M billion steps per second).

As expected, in hardware, an FRM or NRM outperforms
a DM or ODM, respectively. In addition, NRMs outperform
FRMs for networks with low dependency factors. However,
NRM performance degrades for strongly-coupled networks.
Moreover, complex data structures can be hard to implement,
and limits in on-chip memory will result in either long access
latencies or regular FRM fallbacks. For these reasons, we
focus on the choice of FRM for initial implementation of our
SSA processor, which we will later extend with NRM (with
fallback) capabilities. Note, however, that our analysis thus
far assumes infinite on-chip memory bandwidth and size. In
reality, sustaining species and reaction traffic to keep reaction
units occupied is a major concern in SSA computations. A key
aspect in our design is therefore the optimization of memory
interfaces coupled with caching, prefetching, and compiler
support to exploit available locality.

III. STOCHASTIC SIMULATION PROCESSOR

Fig. 2 depicts a hierarchical view of our stochastic simula-
tion processor (SSP). The processor is organized as a scalable
array of stochastic processing elements (SPEs) communicating
with external interfaces including a memory subsystem and an
output interface. Driven by reaction and species instructions,
each SPE containing multiple reaction units (RUs) follows
an FRM algorithm to process species populations, determine
reactions to fire, and update trajectories in on/off-chip mem-
ories. As will be detailed later, RUs include local reaction
and species memories, but to enable simulation of large-
scale networks, reaction instructions and species data can
optionally be stored in external memory. The design employs a
memory subsystem to interface with external, off-chip DRAM
channels. In addition, trajectories are sent to an external host
through the output interface.

With this architecture, we can exploit both simulation- and
reaction-level parallelism across and within SPEs, respectively.
Networks to be simulated are compiled onto the SSP by parti-
tioning reactions across RUs in each SPE (see Section IV). For
each reaction, an instruction is generated and stored in either
RU-internal or external reaction memory. Population values
for species associated with each reaction are equally stored
in either RU-internal or external memory. To avoid access
conflicts, the population for a species shared among reactions
mapped to different RUs is replicated in distributed, RU-
specific internal and external species memories. Coherency is
maintained by broadcasting species updates to all RUs.

A key challenge is how to efficiently utilize the external
bandwidth shared among SPEs and how to effectively hide
associated latencies. The FRM exhibits little temporal locality
within the stream of reactions that is processed in every time
step. However, access patterns are predictable and, with the
help of reordering and renaming in the compiler, both reactions
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Fig. 2. Stochastic simulation processor (SSP).

and species have strong spatial locality. We have designed
the processor with this philosophy in mind. We will explain
various design aspects from the perspective of maximizing
locality, reusability, and hence exploitation of parallelism.

A. Memory Subsystem

The memory subsystem consists of three main parts: a
memory interface, species prefetchers, and reaction prefetch-
ers. The memory interface arbitrates read and write requests
from clients using a round-robin scheme to access a set
of shared, external DRAM channels. Address generation is
done in the prefetcher units. The main role of the memory
subsystem is to transfer necessary data from and to SPEs.
This includes reactions, species indicies/populations, and state-
change vectors. A key insight is that even though reactions and
species are tightly coupled, we can possibly think of these as
two separate entities in the memory subsystem. (How these
are split and merged will be discussed later.) Therefore, we
can let the memory subsystem independently read and write
interleaved streams of different data in order to eliminate
dependencies and thus reduce latency.

One interesting feature of the FRM is that the same se-
quence of reactions is iteratively and repeatedly evaluated.
Furthermore, reactions can be fetched in any order. This
implies that we can achieve consecutive, non-blocking reads
for reactions stored in external memory. In addition, since each
SPE simulates independent trajectories of the same network,
the read traffic of reactions can be shared among different
SPEs, which greatly reduces external memory bandwidth.
Reaction prefetchers contain as many reaction memory units
(RMUs) as there are RUs in each SPE, labeled with lane
IDs from 1 to R in Fig. 2. Each RMU is responsible for
continuously feeding read requests into buffers that are read
and served by the memory interface. To distribute incoming,
shared reaction traffic, broadcast trees configured as R-way
binary subtrees feed data into SPEs with a latency of lgS
cycles, where S is the number of SPEs. When the prefetched
reaction data arrives in an RMU, its associated subtree reads
the data from the RMU buffer and broadcasts it to all S RUs
with the given lane ID.

Species prefetchers require as many local memory units
(LU) as there are SPEs because separate copies of species

populations must be maintained for generating each trajectory
instance. An implication is that external memory bandwidth
is affected both by the total number of RUs (S ×R) and the
characteristics of the network being simulated. If a network
exhibits a high ratio of species to reactions N/M , it will
increase the species traffic proportionally and thus impacts the
overall throughput of the design. Hence, network features can
play a crucial role in the number of parallel simulations that
can be supported with maximum performance.

In each LU, there are R species memory units (SMUs), each
with a memory that stores species instructions, a read/write
scheduler, and request/data buffers. Dedicated species instruc-
tions, which are processed by SMUs to drive the loading
of population data from external memory according to a
predefined prefetching schedule, are automatically generated
by our compiler. In doing so, the compiler analyzes the input
network and renames each species to create strong locality in
the species indices. In this way, we can organize prefetching
instructions as a concatenation of a species index (spid) with
the number of consecutive species items (length) to fetch.
For networks intrinsically having many reactions sharing the
same reactants, and as supported by the compiler, this setup
can dramatically reduce the number of required prefetching
instructions and hence external memory references. In addition
to SMUs, each LU includes a single vector memory unit (VU)
associated with each SPE. VUs respond to cache misses and
corresponding refill requests for the loading of state-change
vectors in SPEs (see Section III-B).

The scheduler in an SMU orchestrates the reads and writes
of species populations when its client RU issues an update
(memory writeback) request. Naively interrupting the contin-
uous stream of memory reads in order to serve writebacks
as they are requested is likely to incur additional latency in
the DRAM system, e.g., if the addresses exhibit no locality.
To fully utilize the open-page policy of the DRAM controller,
which maximizes the hit rate of a row buffer in DRAM access,
the scheduler is therefore designed to achieve split transactions
for the writes, i.e., they are deferred until the next SSA time
step and finally scheduled with another read sharing the same
DRAM row address. This does not break the correctness of
the read/write order because a write is made to occur always



before a read. The frequency of discontinuity in the reads is
very rare. Especially in large networks, the firing of a reaction
in each time step requires only a few species updates.

B. Stochastic Processing Elements

A block diagram of the SPE is shown on the right of Fig. 2.
The three main functionalities of the SPE are: (i) generation of
a (τ ,µ) pair for each time step, (ii) loading and broadcasting
of a state-change vector V via the vector cache, and (iii)
aggregating species updates from each RU.

RUs take reaction instructions and species data, located in
either local on-chip or external off-chip memory, as input and
generate streams of (m, τm) values that are in turn passed into
a binary tree of comparators (MinTree). When the MinTree
is done processing reactions to determine the one with the
minimum τ , it notifies the vector cache to load the state-change
vector for the reaction µ to be executed. Depending on whether
a cache hit or miss occurs, the vector cache either broadcasts
the state-change vector into the RUs, or it first issues a read
request to the associated VU in the memory subsystem. The
vector cache is included to exploit temporal locality among
repeated firings of the same reaction. Such locality exists in
many classes of typical networks, as exemplified by ODM [8]
and SDM [24] SSAs, both of which leverage such network
characteristics to improve performance. Once broadcast into
the RUs, state-change vectors are stored in locally and used
to update corresponding species values as they are processed
in the next iteration. As part of such updates, RUs also issue
writebacks to RU-local or external species memories.

SPEs’ local output units aggregate species populations that
have been updated by each RU. At the end of each iteration,
they send aggregated data to the external host via the output
interface. In addition, if data is tagged as externally located
species, a writeback request is sent to the corresponding SMU
of the memory subsystem. The amount of data to aggregate is
minimal because every reaction firing only entails an update
of a few, typically at most four to five species [7]. Moreover,
depending on what reactions are allocated locally to a given
RU, external updates may not be needed at all.

The main problem of implementing large-scale FRM algo-
rithms is that there are several factors that can lead to stalls in
the RU pipeline. Stalls are created mostly by data hazards in
which the current SSA iteration is blocked on species updates
resulting from the reaction fired in the previous iteration. This
requires a load of a state-change vector followed by an update
of species populations and a writeback of all copies of updated
species data. Moreover, given a reaction, the RU needs to first
figure out what input species are involved in the reaction and
then fetch the species populations accordingly. Incurred laten-
cies are especially prominent if the data is placed externally
and if a miss occurs on a reference to the vector cache. In
our design, we focus on resolving resulting underutilization
of the pipelines. Toward this goal, we aim to maximize the
data reusability through both hardware and compiler support,
including modifications to the FRM algorithm itself.
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Fig. 3 shows a block diagram of the main RU pipeline.
Reactions are fetched in a consecutive manner first from
local reaction memory and subsequently from the RMU-
internal reaction buffers filled by the memory subsystem. In
parallel with reactions, species data is loaded from an internal
scratchpad or from the SMU’s buffer by a molecules fetch
unit. The partitioning of reactions and species as well as
the schedule of their prefetching sequences is managed by
the compiler. In this way, we can use a scratchpad memory
with prefetching instead of expensive caching. Finally, species
are processed together with their reactions when both are
available.

Forwarding paths in an additional molecules processing unit
are used to inject updates into species as they are read. The
state-change vector received in the previous iteration is used
to update matching species values streamed through a vector
update unit. In addition, updated values are written back to
local scratchpad or external species memories. Writebacks are
sent to external memory via the SPE’s local output unit. In
addition, they are cached in a local writeback update unit that
can substitute externally fetched data until updates, which, as
described above, are delayed by one iteration to allow for
optimized DRAM accesses, have ultimately been scheduled
and committed by the corresponding SMU. Hence, external
memory roundtrips are bypassed and continuous prefetching of
species across iterations becomes possible, i.e., the processing
of the next, already prefetched iteration can begin as soon as
the latest change vector becomes available. Finally, prior to
passing the species data into the tau generator, if the reaction
requires two different reactants, the merger unit associatively
searches its internal registers by reaction tag and either passes
both reactants to the tau generator or stores a reactant species
temporarily until its companion is available.

The tau generator then processes species data and reaction
coefficients to compute τm = − ln (rand())/am in a fully
parallelized and pipelined fashion, where am is produced using
a dedicated pipeline that implements the equations in Table I.

C. Mapping of Instructions and Data

Partitioning and allocating external memory space for re-
actions and species is crucial for achieving performance. Ex-
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cessive DRAM bank and page conflicts can create significant
latency overhead, thus underutilizing the limited external band-
width shared by multiple SPEs. We optimize DRAM access
patterns through a combination of hardware and compiler
support. Given information on the target DRAM system and
the SSP hardware configuration (i.e., number of SPEs and
RUs), the compiler generates bit files that can be used to
configure the SSP. The bit files contain DRAM address bit-
masks as well as a segment-based memory maps for all types
of data including reactions, species indices/populations, and
state-change vectors. The hardware merely generates addresses
based on this information using incremental counters.

Fig. 5 shows the instructions and data format of the SSP.
Each reaction instruction contains information for reaction
type, rate constant, and one participating input reactant. A
Bi2 reaction requires two such instructions to store additional
reactant information. References to reactant data stored in
species memories are encoded as Op and Addr bit fields. If the
Op is set to FIFO, the species data is first read from the SMU’s
prefetch buffer and cached into the scratchpad location given
by the Addr field. (Currently, half the scratchpad is used as
memory dedicated to internally-mapped species, and the other
half is used to cache externally fetched data.) In either case,
species data is read from the given scratchpad address and
processed by the RU. Species data in the scratchpad is further
tagged with its species index to allow for later writebacks.

Other species prefetching instructions, species data, and
state-change vectors are simply encoded as relevant infor-
mation in the instruction or data words, where two species
instructions and two sets of species data can fit into each 64-bit
word. Note that expanding the bit width of instruction and data
words will allow to increase supported network sizes but will

only work given enough external bandwidth. Also, the number
of reactions and species that can be supported is limited by
the size of the target scratchpad memory and the bit width of
the reaction instruction. Currently, by constraining the Addr
field to 10 bits, we can support more than a million reactions.
In terms of a species count, more than a million species are
also easily achievable.

Finally, Fig. 4 shows how data is partitioned and allocated
to the DRAM system. For simplicity, we assume that all
species prefetching instructions are mapped into local memory
and thus omitted in the illustration. As shown in Fig. 4(a),
the compiler distributes different data types across separate
channels, ranks, and banks to avoid conflicts among the
prefetching blocks of the memory subsystem. In this example,
SMUs and VUs share the same rank. This has little impact
on performance since a vector load only occurs once per SPE
and time step. In configurations with more than two ranks,
the compiler will allocate other unoccupied ranks for VUs.
Fig. 4(b) shows the resulting address encoding used in the
prefetching units. Species and reaction indices stored in the
corresponding instructions are thereby mapped into DRAM
addresses to read species data and change vectors from,
respectively. By contrast, reaction instructions themselves are
simply read from consecutive reaction addresses generated in
RMUs. As mentioned above, species instructions are only
stored in local memories, i.e., never fetched from external
DRAM. Since an RMU occupies an entire rank of a channel,
the address is mapped to efficiently utilize the bank-level
parallelism. Note that since the memory interface currently
implements a round-robin arbitration and SMUs take their
turns one at a time, their bank access patterns are similar.

IV. NETWORK COMPILER

Configuring, partitioning, and scheduling of executions on
the SSP can have a significant, non-intuitive influence on
performance. We have developed a compiler that uses sim-
ple heuristics to automatically map network descriptions in
standard SBML [22], [26] format onto the SSP. The compiler
aims to optimize both the scheduling of reactions and species
as well as the partitioning of networks across multiple RUs in
an SPE. A key for both is to expose locality through reordering
and renaming. Consider a simple model of intracellular viral
infection [1] with six reactions and four species:

Rd : RNA→ DNA Rr : DNA→ DNA + RNA Rn1 : RNA→ ∅
Rv : DNA + P→ V Rp : RNA→ RNA + P Rn2 : P→ ∅



Algorithm 1 Scheduling of reactions for off-chip species.
1: while not all reactions scheduled() do
2: for all ru do
3: for all scratchpad line of data do
4: line← bring in next line(ru)
5: update scratchpad(ru, line)
6: op← FIFO
7: for type ∈ {uni, bi} do
8: s← True // s: schedulable, m: reaction index
9: while s do

10: (s,m, addr, spid) = search reaction(ru, type)
11: if s then
12: schedule(m, op, addr, spid)
13: op← SPAD

Renaming species to (S0 ≡ RNA, S1 ≡ DNA, S2 ≡ P,
S3 ≡ V) and reordering reactions to (R0 ≡ Rd, R1 ≡ Rp
R2 ≡ Rn1, R3 ≡ Rr, R4 ≡ Rv , R5 ≡ Rn2, R6 ≡ Rdummy)
creates locality in both the reaction and species indices when
executing the network in the given order. Note that even
though V is not a reactant species, it has to be streamed
through an RU using a dummy instruction R6 (encoded as
special reaction type) for cases when updates of V need to
be recorded. Spatial locality among monotonically increasing
indices helps to exploit parallelism when accessing data in
external DRAMs. Furthermore, temporal reuse of species
utilizes the scratchpad memory efficiently. In general, however,
the presence of bimolecular reactions such as Rv will create
more complex dependencies that make optimal scheduling of
reactions a much harder problem.

Our compiler executes the following steps: (i) read an
SBML model, (ii) partition reactions, (iii) rename and schedule
species, (iv) schedule reactions related to on-chip species,
(v) schedule reactions related to off-chip species, (vi) create
a memory map for external DRAM channels, (vii) create
instructions for both reactions and species, and (viii) generate
programming files. After reading an SBML model, the com-
piler distributes reactions across RUs by grouping them based
on reactant species. For bimolecular reactions, it arbitrarily
chooses the lower-ordered reactant as the grouping factor.
To balance workloads, the compiler then partitions groups
uniformly across RUs. Next, renaming is done by assigning
an index to each species such that those shared by more
reactions than others are given lower indicies. This enables the
compiler to map these species and their associated reactions to
internal memories first, thus extending the period between the
time external data is prefetched and needed. To map as many
reactions as possible, reactions are scheduled into internal
memories in priority of reaction types, with unimolecular
reactions before bimolecular ones. Bi2 reactions are only
scheduled if both reactants are mapped internally. Other Bi2
reactions are handled in the next off-chip scheduling step.

Algorithm 1 shows the pseudo code for final scheduling
of reactions associated with off-chip species data. Based on
renamed species indices, the compiler brings consecutive lines
of species data into the cached region of the scratchpad. In
order of reaction type, it then searches for reactions whose
reactants are in either cached or uncached scratchpad memory.
Such reactions are scheduled and inserted into a queue,

TABLE II
EFFECT OF COMPILER OPTIMIZATIONS ON SSP PERFORMANCE.

SSP Network Throughput [ksteps/s]
S R M N No-opt Opt
1 8 32,768 4,096 28.4 48.9 (172%)
1 8 65,536 8,192 10.2 21.4 (211%)
1 16 32,768 4,096 30.8 43.3 (141%)
1 16 65,536 8,192 10.6 17.0 (161%)
4 32 32,768 4,096 43.5 44.7 (103%)
4 32 65,536 8,192 14.5 16.7 (115%)

which is used for postprocessing in subsequent steps of the
compilation flow. If the eviction of a scratchpad line is needed,
we heuristically choose the one least recently fetched. While
searching for schedulable reactions, reactions of type Bi2
are only considered if the registers of the RU’s molecules
merger unit are not fully occupied or if they already contain
a companion reaction with the same index. In the latter case,
if the reaction gets scheduled, the register value is invalidated
and the entry count is decremented.

To evaluate the effects of the renaming/reordering algorithm,
we measured SSP throughput for simulation of synthetic
colloidal aggregation models (see section V) with compiler op-
timizations in steps (ii) through (v) enabled or disabled. With
optimizations disabled, we randomly partitioned reactions and
randomly shuffled the order of both reactions and species, but
we still allowed the caching feature of the scratchpad. We
assumed that all species prefetching instructions are locally
stored for both cases. Table II shows results for large networks
with varying SPE configurations and network sizes. Through-
put gains using our simple heuristics range from 103% up to
211%. There are many opportunities for further improvements.
This includes boosting the currently slow compilation time by
applying sophisticated search algorithms, rigorously determin-
ing which scratchpad lines to evict for better caching, applying
DRAM-aware partitioning and mapping to reduce latency, and
developing intelligent network analysis methods especially for
those containing many Bi2 reactions.

V. EVALUATION

We have developed a cycle-accurate simulator of our SSP
design that is coupled with an external DRAM timing sim-
ulation [27] and a preliminary version of our compiler. We
configured our simulator with different combinations of hard-
ware sizes in terms of SPE and RU counts. We assumed that
the SSP can accommodate a total of 4MB of on-chip memory,
which matches recent mid-end GPUs [28]. For 128 RUs, this
implies that the SSP can locally hold networks with up to 1024
species and reactions per RU, or around 131,000 reactions and
species total. We conservatively assumed a clock frequency of
400MHz. To obtain latency numbers of all floating-point op-
erators, we synthesized Synopsys Designware libraries using a
40nm ASIC technology. We used published performance data
of other components, such as random number generators [20]
and lookup-based logarithm computation [29]. In addition,
we realistically modeled latencies for all data and control
paths in the design. Specifically, we incorporated delay models
of reorder buffers into the memory interface. Various other



TABLE III
CONFIGURED SIMULATOR PARAMETERS.

SSP @40nm ASIC technology
Number of cores Up to 128 SPEs or RUs
Operating frequency (Main/DRAM-related) 400MHz / 800MHz
RU/Reaction broadcast/Vector broadcast/Min Tree 22 / lnS / lnR / lnR cycles
Reaction/Species/Population/State-change vector 1 / 2 / 2 / 4 words/64-bit
Per RU reaction memory 8kB
Per RU scratchpad memory (uncached/cached) 4kB / 4kB
Per RU bimolecular registers 32 entries
Per SPE vector cache: 16kB direct-mapped main cache, 16-entry fully assoc. victim cache
Per SMU species prefetching memory 4kB
DRAM request and data buffers 32 entries each

DRAMSim2
DDR3-1600 DRAM (# channels/ranks/banks) 8 / 4 / 8
DRAM data bus/Access granularity 8B / 64B
Per channel bandwidth 12.8GB/s @800MHz
Memory controller: out-of-order, open-page row buffer policy
Queuing structure/Scheduling policy: per rank per bank / rank then bank round robin
Transaction and command queues 32 entries each

configured parameters for our SSP simulator as well as for
DRAMSim2 [27] are summarized in Table III.

To evaluate the effects of varying network characteristics
on compiler and hardware performance, we created a range of
artificial networks exhibiting different dependency factors and
N/M ratios. Artificial networks were created by hierarchically
replicating a base colloidal aggregation network [10] up to
216 times. The base network contains eight reactions and four
species with a ratio of unimolecular to bimolecular reactions
of 1:1 and exhibits an N/M ratio of 1:2 and a dependency
factor of about 70%, i.e., on average five or six reactions are
affected by every reaction firing. We controlled the N/M ratio
or the dependency factor either by assigning the same original
species to all replicated sets of reactions or by creating new
copies of species, i.e., each reaction set having its own species.
We randomly assigned rate constants of reactions and set the
initial populations of all species to 10 molecules. Through
this process, we synthesized artificial networks with sizes
of up to 524,288 reactions and 65,536 species. Due to the
way we create networks, dependency factors and the N/M
ratios can not be simultaneously controlled, i.e., with one
parameter being fixed, the other varies to a wide extent. Fig. 6
summarizes the characteristics of various generated networks
with fixed dependencies or fixed N/M ratios.

We compare SSP performance with software implementa-
tions of best-in-class SSA-CR and heap- and hashing-based
NRMs. We collected software measurements using a state-of-
the-art simulator (Cain1.10 [9]) running on a 24-core, 2.93GHz
Intel Xeon X5670 server with 75GB main memory. For
both software and hardware measurements, we simulated each
network to account for a total of 100,000 time steps. Fig. 7
shows the scaling of simulator performance with network size
for networks with fixed dependency D or fixed N/M ratio.

In Fig. 7(a) and 7(b), we can observe the impact of a (fixed)
dependency on performance. While the SSP exhibits orders of
magnitude better performance for strongly-coupled networks,
these gains shrink with reduced network dependence. For
loosely-coupled networks, SSP configurations that only aim to
exploit fine-grain parallelism become similar in performance
to software. However, exploiting coarse-grain SSP parallelism
across independent simulations still results in an order of
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Fig. 6. Characteristics of tested synthetic networks.

magnitude speedup. For networks with fixed N/M ratios
in Fig. 7(c) and 7(d), SSP performance scales worse than
software. This is due to the exponential scaling of dependency
factors with network size for the types of fixed N/M networks
we consider. As shown in Fig. 6(b), for networks larger than
M=104, dependencies reach unrealistic extremes as low as
D=0.004%. This leads to significant advantages for software-
based methods that can exploit dependency, such as NRMs.

In all cases of Fig. 7, we can see how external memory
interface limitations affect hardware performance. Once the
amount of reaction and species data exceeds SSP-internal
memory sizes and available bandwidth, performance starts to
decrease. Since we can share reaction but not species traffic
across SPEs, this is especially prominent for networks with
high species-to-reaction ratios and for configurations with a
low number of SPEs but a high number of RUs. Overall, we
can see that configuring the SSP with 128 SPEs having 1 RU
indicates the best performance over all configurations.

VI. CONCLUSIONS

Stochastic simulation algorithms (SSAs) are an important
tool in computational biology. In this paper, we presented
the design of a stochastic simulation processor (SSP) that
realizes a first reaction method (FRM) in dedicated hardware.
Our design supports simulation of large-scale biochemical
networks with millions of reactions and species. It exploits
both fine- and coarse-grain parallelism across reactions in a
network and across Monte Carlo simulations of the same net-
work. Hardware is supported by an automated and optimizing
compiler that can map standard network descriptions onto the
SSP in a user-friendly manner. Results show that orders of
magnitude better performance can be achieved across a wide
range of network sizes and characteristics when compared to
state-of-the-art software simulations running on powerful com-
pute servers. In future work, we will incorporate SSP support
for NRM-based methods that further improve performance
especially for loosely-coupled networks. In addition, we plan
to develop advanced compiler optimizations for aggressive
renaming and reordering.
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