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Abstract- As we are entering the network-on-chip era and 
' system communication is becoming a dominating factor, com- 
munication abstraction and synthesis are becoming the integral 
part of system design flows. The key to the SUCC~SS of any de- 
sign flow are well-defined abstraction levels and models, which 
enable automation of early vaIidalion, synthesis and verification. 
In this paper, we define system communication abstraction layers 
and corresponding design models that support successive, step- 
wise refinement from abstract message-passing down to a cycle- 
accurate, bus-functional implementation. Experimental results 
show the benefits of our definitions and design flow. 

I. INTRODUCTION 

As SoCs grow in complexity and size, on-chip communi- 
cation is becoming increasingly important. Furthermore, new 
classes of optimization problems arise as communication de- 
lays and latencies across the chip start dominating computa- 
tion delays. In other words, simple (e.g. bus based) communi- 
cation architectures are not sufficient any more. Therefore, as 
we enter the network-on-chip (NoC) era, new network-based 
communication architectures and design flows are needed. 

Communication design for SoCs poses unique challenges in 
order to cover a wide range of architectures while at the same 
time offering new opportunities for optimizations based on 
the application-specific nature of system designs. The goal is 
therefore, to develop a corresponding NoC communication de- 
sign flow that enables rapid design space exploration through 
design automation in order to achieve the required productivity 
gains while supporting a wide range of implementations. 

In order to automate the NoC design process, a well-defined 
design flow with clear and unambiguous abstraction levels, 
models, and transformations is required. The key to the suc- 
cess of this approach are properly defined design models. Ar- 
bitrary models without clear semantics do not enable synthesis 
and verification. For example, only subsets of hardware de- 
scription languages such as VHDL or Verilog are synthesiz- 
able or verifiable. In addition, synthesis requires clear defini- 
tions of the target architecture and the set of synthesis steps to 
trarsfonn the input model into the target model. 

In this work, we aim to define such models, design steps, 
and corresponding model transformations that are necessary 
for an automated network-on-chip design flow. Note that due 
to space limitations, this paper can only provide an overview 
of the appruach. Details can be found in 181. 
A. Communication Design Flow 

Fig. 1 shows the proposed communication design flow. 
Communication design starts with a virtual architecture model 
of the system in which processing elements (PES) communi- 
cate via abstract channels with untimed synchronous or asyn- 
chronous message-passing semantics. In a first network de- 

Fig. 1. Communication design flow. 
I 

sign task, the global system network is designed and end-to- 
end communication between PES is mapped into point-to-point 
communication between stations of the network architecture. 
The result of the network design step is a refined link model 
of the system. In the link model, PES and other network sta- 
tions communicate via logical link channels that carry streams 
of packets between directly connected components. 

In the second communication link design task, logical links 
between adjacent stations are then grouped and implemented 
over an actual communication medium where each group of 
links can be implemented separately. As a result of the com- 
munication design process, a physicaI model of the system is 
generated. The physical model is a fully structural model in 
which stations are connected via pins and wires and communi- 
cate' in a cycle-accurate manner based on media protocol tim- 
ing specifications. In the backend process, behavioral descrip- 
tions of computation and communication in each component of 
the physical model are then synthesized into targeted hardware 
or software implementations. 

Apart from the physical model, the communication design 
flow can produce transaction-level models (TLMs) which ab- 
stract the pin-level communication in the physical model to the 
level of media access or individual protocol wordframe trans- 
actions. Depending on the parameters of the implementation, 
automatically generated TLMs can be used to trade off accu- 
racy and model complexity for simulation speed, for example. 

B.  Related Work 
There is a wealth of system-level design languages (SLDL) 

like SystemC [l J or SpecC [2] available for modeling and de- 
scribing systems at different levels of abstraction. However, 
the languages itself do not define any details of actual concrete 
design flows. More recently, SLDLs have been proposed as ve- 
hicles for so-called transaction-level modeling (TLM) for com- 
munication abstraction [4]. However, no specific definition of 
the level of abstraction and the semantics of transactions in 
such models have been given. Furthermore, TLM proposals so 
far focus on simulation only and they lack the path to vertical 
integration of models for implementation and synthesis. 
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There are several approaches dealing with automatic gener- 
ation, synthesis and refinement of communication [3,7]. None 
of these approaches, however, provide intermediate models 
breaking the design gap into smaller steps required for rapid, 
early exploration of critical design issues. Furthermore, to our 
knowledge, there is no approach that deals with methodical and 
automated implementation of communication over network- 
oriented, non-traditional communication structures. In [ti], the 
authors show an approach for modeling of communication at 
different levels of abstraction with automatic translation be- 
tween levels based on message composition rules. However, 
they do not describe an actual design flow that includes support 
for arbitration and interrupt handling in traditional bus-based 
architectures. 

11. COMMUNICATION LAYERS 
The communication design Row is structured along a lay- 

ering of communication functionality within each task of the 
design flow. The implementation of SoC communication is 
divided into several layers based on separation of concerns, 
grouping of common functionality, dependencies across lay- 
ers, and early validalion of critical issues for rapid and efficient 
design space exploration through humans or automated tools. 

Table I summarizes the layers for SoC communication by 
listing for each layer its interface of services offered to the 
layer above, its functionality, and the level where it will be im- 
plemented through the backend tools (software, operating sys- 
tem kernel, device driver, hardware abstraction layer (HAL), 
hardware). Layering is based on the IS0 OS1 reference model 
[9]. However, due t o  the unique features and characteristics of 
SoC communication, layers have been tailored specifically to 
network-on-chip requirements. Furthermore, note that layers 
only serve as a specification of the desired implementation. As 
part of communication synthesis within each tool, layers may 
be merged for cross-optimizations. 

A. Network Design 
Network design implements presentation, session, transport, 

and network layers. The presentation layer is responsible for 

Media Access 

Protocol 

Physical 

data formatting. It converts abstract data types in the appli- 
cation to untyped data blocks as defined by the canonical net- 
work byte layout. The session layer implements end-to-end 
synchronization for synchronous communication and multi- 
plexing of channels into a set of end-to-end message streams. 
The trunsport layer splits messages into packets (e.g. to reduce 
required intermediate buffer sizes) and optionally implements 
end-to-end flow control and error correction. Finally, the net- 
work layer is responsible for routing and multiplexing of end- 
to-end paths over individual point-to-point links. As part of 
the network layer, additional communication stations are intro- 
duced as necessary, e.g. to create and bridge subnets, splitting 
the system of connected PES into several segments. 

B. Link Design 
Link design implements link, stream, media access, and pro- 

tocol layers. The link. layer determines interface types (e.g. 
masterklave) and implements any necessary synchronization 
over underlying control and data streams. The .~rream layer 
multiplexes control and data streams over shared media by sep- 
arating them in space (but not time) through addressing and 
polling. The media accem layer is responsible for slicing data 
packets into protocol transactions and for regulating and sepa- 
rating simultaneous accesses in time (e.g. through arbitration, 
possibly introducing additional arbiter components). Finally, 
the prutocol layer implements the timing- and pin-accurate 
driving and sampling of wires. 

111. IMPLEMENTATION 
We have implemented network and communication refine- 

ment tools that can generate design models corresponding to 
various communication layers automatically [lo]. Given de- 
sign decisions, the tools will take a virtual architecture model 
of the system down to its bus-functional, physical model. 

A. Experiments 
In order to demonstrate the modeling concepts, we applied 

the communication 'design flow to the example design of a 
mobile phone baseband platform. For additional examples, 
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Fig. 2. Architecture model example. Fig. 3. Link model example 

Fig. 4. Physical model example 

including application of the design flow to non-traditional, 
network-oriented communication architectures, see [SI. 

The virtual architecture model of the system at the input of 
communication design is shown in Fig. 2. The design con- 
sists of two subsystems: a ColdFire subsystem running JPEG 
encoding and a DSP subsystem for voice encoding/decoding 
(vocoder). The ColdFire processor is running the JPEG en- 
coder in software assisted by a hardware IP component for 
DCT (DCTJP). Under control of the processor, a DMA com- 
ponent receives pixel stripes from the camera and puts them 
in the shared memory (Mem). The LISP is running concurrent 
encoding and decoding tasks. Tasks are dynamically sched- 
uled under the control of an operating system model [ 5 ]  that 
sits in an additional OS layer DSP-OS of the DSP processor. 
The encoder on the DSP is assisted by a custom hardware co- 
processor ( H W )  for the codebook search. Furthermore, four 
custom hardware I/O processors perform buffering and fram- 
ing of the vocoder speech and bit streams. In the architec- 
ture model, hardware and software processors communicate 
via asynchronous message-passing channels. 

As a result of the network design process, the network is 
partitioned into one segment per subsystem with a Bridge con- 
necting the two segments (Fig. 3). Individual point-to-point 
logical links connect each pair of stations in the resulting link 
model. Application channels are routed statically over these 
links where the Crrl channel spanning the two subsystems is 
routed over two Iinks via the intermediate bridge. in the re- 

sulting link model, presentation layers are instantiated inside 
each system component. The presentation layer for commu- 
nication with the DCT IP is inlined from the wrapper into the 
ColdFire processor. The memory component is replaced with a 
model describing the memory.byte layout and presentation lay- 
ers accessing the memory perform the necessary conversions 
of variables into memory bytes. Session, transport, and net- 
work layers are not implemented and presentation layers are 
routed over links through proper connectiv<ty. 

During link design, links in each subsystem are imple- 
mented over its shared medium. The native ColdFire and DSP 
processor busses are selected as communication media. Within 
each segment, unique bus addresses and interrupts for synchro- 
nization are assigned to each link and memory. In the resulting 
physical model (Fig. 4), link, stream, media access and proto- 
col layers are instantiated inside the OS and hardware layers 
of each station. Inside the processors, interrupt handlers that 
communicate with link layer adapters through semaphores are 
created. Interrupt service routines (ISR) together with models 
of programmable interrupt controllers (PIC) model the proces- 
sor's interrupt behavior and invoke the corresponding handlers 
when triggered. Components are connected via pins and wires 
driven by the protocol layer adapters. On the ColdFire side, an 
additional arbiter component regulates bus accesses between 
the two masters, DMAEF and C F B F .  Finally, a transducer 
T B F  is inserted to translate between the DCTJP and Cold- 
Fire bus protocols. 
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Fig. 5.  Simulation performance. 

B. Results 
Table I1 summarizes the results for the example design. Us- 

ing the refinement tools, models of the example design were 
automatically generated within seconds. A testbench common 
to all models was created which exercises the design by simul- 
taneously encoding and decoding 163 frames of speech on the 
vocoder side while performing JPEG encoding of 30 pictures 
with 116x96 pixels. Models of the whole system and each sub- 
system were simulated on a 360 MHz Sun Ultra 5 workstation 
using the QuickThreads version of the SpecC simulator. 

tecture model times. Contributions of communication over- 
head to the simulated overall transcoding (back-to-back en- 
coding and decoding) and encoding delays in the vocoder and 
JPEG encoder, respectively, are shown in Fig. 6. Delays are 
normalized against the overhead in the final physical model. 

Results show that with increasing implementation detail at 
lower levels of abstraction, accuracy improves linearily while 
model complexities grow exponentially. Results confirm the 
choice of the link model as the intermediate model in the de- 
sign flow that allows fast validation of the overall network 
topology. By definition, all models above the physical model 
are TLMs in which communication is abstracted away from 
pins and wires. The results show that depending on the ar- 
chitecture, MAC or protocol TLMs return accurate results at 
much higher simulation speeds. If there is no bus contention, 
the MAC model provides fast and accurate feedback. Ilow- 
ever, in the presence of arbitration, slicing of data into bus 
worddframes needs to be modeled in order to get accurate re- 
sults that include effects of interleaved media accesses at the 
protocol level. In these cases, only the protocol model can 
provide correct delays with significantly reduced simulation 
speeds. Finally, at the communication level, pin- and timing- 
accurate results are available at the expense of huge runtimes. 

IV. SUMMARY & CONCLUSIONS 

Fig. 5 plots simulation times normalized against the archi- . 

In this paper, we presented a communication design flow 
with well-defined design steps and design models. Start- 
ing from a virtual architecture model with abstract message- 
passing communication, a design is brought down to a bus- 
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Fig. 6. Simulated communication overhead. 

functional implementation through network and link design 
tasks. Using an industrial-strength example, the feasibility and 
benefits of the approach have been demonstrated. 

Out of all possible models, intermediate models have been 
defined based on accuracy vs. simulation speed tradeoffs al- 
lowing early validation of critical design decisions. In between 
design tasks, the link model defines the implementation of the 
end-to-end network on top of point-to-point logical links. Fur- 
thermore, two transaction-level models have been identified for 
providing accurate results above the pin level. 

In general, models at various levels of abstraction have been 
defined such that they can be automatically generated through 
successive refinement. Therefore, the flow supports high-level 
communication abstractions for fast feedback and early simu- 
lation together with an automated path to implementation. In 
conclusion, the models are the enabler for rapid, early design 
space exploration and significant productivity gains. 

Future work includes adding algorithms for decision making 
to provide a completely automated synthesis process. Further- 
more, we plan to extend design tasks and refinement tools to 
implement error-correction, flow control, and dynamic routing 
for long-latency, error-prone network communication media. 
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