
Platform Modeling for Exploration and Synthesis

Andreas Gerstlauer Gunar Schirner

Electrical and Computer Engineering Electrical and Computer Engineering

University of Texas at Austin Northeastern University

Austin, TX 78712 Boston, MA 02115

e-mail: gerstl@ece.utexas.edu e-mail: schirner@ece.neu.edu

Abstract— Ever increasing complexity and heterogeneity of

system platforms drive the need for a move to higher levels of ab-

straction accompanied by corresponding design automation tools.

The basis for any automated flow are well-defined design mod-

els. In this paper, we present an overview and taxonomy of plat-

form modeling at various levels. Experiments demonstrate the

benefits of fast yet accurate intermediate models at varying lev-

els for rapid, early design space exploration. Furthermore, paired

with automatic model generation and hardware/software synthe-

sis, an automated path from specification to implementation be-

comes possible.

I. INTRODUCTION

Driven by ever increasing application demands and techno-

logical advances that allow us to put complete Multi-Processor

and Multi-Core Systems on a Chip (MPCSoCs), design com-

plexities continue to grow exponentially. System-level ap-

proaches promise to tackle the complexity crisis by raising the

level of abstraction. While often misunderstood as traditional

high-level synthesis of a single hardware unit, true system-level

design is a unified process of implementing a system applica-

tion on a system architecture spanning hardware and software

processors interconnected by a network of busses or other com-

munication media.

The ultimate goal is to apply design automation techniques

to this process. The first approaches to appear at any level are

always modeling and simulation solutions. Models allow de-

signers to validate decisions, explore the design space and rea-

son about properties before a system is built. At each step of

the design flow, models provide an abstract view of a design,

representing essential aspects while hiding others that are not

relevant or not yet known. A key aspect is thereby what fea-

tures to abstract and how many models to provide.

There are several approaches for modeling of systems both

at the application and the architecture level. At the applica-

tion level, capturing and validation of algorithmic functionality

is often based on formalized Models of Computation (MoCs)

[24, 30]. MoCs are the basis for many commercial, domain-

specific modeling and simulation environments, such as Mat-

lab/Simulink or LabView. Academic research, on the other

hand, has been focused on ways to relate different MoCs, e.g.,

through co-simulation [33, 23, 2, 12] or translation [7, 43].

At the architecture level, C-based System-Level Design Lan-

guages (SLDLs) are widely used to assemble virtual proto-

types and co-simulate components under a common backplane

[28, 21]. Furthermore, to facilitate model integration and ex-

System Synthesis
System Synthesis

Behavior

(Application)

Constraints

(Platform)

Structure

(Architecture)

Quality

(Performance)

Refinement
Decision

Making

Exploration

Evaluation

Hardware/Software Synthesis

Fig. 1. Electronic system-level (ESL) design.

change, there are several attempts at standardization of IP inter-

faces in extended netlist form [22, 41]. In all cases, simulation-

centric approaches at the application or architecture level en-

able the horizontal integration of various components or appli-

cation domains. However, approaches for vertical integration

through synthesis and verification are lacking.

Fig.1 depicts the requirements of an ESL synthesis flow

[17]. System synthesis starts from a specification that de-

scribes application behavior and associated constraints, which

include the database of available components and, in so-

called platform-based design, even complete definitions of pre-

designed and reusable “platforms” as customizable and param-

eterizable architecture templates. System synthesis is an itera-

tive process of decision making, refinement and evaluation to

perform automated design space exploration. In each iteration,

the application is mapped onto a selected platform following

given design decisions. Resulting design instances are captured

in the form of platform models that describe the structure and

quality of the selected architecture. Quality is determined by

annotating models with performance metrics. Platform models

are evaluated through analysis or simulation in order to drive

the next iteration of the exploration. At the end of the system-

level synthesis process, final platform models also serve as the

input to subsequent hardware and software backend synthesis

all the way down to an implementation at the instruction-set

and register transfer levels.

Refinement
Refinement

Model n
Model n

DB
DB

Model n+1
Model n+1

Specification model
Specification model

Implementation model
Implementation model

Optim. algorithm
Optim. algorithm

GUIGUI

Design decisions

Fig. 2. Synthesis process.

A. Synthesis Process

Generally, the gap between specification and implementa-

tion is too large to be bridged in a single step. Therefore, as

show in Fig.2, a specification is typically brought down to an

implementation through successive, stepwise refinement and

exploration. A particular sequence of design steps defines an

overall design methodology and within a methodology, design

models provide the interfaces in between. Each model there-

fore serves as both documentation at the output of one step and

specification at the input to the next.

Within in each step, refinement tools take given design de-

cisions and insert new layers of functionality into the model.

Following fundamental principles for separation of concerns,

system-level design is permeated by an orthogonalization of

computation and communication aspects [26]. Starting with

the application MoCs, systems are described as a set of ap-

plication processes that communicate via channels. With each

refinement step, new layers are inserted by hierarchically de-

composing processes and channels into finer and finer spatial

and temporal granularity until a fully structural and timing-

accurate representation of physical components connected by

signals and wires is reached. In the process, some of the layers

might be partially inserted out of databases containing various

platform component models.

B. MPCSoC Architectures

Recent trends have increasingly led to a shift towards com-

plex multi-processing platforms beyond a single CPU [46].

Various approaches aim to manage complexities and provide

high performance in a scalable fashion through regular, ho-

mogeneous structures adapted from general-purpose comput-

ing, including Networks-on-Chip (NoCs) for communication

or multi-core processor architectures. However, the need for

optimizations will continue to push for specialization. Future

architectures are likely to be hybrid in nature. Such systems

might provide a mix of homogeneous, symmetric and hetero-

geneous, asymmetric multi-processing. We can generally de-

fine an MPCSoC to be a hierarchical composition of shared-

memory multi-core processors that are components in an over-

all distributed multi-processor system1. Furthermore, commu-

nication structures can consist of bus-based subsystems that are

1Where each processor can have multiple cores that share a common subset

of resources such as bus interfaces, memories or the operating system.

interconnected via a homogeneous or heterogeneous back-bone

NoC. All in all, complexity and heterogeneity as determined by

the large numbers and wide variety of components are the main

challenges in synthesizing applications into current and future

MPCSoC architectures.

In this paper, we will present requirements and solutions

for MPCSoC platform modeling in support of an automated

system-level exploration and synthesis flow. In Section II, an

overview of concepts and techniques for computation and com-

munication modeling is provided. Furthermore, we describe a

taxonomy of system models at various levels of detail and ab-

straction. Section III demonstrates some of the resulting trade-

offs and benefits as applied to an industrial-strength cellphone

design example. Finally, the paper concludes with a summary

and outlook in Section IV.

II. PLATFORM MODELING

Platform models are at the core of the system design pro-

cess. In order to apply algorithms and tools, models must be

machine-readable. Furthermore, models should be executable

for fast yet accurate simulation-based evaluation of functional-

ity and design quality. For these reasons, system models are

usually captured in an event-driven SLDL such as SpecC [16]

or SystemC [21]. However, to support synthesis and verifi-

cation, corresponding tools must be able to reason about the

meaning of objects and their compositions in a model. There-

fore, vertical integration requires well-defined and unambigu-

ous semantics of models on top of basic execution semantics.

In the following, we will outline various concepts for sound

modeling of computation and communication at various levels

and across a wide variety of target architectures [14].

A. Communication Modeling

With communication and component integration being at

the core of and increasingly dominating most platforms,

Transaction-Level Modeling (TLM) has become tremendously

popular and almost universally accepted as a vehicle for accel-

eration of platform design and validation. TLM allows orders

of magnitude faster simulations by abstracting away pin- and

wire-level details with little to no loss in accuracy [5, 20]. Over

the years, many different TLM styles and levels have been de-

veloped [38, 32, 8], and TLM concepts have been applied to

modeling of various popular bus architectures [6].

More recently, there have been efforts to standardize TLM

syntax on top of existing SLDLs, such as the SystemC TLM2.0

standard currently undergoing IEEE certification [31]. A stan-

dardized syntax allows for easier exchange of component, IP

and system models across users and tools. However, while the

TLM2.0 standard defines some guidelines for so-called loosely

timed and approximately timed coding styles, model seman-

tics, even for issues of actual timing granularity, are not well

defined. For example, data granularity and interpretation of

generic transaction payloads are intentionally left open. In gen-

eral, standards often provide flexibility to ensure wide applica-

bility. But this comes at the expense of limited interoperability,

in some sense defeating the purpose of standardization.

Furthermore, to support synthesis and verification, models

have to unambiguously define timing and data granularity is-

sues, which typically go hand-in-hand. Reasoning about se-

TABLE I

PROTOCOL LAYERS.

Impl. Layer Semantics Functionality OSI

Application Channels Computation 7

Middleware

Presentation End-to-end typed messages Data formatting 6

Session End-to-end untyped messages Synchronization, multiplexing 5

Transport End-to-end data streams Packeting, error correction, flow control 4

Network End-to-end data packets Subnet bridging, routing 3

Driver
Link Point-to-point logical links Station typing, synchronization

2b
Stream Point-to-point control/data streams Multiplexing, addressing

HAL Media Access Shared medium byte streams Data slicing, arbitration
2a

HW Protocol Media word/frame transactions Protocol timing

Physical Pins, wires Driving, sampling 1

mantics of communication is not a new problem. In fact, we

can adapt the ISO/OSI 7-layer model developed for this pur-

pose in the networking community (Table I) [18]. In the pro-

cess, ISO/OSI concepts are tailored specifically to SoC/NoC

requirements, e.g. by splitting or combining layers to reflect

hardware/software boundaries2.

To support modeling and design with stepwise, successive

refinement, functionality is divided into layers based on sepa-

ration of concerns, grouping of common functionality, depen-

dencies across layers, and support for early validation of criti-

cal issues through rapid and efficient design space exploration

by humans or automated tools. Layers are stacked on top of

each other where a layer provides services to the next higher

layer by using the services provided by the layer below. At its

interface, each layer provides services for establishing commu-

nication channels and for performing transactions over those

channels. Each layer is implemented in the form of hardware,

firmware or middleware as part of final system.

Semantics of transactions and channels vary from layer to

layer. Therefore, each layer immediately corresponds to a cer-

tain level of abstraction. Furthermore, with each new layer in-

serted and implemented in the design, we can define a new

class of models where communication channels connecting

components at the level of a certain layer abstract away and

encapsulate functionality of all layers below (Fig.3). At the

highest specification level, application processes communi-

cate via abstract message-passing primitives. At the lowest

level, components in a Pin- and Bus Cycle-Accurate Model

(PAM/BCAM) are interconnected through physical pins and

wires. In between, we can define TLMs at various levels with

communication being described in the form of TLM channels

realizing a particular layer interface. Note that almost all ex-

isting TLM approaches, including the SystemC TLM2.0 stan-

dard, are aimed at solutions at the protocol layer or below.

Layer definitions have been successfully adopted for mod-

eling and synthesis of bus-based MPCSoC communication ar-

chitectures [18]. Following a layer-based approach, tools can

automatically generate application- and target-specific protocol

stacks that realize semantics of desired specification-level com-

munication primitives over a given communication architec-

ture. Combined with similar layer-based approaches for com-

putation, well-defined modeling concepts and refinement tech-

niques will build the basis for a wide variety of system models

at varying levels of abstraction.

2Note that the ISO/OSI model was never intended as a blueprint for code.

In implementations, layers should be merged and optimized across boundaries.

Pin / Bus Cycle Accurate Model

Transaction Level Models

Specification Model

7. Application

6. Presentation

5. Session

4. Transport

3. Network

2b. Link + Stream

2a. Media Access Ctrl

2a. Protocol

1. Physical

7. Application

6. Presentation

5. Session

4. Transport

3. Network

2b. Link + Stream

2a. Media Access Ctrl

2a. Protocol

1. Physical

Address lines

Data lines

Control lines

MP

PAM/BCAM

TLM

Fig. 3. Communication models [14].

B. Computation Modeling

On the computation side, the basic system component to per-

form computation is a processor. We can observe that there

is no fundamental difference between a custom hardware pro-

cessor, a programmable software processor or any of the re-

configurable or Application-Specific Instruction Set Processor

(ASIP) solutions in between. In all cases, computation is im-

plemented by a controller and a datapath [1]. How much of the

datapath is specialized and how much of the control is hard-

wired defines a spectrum of processor implementation choices.

In the most general case, control is fully programmable and

the processor executes universal instructions from a stack of

firmware, middleware and application software.

Traditionally, processors are validated using accurate RTL

or microarchitecture simulations. For software processors, In-

struction Set Simulator (ISS) models are commonly used and

integrated into an overall platform co-simulation environment

[3, 13, 45]. Such models can provide functional and timing

simulation on a host at very fine, instruction- and potentially

cycle-accurate granularity. Several commercial solutions aim

to provide fast and cycle-approximate ISS-based virtual plat-

form prototypes, either building on standard TLM concepts [9]

or in the form of proprietary, CPU-centric simulation frame-

works [42, 44]. However, especially when high timing accu-

racy is desired, ISS approaches are slow and do not scale well

in multi-processor and multi-core contexts. Due to their nature,

there is a significant overhead to co-simulate multiple proces-

sor cores on a cycle-by-cycle basis in a full system simulation.

Therefore, ISS-based models are not sufficient to match the

needs for rapid, early validation and debugging at the sys-

TABLE II

PROCESSOR LAYERS.�� ��� ������ ���	
� 	
������
 �� � �
 � � �� � � � � � ���
 � �� � � �� ����
� � �
 � � ��� � � � �
 � �� � � � � � !��� ��
 � � � � � � �� ��
 � �� � � � �� � !�"
 ��#��� ��� ��
 �� !� �� � !�" !� $ � ! � � �$ � ��%& ���� ��� ��
 �� !��� ' � � � � � !�� �(��) * �� � !�)
 � � � �
 �� � � � � �� ��
 � �� �+ � � !�)
 � � � �
 �� � � � � ��
 � �� � , � � ! �
tem level. Similar to the approach taken with TLMs for

communication, computation models at higher levels of ab-

straction are needed. To that effect, so called host-compiled

[40, 35, 4, 25, 10] or hybrid [15, 29] software simulation ap-

proaches have recently garnered widespread interest. The goal

is thereby to combine fastest possible host execution with the

accuracy of an ISS. Applications in the form of C code are com-

piled to natively emulate functionality on the simulation host.

C code is wrapped into SLDL modules and back-annotated

with estimated or measured timing information. Furthermore,

application wrappers are augmented with lightweight models

of middleware, firmware and processor hardware to describe,

with little to no overhead, all relevant operating system, mi-

croarchitecture and other effects.

Again, to support not only simulation but automated synthe-

sis and verification, host-compiled processor models at vari-

ous levels of detail and accuracy have to be constructed in a

well-defined and sound manner. In reality, application software

usually runs on top of a Real-Time Operating System (RTOS),

which in turn sits on top of the actual processor hardware pro-

viding physical bus interfaces and interrupts for external com-

munication. All of these affect overall functional and timing

behavior. For example, interrupt handling and can introduce a

significant processor load [47]. Hence, all such effects need to

be considered and modeled in order to provide an accurate (but

fast) model of the software execution environment.

Following a similar approach as in the case of communica-

tion (Section A), we can identify processor layers at varying

feature levels (Table II) [39]. Basic algorithmic functionality,

including execution timing, is part of the application. The oper-

ating system layer adds dynamic scheduling and bus drivers. A

Hardware Abstraction Layer (HAL) provides canonical inter-

faces for accessing external communication hardware from the

OS and application side. Finally, the hardware layer includes

the physical interrupt logic and bus interfaces in TLM or pin-

accurate (also called Bus-Functional Model, BFM) form. We

can contrast these high-level processor layers with a traditional

pin-accurate RTL or ISS model that describes cycle-by-cycle

behavior at the microarchitecture level. Note that custom hard-

ware processors in which OS and HAL are empty are special

instances of such a general processor model.

Based on these definitions, we can construct processor mod-

els in a layer-based fashion in the same way as for communi-

cation (Fig.4) [39]. The Application is described as a set of

processes that run on top of a model of the operating system

[19]. The OS layer also includes models of the middleware

stacks for communication with other processors in the system.

A HAL provides low-level bus drivers and interrupt handlers.

It is the lowest layer implemented in software, and its border

marks the boundary of the HW/SW interface. Finally, the HW

layer contains accurate model of external bus communication

-.-/012/33456789 :;8< 45678=:>12 ?@ABC DE640?FGH
-.IJK

4LMBN
8IOPQRSTUPVWVRXYWXZ

:Q[VSQ\:QR[V]̂ _;]̂ _`]̂ _a] _̂:b6NIJK<PcX][Vd efghifefghif] _̂:] _̂a] _̂`jkljklb6NIJK9 Fgmmniopfi]̂ _dPcX][V;
Fig. 4. Processor model.

and interrupt logic. To increase accuracy, it may also include

models of advanced dynamic microarchitecture features, such

as caches or branch predictors [34]. Bus interfaces are de-

scribed at the protocol level in TLM or BFM form. Besides

a number of HW cores, the model can include any interrupt

controllers and other peripherals (such as timers) immediately

associated with the processor. All in all, high-level processor

models provide a complete model of computation running in

its execution environment.

C. System Modeling

Combining approaches for modeling of computation and

communication, a complete platform model emerges. Com-

munication layers are thereby implemented inside computation

layers based on inherent relationships and dependencies of the

former on services of the latter. Depending on how many lay-

ers are inserted, system models at varying levels of detail can

be constructed (Fig.5).

A specification model (Fig.5(a)) contains application layers

for both computation and communication. It describes the sys-

tem as a virtual architecture in which application processes,

variables and channels are mapped onto PEs and memories of

a system platform. Application layers annotate processes with

timing and resolve synchronization, storage and complex chan-

nels down to a set of canonical communication primitives for

abstract message-passing, memory interfaces and events. As

such, a specification model can be used to rapidly validate the

feasibility of a given application-to-platform mapping.

A network TLM (Fig.5(b)) inserts OS layers and refines

communication to include middleware down to the level of link

layer packet transfers. In the process, models of bus gateways

and routers (so-called transducers) are inserted. Insertion of

bridges that transparently connect busses directly at the proto-

col level is deferred and bridging is encapsulated as part of bus

channel models. Overall, a N-TLM accurately reflects the over-

all topology of the communication network. Universal, abstract

bus channels provide models of logical, point-to-point packet

transfers and memory accesses in each segment of the network.

Bus channels can include estimated timing for each individual

transfer based on the bus bandwidth in relation to the size of

the transferred data block. Since bus traffic is simulated at a

coarse, block-level granularity, simulations are fast but results

are inaccurate in terms of timing effects resulting from sharing

of underlying media.

The protocol TLM (Fig.5(c)) further refines computation

down to the hardware and communication down to the media

qrrstuvwtxyz{|}~���� ���������z����������������z�������
(a) Specification

����������
��� ������� �¡¢£¤¥¦¥¢ � �¡¢§¥¦¦�¡¢¤̈�¢¦�¡¤ ©¥ ª¡¤«

¬­
®¯°±±² ³́µµ¶·̧¹º· ©¥ ª¡¤«§��»¥ ¼½¦¾£¾¡¿¥� ÀÁÂÃÄÅÆÇÈÉÊÄËÁÌÍ¾�¦ ¥¤ ¼½¦¾£¾¡¿¥� ÇÅÎËÏÁ

(b) Network TLM (N-TLM)ÐÑÑÒÓÔÕÖÓ×ØÙÚÛÜÛØÖÕÖÓ×ØÝÛÜÜÓ×ØÞÚÕØÜÑ×ÚÖßÛÖà×ÚáâÓØáÝÖÚÛÕã
äå

æÐçèé ÝÖÚÛÕãêæÐç
ëìí
îïð
ïññò óôõõö÷øùú÷ûúôü÷ú ýþÿ��� æÐç æÐçÝÖÚÛÕã ÝÖÚÛÕãâÓØá âÓØáßÛÖà×Úá�þ�������þé	
��
���ð��
����
�� �ð� �������ñ� �ð�î� �������
�� �ð�

(c) Protocol TLM (P-TLM)

����� !"#$%%��##&�'�()*'�)
$++ �,�'�)*-��#�*'�'�)*��##�)*.��*#+)�'/�'0)�12�*1�'���3

45
6$(-�)'),) -78#�,� 9: �'���3 ; 6$(<*'���"+' &�'�()*'�) -78#�,� -78#�,� -�)'),) -�)'),)

=>?
@AB@C
ADDE FGHHIJKLMJNMGOJM PQRSTU -78#�,� -78#�,� -�)'),) -�)'),) 6$(6$(�'���3 �'���32�*1 2�*1/�'0)�1VQWXYSZ[UQ

$%%��##\]̂_̀a]
(d) Pin-/Bus Cycle-Accurate Model (PAM/BCAM)

bccdeffghihjklidkm nedohm pqfrdkikskm tlieddqui mole ghihjklidkmrvwfoshm
xyz
{|

jr}~jm�
������ ����������bccdeff���������� �b��nbuu� �doc�e~jm� �~jm������
(e) Cycle-Accurate Model (CAM)

Fig. 5. System models [14].

DCT

T
X

ARM7

M1Ctrl

I/O4

HW

DSP56k

MBUS

BUS1 (AMBA AHB) BUS2 (DSP)

A
rb

it
e

r1

IP Bridge

DCTBus
I/O3I/O2I/O1

DMA

M1

Enc Dec
Jpeg

Codebk

SI BO BI SO

DCT

v1

C2

C
1

C3

C4

C
5

C
6

C
7

C
8

C0

0x0C50,intC

MP3

Fig. 6. Cellphone baseband MPCSoC example.

access (MAC) layer. All drivers are implemented to a level

of bus reads/writes and interrupt handlers. In a P-TLM, all

software is known and CPU models can be easily exchanged

for equivalent ISS models running corresponding binary code.

Bridge models are inserted and components communicate over

models of physical bus media at the level of target protocol

transactions. Bus protocol channels can accurately model the

known protocol timing and arbitration effects. Therefore, the

P-TLM provides results comparable to a PAM/BCAM but at

significantly faster simulation speeds.

A Bus Cycle-Accurate Model (BCAM, Fig.5(d)) is the final

result of the system design process and implements all layers of

computation and communication functionality. Compared to a

P-TLM, a BCAM adds protocol and optionally physical com-

munication layers. A BCAM refines all bus interfaces and bus

media down to a structurally accurate assembly of component

BFMs connected by busses. This includes any components that

are necessary as part of the bus structure, such as arbiters or

muxes. Note that a BCAM may or may not be pin-accurate.

A Pin-Accurate BCAM (PAM/BCAM) describes the complete

pin- and wire-level system netlist as a basis for further layout

and synthesis. On the other hand, if physical layers are not in-

cluded, components communicate through transactions at the

level of abstracted address, data and control cycles. In both

cases, the BCAM provides the cycle-by-cycle behavior needed

for accurate modeling of advanced bus features such as split

transactions or preemption.

A BCAM is the basis for hardware and software implemen-

tation of system components. As a result of the backend syn-

thesis process, a fully Cycle-Accurate Model (CAM) is pro-

duced (Fig.5(e)). In a CAM, behavioral component models are

replaced with their cycle-accurate RTL or ISS representations.

On the software side, ISS models of individual processors are

wrapped and integrated into the overall BCAM framework. On

the hardware side, processors and interfaces are replaced with

finite state machine models of computation and communication

protocols. The CAM is the final result of the system design pro-

cess and allows for cycle-accurate full-system validation as the

final signoff before further logic and physical synthesis.

III. MODELING TRADEOFFS

To evaluate various system modeling options, we have ap-

plied modeling concepts to a cellphone MPCSoC that com-

bines an MP3 decoder and a JPEG encoder running on an

0.01

0.1

1

10

100

1000

10000

100000

Spec. N-TLM P-TLM BFM ISS/RTL

S
im

u
la

ti
o

n
 T

im
e
 [

s
]

MP3

JPEG

GSM

Spec. N-TLM P-TLM P/BCAM CAM

(a) Speed

0

5

10

15

20

25

Spec. N-TLM P-TLM BFM ISS/RTL

A
v
e
ra

g
e
 E

rr
o

r
[%

]

MP3

JPEG

GSM

Spec. N-TLM P-TLM P/BCAM CAM

(b) Accuracy

Fig. 7. Subsystem simulation results.

ARM7 processor with a GSM voice encoder/decoder running

on a Motorola DSP6600 (Fig.6). Fig.7 shows performance

and accuracy results for simulations of individual subsystems

at various levels [39]. Subsystems were exercised with 55

MP3 frames, 30 116× 96 pictures and simultaneous encod-

ing/decoding of 163 frames of speech, respectively. Accu-

racy was measured as the average absolute error in simu-

lated frame/picture delays when compared to the CAM. Results

shows typical tradeoffs where accuracy increases linearly while

simulation speed drops exponentially with increasing detail at

lower levels.

Fig.8 shows speeds and accuracies for various models of the

complete, combined cellphone system in a simulation of 3 s

real time with 180million DSP and 300million ARM cycles.

For single processor systems, simulation speeds of 2000MIPS

peak and 600MIPS sustained can be achieved. For the full sys-

tem cellphone simulation, the TLM runs at 300MIPS. To iso-

late modeling from estimation errors, back-annotation of exe-

cution timing at the application level was performed using per-

fect ISS measurements. Resulting timing errors of models at

various levels range from 12.5% down to less than 3%. In all

cases, however, models exhibit 100% fidelity across various

explored architectures.

In general, results confirm expected speed and accuracy

tradeoffs with increasing abstraction. TLMs at various levels

support these tradeoffs for different use cases. A P-TLM can

be as accurate as a BCAM for systems that do not utilize busses

with complex arbitration schemes. In cases where there is no

arbitration at all, such as busses with single masters only, even

the N-TLM can provide the same accurate feedback at much

improved speeds. In the end, simulations with arbitrary com-

binations of behavioral and cycle-accurate component models

are possible at both the P-TLM and BCAM levels. Such mixed-

level simulations allow for validation of individual component

implementations in a faster system context.

Recently, a lot of research has been performed on modeling

techniques to improve simulation accuracy and speed. Many

of these techniques, such as concepts based on temporal de-

coupling [31, 27] or on timing prediction with subsequent cor-

rection [36, 37], are general in the sense that they can be ap-

plied to models of both computation and communication and

at varying levels of granularity. Under many general conditions

and in many common situations, such techniques allow a sig-

nificantly shift in speed/accuracy tradeoffs, e.g. by improving

speeds without a loss in accuracy.

0

5

10

15

20

25

30

35

40

45

Spec. Arch. NTLM PTLM BCAM CAM

A
v

e
ra

g
e

 E
rr

o
r

[%
]

0.1

1

10

100

1000

10000

100000

S
im

u
la

ti
o

n
 T

im
e

 [
s

]Avg. Error

Sim. Time

Fig. 8. Cellphone MPCSoC modeling results.

IV. SUMMARY AND CONCLUSIONS

Platformmodels are at the core and form the basis of any sys-

tem design methodology. Following a layer-based approach,

models at various levels of abstraction can be constructed in a

systematic manner. Experiments confirm that intermediate sys-

tem TLMs can simulate fast at reasonable accuracy. However,

all models are Pareto-optimal and none clearly outperforms any

other. Thus, a variety of models is desired to support a design

flow with gradual design space pruning while successively con-

verging down to more and more accurate solutions.

Traditionally, system models are manually written, which

is a tedious, error-prone and time-consuming process. This

makes it infeasible to explore a large number of design alter-

natives at varying levels within a given time-to-market win-

dow. However, based on sound layer-based model definitions,

tools for automatic model generation can be developed. Fur-

thermore, well-defined PAMs/BCAMs support automatic syn-

thesis down to final hardware and software implementations at

the CAM level. Using such tools [11], all models shown for

the cellphone example were generated within seconds. Fur-

thermore, tools can easily create models at varying levels of

abstraction. If done manually, writing and debugging of equiv-

alent models would take months. Overall, sound model seman-

tics beyond simulation are the key to unlocking corresponding

significant productivity gains by enabling rapid, early design

space exploration with an automated path to implementation.

ACKNOWLEDGMENTS

Many of the insights presented in this paper are the result of

countless discussions with members back at the Center for Em-

bedded Computer Systems (CECS) at UC Irvine. We specifi-

cally would like to acknowledge the contributions of our co-

authors on [14], which provided the material for the summary

on platform modeling concepts as presented here.

REFERENCES

[1] Accellera. RTL Semantics, Feb. 2001. Version 0.8.

[2] A. Bakshi, V. K. Prasanna, and A. Ledeczi. MILAN: A model

based integrated simulation framework for design of embedded

systems. In LCTES, Snowbird, Utah, June 2001.

[3] L. Benini, et al. MPARM: Exploring the multi-processor SoC

design space with SystemC. Journal of VLSI Signal Processing,

41(2):169–184, 2005.

[4] A. Bouchhima, et al. Using abstract CPU subsystem simula-

tion model for high level HW/SW architecture exploration. In

ASPDAC, Shanghai, China, Jan. 2005.

[5] L. Cai and D. Gajski. Transaction level modeling: An overview.

In CODES+ISSS, Newport Beach, CA, Oct. 2003.

[6] M. Caldari, et al. Transaction-level models for AMBA bus ar-

chitecture using SystemC 2.0. In DATE, Munich, Germany,

Mar. 2003.

[7] P. Chandraiah and R. Dömer. Code and data structure par-

titioning for parallel and flexible MPSoC specification using

designer-controlled re-coding. IEEE TCAD, 27(6):1078–1090,

June 2008.

[8] M. Coppola, et al. IPSIM: SystemC 3.0 enhancements for com-

munication refinement. InDATE, Munich, Germany, Mar. 2003.

[9] CoWare. Virtual Platform Designer. http://www.coware.com.

[10] R. Dömer. Transaction level modeling of computation. Techni-

cal Report CECS-06-11, Center for Embedded Computer Sys-

tems, University of California, Irvine, Aug. 2006.

[11] R. Dömer, et al. System-on-Chip Environment: A SpecC-based

framework for heterogeneous MPSoC design. EURASIP JES,

2008(647953):13, 2008.

[12] J. Eker, et al. Taming heterogeneity—the Ptolemy approach.

Proceedings of the IEEE, 91(2), Jan. 2003.

[13] F. Fummi, et al. Scalable and flexible cosimulation of SoC de-

signs with heterogeneous multi-processor target architectures.

ACM TODAES, 14(2):23:1–23:32, Mar. 2009.

[14] D. D. Gajski, et al. Embedded System Design: Modeling, Syn-

thesis, Verification. Springer, 2009.

[15] L. Gao, et al. Multiprocessor performance estimation using hy-

brid simulation. In DAC, Anaheim, CA, June 2008.

[16] A. Gerstlauer, et al. System Design: A Practical Guide with

SpecC. Kluwer, 2001.

[17] A. Gerstlauer, et al. Electronic system-level synthesis methdolo-

gies. IEEE TCAD, 28(10):1517–1530, Oct. 2009.

[18] A. Gerstlauer, et al. Automatic, layer-based generation of

system-on-chip bus communication models. IEEE TCAD,

26(9):1676–1687, Sept. 2007.

[19] A. Gerstlauer, H. Yu, and D. D. Gajski. RTOS modeling for sys-

tem level design. In R. Lauwereins and J. Madsen, eds., Design,

Automation and Test in Europe: The Most Influential Papers of

10 Years DATE. Springer, 2008.

[20] F. Ghenassia. Transaction-Level Modeling with SystemC: TLM

Concepts and Applications for Embedded Systems. Springer,

2005.

[21] T. Grötker, et al. System Design with SystemC. Kluwer, 2002.

[22] A. Haverinen, et al. SystemC based SoC communication mod-

eling for the OCP protocol, Oct. 2002. http://www.ocpip.org.

[23] F. Herrera and E. Villar. A framework for heterogeneous speci-

fication and design of electronic embedded systems in SystemC.

ACM TODAES, 12(3), Aug. 2007.

[24] A. Jantsch. Modeling Embedded Systems and SoCs: Concur-

rency and Time in Models of Computation. Morgan Kaufmann,

2004.

[25] T. Kempf, et al. A modular simulation framework for spatial and

temporal task mapping onto multi-processor SoC platforms. In

DATE, Munich, Germany, Mar 2005.

[26] K. Keutzer, et al. System level design: Orthogonolization of

concerns and platform-based design. IEEE TCAD, 19(12), Dec.

2000.

[27] R. S. Khaligh and M. Radetzki. Efficient parallel transaction

level simulation by exploiting temporal decoupling. In IESS,

Langenargen, Germany, Sept. 2009. Springer.

[28] T. Kogel, R. Leupers, and H. Meyr. Integrated System-Level

Modeling of Network-on-Chip enabled Multi-Processor Plat-

forms. Springer, 2006.

[29] M. Krause, et al. Combination of instruction set simulation and

abstract RTOS model execution for fast and accurate target soft-

ware evaluation. In CODES+ISSS, Atlanta, GA, Oct. 2008.

[30] L. Lavagno, A. Sangiovanni-Vincentelli, and E. Sentovich.

Models of computation for embedded system design. In A. Jer-

raya and J. Mermet, eds., System-Level Synthesis. Kluwer, 1999.

[31] Open SystemC Initiative (OSCI). Transaction Level Modeling

Library, Release 2.0, June 2008.

[32] S. Pasricha, N. Dutt, andM. Ben-Romdhane. Fast exploration of

bus-based communication architectures at the CCATB abstrac-

tion. ACM TECS, 7(2):22:1–22:32, Feb. 2008.

[33] H. D. Patel and S. K. Shukla. SystemC Kernel Extensions for

Heterogeneous System Modeling: A Framework for Multi-MoC

Modeling and Simulation. Kluwer, 2004.

[34] A. Pedram, D. Craven, and A. Gerstlauer. Modeling cache ef-

fects at the transaction level. In IESS, Langenargen, Germany,

Sept. 2009. Springer.

[35] H. Posadas, et al. RTOS modeling in SystemC for real-time

embedded SW simulation: A POSIXmodel. Design Automation

for Embedded Systems, 10(4), Dec. 2005.

[36] G. Schirner and R. Dömer. Result Oriented Modeling a

Novel Technique for Fast and Accurate TLM. IEEE TCAD,

26(9):1688–1699, Sept. 2007.

[37] G. Schirner and R. Dömer. Introducing Preemptive Scheduling

in Abstract RTOS Models using Result Oriented Modeling. In

DATE, Munich, Germany, Mar. 2008.

[38] G. Schirner and R. Dömer. Quantitative analysis of the

speed/accuracy trade-off in transaction level modeling. ACM

TECS, 8(1):4:1–4:29, Dec. 2008.

[39] G. Schirner, A. Gerstlauer, and R. Dömer. Fast and accurate

processor models for efficient MPSoC design. ACM TODAES,

to appear, 2010.

[40] J. Schnerr, et al. High-performance timing simulation of em-

bedded software. In DAC, Anaheim, CA, June 2008.

[41] SPIRIT Consortium. IP-XACT, Release 1.4, Mar. 2008.

[42] VaST Systems. http://www.vastsystems.com.

[43] S. Verdoolaege, H. Nikolov, and T. Stefanov. PN: a tool

for improved derivation of process networks. EURASIP JES,

2007(75947), 2007.

[44] Virtutech, Inc. Simics. http://www.virtutech.com.

[45] A. Wieferink, et al. A system level processor/communication

co-exploration methodology for multi-processor system-on-

chip platforms. In DATE, Paris, France, Feb. 2004.

[46] W. Wolf, A. A. Jerraya, and G. Martin. Multiprocessor system-

on-chip (MPSoC) technology. IEEE TCAD, 27(10):101–1713,

Oct. 2008.

[47] H. Zabel, W. Müller, and A. Gerstlauer. Accurate RTOS mod-

eling and analysis with SystemC. In W. Ecker, W. Müller, and

R. Dömer, eds., Hardware-dependent Software: Principles and

Practice. Springer, 2009.

