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Abstract— Embedded software plays an increasingly impor-

tant role in implementing modern embedded systems. Develop-

ment of embedded software, and of Hardware-dependent Soft-

ware in particular, is challenging due to the tight integration with

the underlying hardware architecture.

In this paper, we describe our system-level design approach

that allows designers to develop software in form of a platform-

agnostic specification. Our design environment enables explo-

ration of different architectural alternatives and subsequently

generates the software implementation. It generates the applica-

tion code, communication drivers, and an adaptation to a chosen

RTOS. It completes the process by producing the final target bi-

nary for each processor. Our experimental results demonstrate

the automatic generation of the binaries for five control and me-

dia oriented applications.

I. INTRODUCTION

Embedded software is increasingly important in todays com-

plex SoCs as it allows to flexibly realize complex features.

However, software development cost now dominates the over-

all design cost. The productivity gap between software design

capability and the potential in chip complexity/capacity is in-

creasing [9]. The traditional approach of manual software im-

plementation is tedious and error prone, as well as too time

consuming to meet the shortened time-to-market demands.

One potential solution to increase productivity is to raise the

level of abstraction for software development, hiding the com-

plexity of low level implementation detail. System-level de-

sign has to accommodate software concerns enabling a seam-

less co-design of software and hardware. Moving to higher lev-

els of abstraction reduces the complexity during development,

enabling designers to focus on important algorithmic details

without the burden of low level implementation details.

This article gives an overview of the software develop-

ment aspect within our ESL flow, System-on-Chip Environ-

ment (SCE) [8]. The system specification is developed in an

platform-agnostic format in our high-level development envi-

ronment. In a separate process, the designer specifies the target

platform and the mapping of the application to that platform.

SCE then automatically generates a system model that imple-

ments the application on top of the specified platform. The

system model, which is a transaction level model, serves as an

early validation and performance evaluation platform, giving

the designer feedback for optimizing the application and/or the

platform to meet design constraints.

Based on the system model, our software synthesis then gen-

erates an implementation over the target platform. It generates

the necessary application code and the necessary Hardware-

dependent Software (HdS) to execute the application on the

platform. The HdS includes communication drivers for exter-

nal and internal communication, as well as a mapping to an

underlying RTOS. Our generation process, using a cross com-

piler and linker, produces the complete target binary for each

processor in the system. For early validation of those bina-

ries, a system model with integrated Instruction Set Simulators

(ISSs) can be used.

The remaining document is organized as follows. After in-

troducing the relevant related work in Section II, Section III

overviews the design environment SCE. Section IV then out-

lines our processor modeling for estimation of software per-

formance. Section V introduces our software generation ap-

proach consisting of code generation and HdS generation. Sec-

tion VI validates our approach with experimental results, and

Section VII concludes and closes the article.

II. RELATED WORK

Supporting the software design process has been the aim of

significant research efforts with a wide range of approaches. To

name a few, they range from high-level analysis and synthesis

approaches that are based specialized Models-of-Computation.

Examples include POLIS [1] (Co-Design Finite State Ma-

chine), DESCARTES [24] (ADF and an extended SDF), Cor-

tadella et al. [5] (petri nets). Integrated Development Environ-

ments (IDEs), at another end of the spectrum, typically provide

limited automation support but aim to simplify manual devel-

opment (e.g. Eclipse [10] with its wide range of plug-in mod-

ules). The focus of this paper is the software development in

context of system-level design, were models are captured in a

System Level Design Language (SLDL) (e.g. SystemC [17],

SpecC [13]) which enables jointly capturing of HW and SW

aspects.

Abstract models are an important means for early prototyp-



ing and performance estimation. SLDLs, with their generic C-

programming model, are often used for modeling software and

its execution environment in an abstract form [21, 15, 3]. For

early validation of software binaries, ISSs have been integrated

into abstract system models to create system co-simulation en-

vironments [2, 6]. Such, virtual platforms allow for a detailed

analysis of the system before availability of real hardware, of-

ten revealing details not available on the target [20]. These ap-

proaches focus on simulation and validation, however, do not

offer an integrated solution to generate the final implementa-

tion.

Selecting proper dynamic scheduling policies and param-

eters is essential for an efficient design. Exposing dynamic

scheduling effects to guide early, abstract development has

been studied. One set of approaches is centered around host

compiled RTOSes [19, 11], in which a target RTOS is com-

plied to run on the simulation host as part of the simulation

environment. The user application then runs on top of the host

compiled target RTOS. Emulating an RTOS API directly on top

of the SLDL (without running the target RTOS) offers a higher

level of abstraction. For example, Posadas et al. [23] present

an abstract RTOS model with a POSIX API on top of SystemC.

This approach also include dynamic target execution timing es-

timation through overloading each operator in the C++-based

SystemC model.

Software generation enables transferring the results from ab-

stract modeling into a real implementation. Herrara et al. [18]

introduce SW generation from SystemC models by overload-

ing SystemC library elements. This approach, in advantage,

uses the same model both for specification and target execu-

tion, however, it potentially replicates aspects of the simulation

engine on the target. Other approaches focus on the RTOS inte-

gration, such as Krause et al. [22] which generates source code

from SystemC for application to RTOS mapping, and Gauthier

et al. [14] for generation of an application-specific operating

system.

III. DESIGN ENVIRONMENT

Electronic System Level (ESL) design addresses the com-

plexity challenges of designing a modern embedded system by

raising the abstraction level for design and development. Fig-

ure 1 outlines our ESL flow that is implemented in the System-

on-Chip Environment (SCE) [8]. Our flow uses a two step

approach of first generating a system TLM for detailed per-

formance estimation and early validation, and then using the

same TLM in a second step for automatic generation of a SW

and HW implementation.

The input to the system design flow is the specification

model, shown on top. The specification is an untimed and

platform-agnostic description of the system’s algorithms and

their dependencies captured in the C-based SLDL SpecC [13].

Note that although we chose SpecC for our experiments, the

concepts shown are equally applicable to other SLDLs, such as

SystemC, as well.

Computation and communication are separately captured us-

ing distinct language constructs. This separation enables an

automatic refinement for mapping computation to separate pro-

cessing elements and establishing the communication between
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Fig. 1. System design flow overview

elements. Computation is grouped in behaviors, and commu-

nication is expressed in channels. Figure 1 contains a graphical

representation of a simple specification. Boxes with rounded

corners (B1-B4) symbolize behaviors. Each behavior basically

contains C code, which is omitted for brevity. Behaviors can

be composed hierarchically to allow complex structures. They

can be behaviorally composed to execute in sequence, parallel,

pipelined, or state machine controlled.

Behaviors are statically connected and communicate through

direct point-to-point channels (C1, C2, C3). These channels are

selected from a feature-rich set of standardized channel types,

which allow for a wide range of communication mechanisms

similar to what is found in an operating system. Communi-

cation primitives include synchronous and asynchronous com-

munication, blocking and non-blocking communication (e.g.

FIFO), as well as for synchronization only (e.g. semaphore,

mutex, barrier).

A second input to our design flow contains the designer’s

architecture decisions describing the target platform as shown

on the left of Figure 1. The architecture decisions include the

allocation of processing elements (PEs), such as processors,

and HW components, and the mapping of behaviors to PEs.

The example shows the allocation of an ARM7TMI processor

and one custom hardware component. The behaviors B1, B2,

and B3 are mapped to the processor. These behaviors are later

wrapped into tasks and the designer can select important task

parameters, such as priority and stack size.

In addition, the designer also selects communication refine-

ment decisions. These decisions include bus system allocation,

the mapping of channels to busses and the definition of essen-

tial communication parameters for each channel. For example,

the user can select the synchronization scheme, such as polling

or interrupt-based synchronization.



Based on the specification and the designer’s architecture

decisions, the SCE engine [8] then automatically generates a

system TLM that reflects the architecture decisions. The SCE

engine instantiates and connects components out of the compo-

nent data base and populates them with the computation cap-

tured in the specification model. It refines the communication

between processing elements from the standardized abstract

channels to a communication based on the selected medium.

The resulting model, the generated TLM (Figure 2), is the basis

for system exploration, performance analysis and debugging.

After the designer has validated the TLM to meet perfor-

mance and quality expectations, the same TLM serves then as

input for the back-end HW synthesis and SW generation. The

output for the hardware side is RTL for each PE as well as the

connecting netlist. Within software synthesis, SCE produces a

final SW binary for each processor in the platform. The binary

includes the application code, all drivers for communication in

a heterogeneous system as well as an off-the-shelf RTOS if se-

lected. The generated binary can either directly execute on the

target processor or on an ISS-based co-simulation model for

binary validation.

The next sections describe the processor TLM, the software

synthesis, and the binary validation using an ISS-based model.

IV. PROCESSOR MODELING

Abstract processor modeling is one approach to explore soft-

ware execution performance during design space exploration.

In addition, as outlined earlier, the processor model also serves

as an input to software synthesis.

The SCE engine generates a system TLM based on the de-

signer’s architecture decisions, containing a processor model

[26] for each processor in the system. Figure 2 illustrates a

system TLM. The processor model is captured in the SpecC

SLDL and abstracts above processor’s Instruction Set Archi-

tecture (ISA). In result, the native execution on the simulation

host enables highest simulation speeds.
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Fig. 2. System Transaction Level Model [12]

Our processor model is organized in layers. The innermost

layer (CPU) captures the application itself. To emulate target

specific execution timing, the SCE engine annotates the appli-

cation with target-specific wait-for-time statements. The delays

for those are statically determined through a profiling stage [4].

In order to explore the effects of dynamic scheduling, our

processor model includes an abstract processor model [16] in

the OS layer. It is implemented as a channel (RTOS MODEL

in Figure 2). In order to execute on top of the OS model, each

parallel executing behavior is refined into a task (e.g. Task B2,

Task B2), defining task execution control and scheduling pol-

icy parameters (i.e. task priority). Each primitive inside a task

that could potentially trigger scheduling is wrapped to interact

with the abstract RTOS model. The OS model, in turn, main-

tains a state machine for each task, and operates waiting and

running queues similar to an actual RTOS implementation. It

implements a scheduler and serializes task execution according

to the selected scheduling policy and parameters.

The processor model’s next layer, the Hardware Abstraction

Layer (HAL) contains a representation of the necessary drivers

for external communication. The driver includes marshalling

and demarshalling of user data to translate to and from a com-

mon untyped network data format. It furthermore includes low

level drivers that implement external bus communication and

synchronize with external sources. In particular, it implements

the user selected synchronization mechanism, which is either

polling- or interrupt-based. The example in Figure 2 uses in-

terrupt synchronization. Together with the Core layer, our pro-

cessor model contains the complete interrupt chain, starting

from the external PIC, through the system interrupt handler

SysInt, via the user interrupt handler (e.g. UserInt2), and fi-

nally through a semaphore Sem2 that releases the user task ex-

ecuting the driver code. Communication outside the processor

is modeled by a transaction level model of the bus, providing

cycle approximate simulation with user transaction granularity.

Our processor model expresses the essential features of task

mapping, dynamic scheduling, interrupt handling, low level

firmware, and hardware interrupt handling. It exposes perfor-

mance implications of the design choices already early in the

process. It executes faster than real-time with a high accuracy

[26]. Since it is generated automatically, it serves as an ex-

ploration platform in the design space exploration to analyze

architectural and mapping alternatives. It allows to validate

important scheduling parameters and synchronization options,

thus is an important means for system-level software develop-

ment.

V. SOFTWARE GENERATION

Once the designer has achieved the expected performance

and quality requirements with the system TLM, the same TLM

is then used for software synthesis. To derive the embedded

software from the TLM, software synthesis has to implement

all SLDL language elements used inside the HAL (e.g. mod-

ules, tasks, channels, and port mappings) on the target proces-

sor. Instead of compiling the SLDL directly onto the target

software platform, software synthesis generates target C code

based on the information captured in the TLM to achieve com-

pact and efficient software.

We divide software generation into C code generation and

HdS generation, see Figure 3. C code generation deals with

the code inside each task and generates flat C code out of the

hierarchical model captured in the SpecC SLDL. HdS genera-

tion creates code for processor internal and external communi-

cation, adjusts for multi-tasking finally generates configuration

and build files (e.g. Makefile) for the cross compilation process.
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A. Code Generation

Code generation [30] produces sequential C code for each

task within a programmable component. It translates the appli-

cation module hierarchy captured in the system TLM into the

target programming language. The TLM’s application mod-

ules use system level features of the SLDL that are not natively

present in the targeted C language. Examples include hierar-

chy, concurrency, and communication encapsulation. In order

to implement them on the target processor, code generation im-

plements these SLDL features out of the available language

constructs.

It translates the hierarchical composition of behaviors in the

SLDL into flat C-code consisting of functions and data struc-

tures. ANSI-C does not provide an encapsulation for behav-

ior local storage. Therefore, all behaviors’s local variables

are added to a behavior-representing structure. It also trans-

lates communication between behaviors within the same task

into function argument passing. Summarizing, code generation

solves similar issues as early C++ to C compilers that translated

a class hierarchy into flat C code.

B. Hardware-dependent Software Generation

The second portion of software generation is Hardware-

dependent Software (HdS) generation [25]. HdS generation

reads the decisions captured in the system TLM, and imple-

ments those on the target system. As such, it generates code

for processor internal and external communication, including

bus access drivers and synchronization code (polling or inter-

rupt). HdS generation also creates code to execute multiple

tasks on the same processor, e.g. by targeting an off-the-shelf

RTOS. Finally, it generates configuration and build files (e.g.

Makefile) that control the cross compilation process to produce

the final target binary.

The first aspect within the HdS generation the communica-

tion generation which deals with processor internal and exter-

nal communication. For communication between tasks on the

same processor, HdS generation replaces each standard com-

munication channel that is used in the TLM, with an semanti-

cally equivalent target implementation, e.g. composed out of

RTOS primitives.
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Fig. 4. Software stack for RTOS-based multi-tasking

For external communication, we conceptually follow an

ISO/OSI layering model to support communication in hetero-

geneous systems. HdS generation produces all driver code

that is necessary for communication with external PEs. This

driver code implements marshalling/demarshalling, packetiza-

tion, channel-specific synchronization and adds a bus specific

Media Access Control (MAC) driver to access the actual pro-

cessor bus. Among other options, HdS generation offers syn-

chronization through interrupts. For this, it implements the

complete interrupt chain on the target processor from the low

level assembly interrupt handler that preempts the currently

running task, over the system interrupt handler that commu-

nicates with the PIC to the user interrupt handler that finally

releases the pending driver through a semaphore.

To support multiple tasks executing on the same processor,

HdS generation can adjust the task code to run on top of an off-

the-shelf RTOS. It replaces the abstract calls for task manage-

ment in the TLM, with corresponding target implementations.

To limit the interdependency between the code generation and

the particular OS’s API we introduce a very thin RTOS Ab-

stract Layer (RAL) that implements a common canonical API

on top of the actual RTOS’s API. Figure 4 shows the resulting

software stack.

HdS generation finally, produces build- and configuration

files to control the cross compilation process and creates the fi-

nal software binary. Figure 5 illustrates the process. The build

process relies on a software database that captures the SW sys-

tem components (e.g. an RTOS, RTOS port, HAL). The build

and configuration files select and configure database compo-

nents according to the decisions in the TLM. As such, they

select a particular RTOS, with a suitable port to the selected

processor. They include a hardware abstraction layer (HAL)
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based on the target platform, consisting of low-level drivers for

the timer, the programmable interrupt controller (PIC), and the

bus accesses.

The final target binary is created using a cross compiler and

can execute on the target processor or on an ISS-based virtual

platform. A virtual platform allows validation and development

of the final software binaries already before the availability of

real hardware.

Figure 6 shows an ISS-based model for binary validation. To

generate a virtual platform, our SW generation removes the in-

ternals of the abstract processor model starting with the HAL

layer and replaces them with an ISS that is wrapped for in-

tegration into the system model. The ISS wrapper calls the

ISS cycle-by-cycle and advances the system’s simulated time

according to the processor clock definition. It furthermore in-

terfaces with the remaining design through bus accesses and

interrupts.
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VI. EXPERIMENTAL RESULTS

To evaluate the effectiveness of our high-level design ap-

proach, we have applied it to five real-life examples. As an

control application example, we model an Electronic Control

Unit (ECU) containing an ARM7TDMI processor that executes

three tasks: anti-lock break control, RPM computation, and en-

gine fan controller. The remaining four examples are multi-

media examples. JPEG compresses a BMP image. MP3 SW

decodes an MP3 stream solely on a ARM7TDMI. To demon-

strate the flexibility, we use the same specifications in com-

bined examples. To decrease CPU utilization, MP3 HW first

maps a portion of the synthesis filter to a hardware accelera-
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tor. Finally, MP3 HW + JPEG combines both media applica-

tions. The complexities of the selected target architecture range

from a single processor solution to the more complex Mp3 HW

+ JPEG, which uses 4 I/O blocks, 3 HW accelerators and 4

busses (see Figure 7).

We have used SCE for automatic generation of the system

TLM for exploration and finally automatically generated the

binaries for each application. To validate the correctness of

the generated code, we executed each synthesized target binary

on a virtual platform with an integrated ISS, SWARM ISS [7].

Each application executes functionally correct, yielding an out-

put matching the specification.
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Figure 8 depicts the CPU utilization on the ARM7TDMI

during the ISS-based simulation. It shows that the automo-

tive control application only minimally utilizes the CPU. Both

SW only media applications, however, are compute bound and

result in 100% utilization. In case of the MP3 decoder, the

deadline for frame decoding is exceeded. To meet real-time re-

quirements and decrease the CPU utilization MP3 HW maps a

compute intense portion of the synthesis filter to a HW acceler-

ator. Here, the CPU utilization drops to 31% creating sufficient

idle time for the combined example. After adding JPEG en-

coding the utilization reaches 90%1. Figure 9 illustrates the

absolute number of computation cycles on the ARM processor

with similar trends like the CPU utilization.
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Next, Figure 10 shows the number of generated lines of code

1MP3 HW + JPEG still shows some idle time, since JPEG encoding fin-

ishes before the MP3 decoding.



for each application. It distinguishes between application and

HdS code. The code size of the automotive example is dom-

inated by the HdS as is it uses only a simple control algo-

rithm, however, communicates with 9 sensors and actuators via

2 CAN busses. For the multi-media applications the amount of

generated HdS increases with using HW accelerators due to

the extra communication. A significant amount of HdS code

is generated (e.g. 1186 lines for Mp3 HW + JPEG). In all

examples, our software synthesis completes within a second.

Assuming manually writing only the HdS code would take 12

to 79 hours (assuming 15 lines of correct code per hour [28]).

This translates in a multiple thousand fold productivity gain.
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VII. CONCLUSIONS

With the increase in system complexity and the increase

in software content, manual software development and imple-

mentation becomes prohibidly expensive and increases the risk

of missing the crucial time-to-market window. Embedded soft-

ware generation is an essential aspect of implementing todays

SoC as automatic generation avoids the tedious and error prone

manual implementation.

We have presented in this paper the software aspect of our

ESL environment. It implements a systematic approach for

generating the final target binaries from an abstract specifica-

tion model. The design process begins with an abstract model

containing the application specification as a set of parallel se-

quential behaviors that communicate through standardized ab-

stract channels. Our ESL environment automatically generates

a system TLM based on the designer’s architecture decisions.

Using this system TLM, the software generation then automat-

ically generates the binaries for each processor in the system.

The software generation includes application code generation,

communication generation, multi-task generation, and binary

image generation. Based on the platform decisions, it gener-

ates communication drivers, interrupt handlers, and adjusts for

the target multi-tasking.

Our experimental results show the generation of binaries for

five real-life target applications that include different media ap-

plications and a control system. An automated software gen-

eration has many benefits. Primarily, it increases the produc-

tivity by eliminating the error-prone process of manual low-

level software development. Automatic generation is not only

much faster than a manual implementation, in addition it also

allows the designer to focus on the essential algorithms, with-

out the burden of implementation details. Furthermore, an au-

tomated generation enables rapid design space exploration, as

it can quickly and easily produce alternative solutions.
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