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Abstract— The validation of transaction level models described
in System-level Description Languages (SLDLs) often relies on
extensive simulation. However, traditional Discrete Event (DE)
simulation of SLDLs is cooperative and cannot utilize the avail-
able parallelism in modern multi-core CPU hosts. In this work,
we study the SLDL execution semantics of concurrent threads
and present a multi-core parallel simulation approach which au-
tomatically protects communication between concurrent threads
so that parallel simulation on multi-core hosts becomes possible.
We demonstrate significant speed-up in simulation time of several
system models, including a H.264 video decoder and a JPEG en-
coder.

I. I NTRODUCTION

Modern embedded system platforms often integrate multi-
ple processing elements into the system, including general-
purpose CPUs, application-specific and digital signal proces-
sors, as well as dedicated hardware accelerators. The largesize
and complexity of these systems pose great challenges to de-
sign and validation using traditional design flows. System de-
signers are forced to move to higher levels of abstraction to
address these challenges, including large number of heteroge-
neous components, complex interconnect, sophisticated func-
tionality, and slow simulation.

At the so-called Electronic System Level (ESL), system
design and validation aim at a systematic top-down design
methodology which successively transforms a given high-
level specification model into a detailed implementation. As
one example, the System-on-Chip Environment (SCE) is a
refinement-based framework for heterogeneous MPSoC design
[7]. SCE starts with a system specification model described in
the SpecC [10] System-Level Description Language (SLDL)
and implements a top-down ESL design flow based on the
specify-explore-refine methodology.

Note that in contrast to flat and sequential C/C++ program-
ming code, a well-defined SLDL design modelexplicitlyspeci-
fies any potential for thread-level parallelism, among other key
concepts. In this work, we exploit the existing explicit paral-
lelism in SLDL design models to speed-up their simulation.

Regular SLDL model validation is based on traditional dis-
crete event (DE) simulation. The SLDL simulator implements
the existing parallelism in the design model in the form of con-
current user-level threads within a single process. The multi-
threading model used is cooperative (i.e. non-preemptive),
which greatly simplifies communication through events and
variables in shared memory. Unfortunately, however, this

threading model cannot utilize any available parallelism in
multi-core host CPUs which nowadays are common and read-
ily available in regular PCs. In Section III, we extend the SpecC
simulator for parallel multi-core execution which leads tosig-
nificant reduction of simulation time.

A. Related Work

Regular DE-based SLDL simulators issue only a single
thread of execution at any time to avoid complex synchroniza-
tion of the concurrent threads. This way, however, the single-
threaded simulator kernel is an impediment in improving sim-
ulation performance on multi-core host machines [11].

A well-studied solution to this problem is Parallel Discrete
Event Simulation (PDES) [2, 8, 14]. To apply PDES solu-
tions to today’s SLDLs and actually allow parallel execution on
multi-core processors, the simulator kernel needs to be mod-
ified to issue and properly synchronize multiple OS kernel
threads in each scheduling step. [5, 15, 16] discuss exten-
sions to the SystemC SLDL. Clusters with single-core nodes
are targeted in [5] which uses multiple schedulers on different
processing nodes and defines a master node for time synchro-
nization. A parallelized SystemC kernel for fast simulation on
SMP machines is presented in [15] and [16] which issues mul-
tiple runable OS kernel threads in each simulation cycle.

In comparison, our work [3, 4] targets the SpecC SLDL.
Moreover, our approach features a detailed synchronization
protection mechanism which we automatically generate for any
user-defined and hierarchical channels. Also, instead of syn-
thetic benchmarks, we provide results for an actual H.264 video
decoder and a JPEG encoder.

II. SLDL M ULTI -THREADING SEMANTICS

Both SystemC and SpecC SLDLs define their execution se-
mantics by use of DE-based scheduling of multiple concur-
rent threads, which are managed and coordinated by a cen-
tral simulation kernel. More specifically, both the SystemC
and SpecC reference simulators that are freely available from
the corresponding consortia usecooperativemulti-threading in
their schedulers. That is, both reference schedulers select only
a single thread to run at all times.

However, the reference simulator implementations do not
define the actual language semantics. In fact, the execution
semantics of concurrent threads defined by the SystemC Lan-
guage Reference Manual (LRM) differ significantly from the
semantics defined in the SpecC LRM.



A. Cooperative multi-threading in SystemC

The SystemC LRM [12] clearly states (in Section 4.2.1.2)
that ”process instances execute without interruption”, which
is known as cooperative (or co-routine) multitasking. In other
words, preemptive scheduling is explicitly forbidden.

As a consequence, when writing a SystemC model, the sys-
tem designer”can assume that a method process will execute
in its entirety without interruption”[12]. This is convenient
when sharing variables among different threads (because mu-
tual exclusive access to such variables in a critical regionis im-
plicitly guaranteed by the non-preemptive scheduling seman-
tics). While this can aid significantly in avoiding bugs and race
conditions if one is only concerned with modeling and simu-
lation, such semantics are hard to verify and synthesize if the
goal is to eventually reach an efficient implementation. Fur-
thermore, sharing of plain variables also violates the overall
system-level principle of separation of concerns where compu-
tation and communication are supposed to be clearly separated
in modules and channels, respectively.

The uninterrupted execution guaranteed by the SystemC
LRM makes it hard to synthesize concurrent threads into a truly
parallel implementation. This same problem also prevents an
efficient implementation of a fully standards-compliant paral-
lel multi-core simulator, which we are aiming for in this paper.
This particular problem of parallel simulation is actuallyad-
dressed specifically in the SystemC LRM [12], as follows:

”An implementation running on a machine that pro-
vides hardware support for concurrent processes
may permit two or more processes to run concur-
rently, provided that the behavior appears identical
to the co-routine semantics defined [...]. In other
words, the implementation would be obliged to an-
alyze any dependencies between processes and con-
strain their execution to match the co-routine seman-
tics.”

In short, complex inter-dependency analysis over all vari-
ables in the system model is a prerequisite to parallel multi-core
simulation in SystemC.

B. Preemptive multi-threading in SpecC

In contrast to the cooperative scheduling mandated for Sys-
temC models, multi-threading in the SpecC LRM [6] is (in Sec-
tion 3.3) explicitly stated as”preemptive execution”. Thus,
”No atomicity is guaranteed for the execution of any portion
of concurrent code”. Consequently, shared variables need to
be carefully protected for mutually exclusive access in critical
regions.

Allowing preemptive execution of concurrent threads re-
quires the system designer to plan and design the system
model carefully with respect to all communication (in partic-
ular through shared variables!) and synchronization. However,
exactly that is the main premise of clear separation of computa-
tion and communication in system-level models (which enables
the reuse of existing components, such as IP).

In other words, if communication and computation are al-
ready separated in a well-written system model, this also pro-

vides the framework for solving the critical section prob-
lem in the a preemptive multi-threading environment. The
SpecC Language Working Group realized this opportunity
when defining the version 2.0 of the language in 2001 [9]. In
fact, a new ”time interval formalism” was developed that pre-
cisely defines the parallel execution semantics of concurrent
threads in SpecC. Specifically, truly parallel execution (with
preemption) is generally assumed in SpecC.

To then allow safe communication and synchronization, a
single exception was defined for channels. The SpecC LRM
[6] states (in Section 2.3.2(j)) that

”For each instance of a channel, the channel meth-
ods are mutually exclusive in their execution. Im-
plicitly, each channel instance has a mutex associ-
ated with it that the calling thread acquires before
and releases after the execution of any method of the
channel instance.”

In other words, each SpecC channel instance implicitly acts
as amonitorthat automatically protects the shared variables for
mutually exclusive access in the critical region of communica-
tion.

Note that the SpecC semantics based on separation of com-
putation and communication elegantly solve the problem of al-
lowing truly parallel execution of computational parts in the
design, as well as provide built-in protection of critical regions
in channels for safe communication. This builds the basis for
both synthesis of efficient concurrent hardware/software real-
izations as well as implementation of efficient parallel simu-
lators. While the freely available SpecC reference simulator
does not utilize this possibility, we exploit these semantics in
our parallel multi-core simulator.

III. M ULTI -CORE PARALLEL SIMULATION

Design models with explicitly specified parallelism make it
promising to increase simulation performance by parallel exe-
cution on the available hardware resources of a multi-core host.
However, care must be taken to properly synchronize the con-
current threads.

In this section1, we will first review the scheduling scheme
in a traditional simulation kernel that issues only a singlethread
at a time. We will then present our improved scheduling algo-
rithm with true multi-threading capability on symmetric mul-
tiprocessing (multi-core) machines and discuss the necessary
synchronization mechanisms for safe parallel execution.

A. Traditional Discrete Event Simulation

In both SystemC and SpecC SLDLs, a traditional DE sim-
ulator is used. Threads are created for the explicit parallelism
described in the models (e.g.par{} andpipe{} statements in
SpecC, andSC METHODSand SC THREADSin SystemC).
These threads communicate via events and advance simulation
time usingwait-for-timeconstructs.

1Without loss of generality, we assume use the SpecC SLDL execution se-
mantics here. Please refer to Section II.A for a discussion onSystemC SLDL.



To describe the simulation algorithm, we define the follow-
ing data structures and operations:

1. Definition of queues of threadsth in the simulator:

• QUEUES = {READY , RUN, WAIT , WAITFOR ,
COMPLETE }

• READY = {th | th is ready to run}

• RUN = {th | th is currently running}

• WAIT = {th | th is waiting for some events}

• WAITFOR = {th | th is waiting for time advance}

• COMPLETE = {th | th has completed its execution}

2. Simulation invariants:
Let THREADS = set of all threads which currently exist.
Then, at any time, the following conditions hold:

• THREADS = READY ∪ RUN ∪ WAIT ∪ WAITFOR
∪ COMPLETE .

• ∀ A, B ∈ QUEUES, A 6= B : A ∩ B = ∅.

3. Operations on threadsth:

• Go(th): let threadth acquire a CPU and begin exe-
cution.

• Stop(th): stop execution of threadth and release the
CPU.

• Switch(th1, th2): switch the CPU from the execu-
tion of threadth1 to threadth2.

4. Operations on threads with set manipulations:
Supposeth is a thread in one of the queues, A and B are
queues∈ QUEUES.

• th = Create(): create a new threadth and put it in
setREADY .

• Delete(th): kill thread th and remove it from set
COMPLETE .

• th = Pick(A, B): pick one threadth from set A and
put it into set B.

• Move(th, A, B): move threadth from set A to B.

5. Initial state at beginning of simulation:

• THREADS = {throot}.

• RUN = {throot}.

• READY = WAIT = WAITFOR = COMPLETE = ∅.

• time = 0.

SLDL simulation is driven by events and simulation time
advances. Whenever events are delivered or time increases, the
scheduler is called to move the simulation forward. As shown
in Fig. 1, at any time, the traditional scheduler runs a single
thread which is picked from theREADY queue. Within a delta-
cycle, the choice of the next thread to run is non-deterministic
(by definition). If theREADY queue is empty, the scheduler
will fill the queue again by waking threads who have received
events they were waiting for. These are taken out of theWAIT
queue and a new delta-cycle begins.
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Fig. 1. Traditional SLDL scheduler.

If the READY queue is still empty after event delivery,
the scheduler advances the simulation time, moves all threads
with the earliest timestamp from theWAITFOR queue into the
READY queue, and resumes execution. At any time, there is
only one thread actively executing in the traditional simulation.

B. Multi-Core Discrete Event Simulation

The scheduler for multi-core parallel simulation works the
same way as the traditional scheduler, with one exception:
in each cycle, it picks multiple OS kernel threads from the
READY queue and runs them in parallel on the available cores.
In particular, it fills theRUN set with multiple threads up to
the number of CPU cores available. In other words, it keeps as
many cores as busy as possible.
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Fig. 2. Multi-core SLDL scheduler.

Fig. 2 shows the extended control flow of the multi-core
scheduler. Note the extra loop at the left which issues OS ker-



nel threads as long as CPU cores are available and theREADY
queue is not empty.

C. Synchronization for Multi-Core Simulation

The benefit of running more than a single thread at the same
time comes at a price. Explicit synchronization becomes nec-
essary. In particular, shared data structures in the simulation
engine, including the thread queues and event lists, and shared
variables in communication channels of the application model
need to be properly protected by locks for mutual exclusive ac-
cess by the concurrent threads.

C.1 Protecting Scheduling Resources

To protect all central scheduling resources2, we run the sched-
uler in its own thread and introduce locks and condition vari-
ables for proper synchronization. More specifically, we use

• one central lockL to protect the scheduling resources,

• a condition variableConds for the scheduler, and

• a condition variableCond th for each working thread.

When a working thread executes await or waitfor instruc-
tion, we switch execution to the scheduling thread by waking
the scheduler (signal(Conds) and putting the working thread
to sleep (wait(Cond th, L). The scheduler then uses the same
mechanism to resume the next working thread.

C.2 Protecting Communication

Communication between threads also needs to be explicitly
protected3. As discussed in Section II.B, SpecC channels are
defined to act as monitors. That is, only one thread at a time
may execute code wrapped in a specific channel instance.

1 send ( d ) r e c e i v e ( d )
{ {

3 Lock ( t h i s−>Lock ) ; Lock ( t h i s−>Lock ) ;
wh i l e ( n >= s i z e ){ wh i le ( ! n){

5 ws ++; wr ++;
wa i t ( eSend ) ; wa i t ( eRecv ) ;

7 ws −−; wr −−;
} }

9 b u f f e r . s t o r e ( d ) ; b u f f e r . l oad ( d ) ;
i f ( wr){ i f ( ws){

11 n o t i f y ( eRecv ) ; n o t i f y ( eSend ) ;
} }

13 unLock ( t h i s−>Lock ) ; unLock ( t h i s−>Lock ) ;
} }

Fig. 3. Queue channel implementation for multi-core simulation.

To ensure this, we introduce a lockch→Lock for each chan-
nel instance which is acquired at entry and released upon leav-
ing any method of the channel. Fig. 3 shows this for the exam-
ple of a simple circular buffer with fixed size.

The combination of a central scheduling lock and individ-
ual locks for channel and signal instances with proper locking

2Protection of central scheduling resources is equally applicable to SpecC
and SystemC SLDLs.

3Communication protection is efficiently implementable only in SpecC
SLDL (see Section II.B).

scheme and well-defined ordering ensures safe synchronization
among many parallel working threads. Fig. 4 summarizes the
detailed use of all locks and the thread switching mechanism
for the life-cycle of a working thread. Together with the sched-
uler presented in Fig. 2, this flow chart defines our multi-core
DE simulator and also shows its design considerations.
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Fig. 4. Life-cycle of a thread in the multi-core simulator.

IV. EXPERIMENTS AND RESULTS

To demonstrate the improved simulation time of our multi-
core simulator, we use a H.264 video decoder and a JPEG en-
coder application.

A. Case Study on a H.264 Video Decoder

The H.264 AVC standard [17] is widely used in video ap-
plications, such as internet streaming, disc storage, and televi-
sion services. H.264 AVC provides high-quality video at less
than half the bit rate compared to its predecessors H.263 and
H.262. At the same time, it requires more computing resources
for both video encoding and decoding. In order to implement
the standard on resource-limited embedded systems, it is highly
desirable to exploit available parallelism in its algorithm.

The H.264 decoder takes as input a video stream consisting
of a sequence of encoded video frames. A frame can be fur-
ther split into one or more slices during H.264 encoding, as
illustrated in the upper right part of Fig. 5. Notably, slices are
independentof each other in the sense that decoding one slice
will not require any data from the other slices (though it may
need data from previously decoded reference frames). For this
reason, parallelism exists at the slice-level and parallelslice
decoders can be used to decode multiple slices in a frame si-
multaneously.

We have specified a H.264 decoder model based on the
H.264/AVC JM reference software [13]. In the reference code,
a global data structure (img) is used to store the input stream



and all intermediate data during decoding. In order to paral-
lelize the slice decoding, we have duplicated this data structure
and other global variables so that each slice decoder has itsown
copy of input stream data and can decode its own slice locally.
As an exception, the output of each slice decoder is still written
to a global data structure (decpicture). This is valid because
the macro-blocks produced by different slice decoders do not
overlap.

Fig. 5. Parallelized H.264 decoder model.

Fig. 5 shows the block diagram of our model. The decod-
ing of a frame begins with reading new slices from the input
stream. These are then dispatched into four parallel slice de-
coders. Finally, a synchronizer block completes the decoding
by applying a deblocking filter to the decoded frame. All the
blocks communicate via FIFO channels. Internally, each slice
decoder consists of the regular H.264 decoder functions, such
as entropy decoding, inverse quantization and transformation,
motion compensation, and intra-prediction.

Using SCE, we partition the above H.264 decoder model
as follows: the four slice decoders are mapped onto four
custom hardware units; the synchronizer is mapped onto an
ARM7TDMI processor at 100MHz which also implements the
overall control tasks and cooperation with the surroundingtest-
bench. We choose Round-Robin scheduling for tasks in the
processor and allocate an AMBA AHB for communication be-
tween the processor and the hardware units.

For our H.264 experiment, we use the same stream ”Har-
bour” of 299 video frames, each with 4 slices of equal size. As
shown in [3], 68.4% of the total computation time is spent in
the slice decoding, which we have parallelized in our decoder
model.

As a reference point, we calculate the maximum possible
performance gain as follows:

MaxSpeedup =
1

ParallelPart
NumOfCores

+ SerialPart

For 4 parallel cores, the maximum speedup is

MaxSpeedup4 =
1

0.684
4

+ (1 − 0.684)
= 2.05

The maximum speedup for 2 cores is accordingly
MaxSpeedup2 = 1.52 .

Table I lists the simulation results for several design mod-
els generated with SCE at different levels of abstraction when
using our multi-core simulator on a Fedora core 12 host PC
with a 4-core CPU (Intel(R) Core(TM)2 Quad) at 3.0 GHz,
compiled with optimization (-O2) enabled. We compare the

elapsed simulation time against the single-core referencesim-
ulator (the table also includes the CPU load reported by the
Linux OS). Although simulation performances decrease when
issuing only one parallel thread due to additional mutexes for
safe synchronization in each channel and the scheduler, our
multi-core parallel simulation is very effective in reducing the
simulation time for all the models when multiple cores in the
simulation host are used.

Table I also lists the measured speedup and the maximum
theoretical speedup for the models. The more threads are is-
sued in each scheduling step, the more speedup we gain. How-
ever, the measured speedups are somewhat lower than the the-
oretical maximum, which is reasonable given the overhead in-
troduced due to parallelizing and synchronizing the slice de-
coders.

B. Case Study on a JPEG Encoder

As a second experiment, Table II shows the simulation
speedup for a JPEG Encoder example [1] which performs the
DCT , Quantization and Zigzag modules for the 3 color
components in parallel, followed by a sequentialHuffman

encoder at the end. Significant speedup is gained by our multi-
core parallel simulator for the higher level models (spec, arch).
Simulation performance decreases for the models at the lower
abstraction levels (sched, net) due to the high number of bus
transactions and arbitrations which are not parallelized and in-
troduce large overhead due to the necessary synchronization
protection.

V. SUMMARY AND CONCLUSION

SLDL design models at different levels of abstraction are
typically validated by use of extensive simulation. Despite ex-
plicitly described thread-level parallelism in the designmodel,
traditional SLDL simulators issue only a single simulation
thread at any time in order to avoid the otherwise necessary
complex synchronization of concurrent threads. Consequently,
such simulators cannot utilize the available parallelism in mod-
ern multi-core CPU hosts.

In this work, we have compared the execution semantics of
concurrent threads in the SystemC and SpecC SLDLs. We have
then presented an extension of the SpecC SLDL simulation ker-
nel that supports truly parallel simulation on multi-core hosts.
Our careful channel protection scheme for safe synchroniza-
tion and communication allows our parallel simulator to issue
as many simulation threads simultaneously as CPU cores are
available. The resulting increase in simulation speed enables
significantly faster validation of large SLDL design models.
Using two case studies on H.264 video decoding and JPEG
encoding we have demonstrated the effectiveness of our ap-
proach.
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TABLE I
SIMULATION RESULTS OF H.264 DECODER(”H ARBOUR”, 299 FRAMES 4 SLICES EACH, 30 FPS).

Simulator Reference Multi-Core
Par. issued threads: n/a 1 2 4

sim. time sim. time speedup sim. time speedup sim. time speedup
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models sched 21.43s (97%) 21.72s (97%) 0.99 15.26s (141%) 1.40 12.98s (182%) 1.65
net 21.37s (97%) 21.49s (99%) 0.99 15.58s (138%) 1.37 13.04s (181%) 1.64
tlm 21.64s (98%) 22.12s (98%) 0.98 16.06s (137%) 1.35 13.99s (175%) 1.55

comm 26.32s (96%) 26.25s (97%) 1.00 19.50s (133%) 1.35 25.57s (138%) 1.03
maximum speedup 1.00 1.00 1.52 2.05

TABLE II
SIMULATION RESULTS OF JPEG ENCODER.

Simulator Reference Multi-Core
Par. issued threads: n/a 1 2 4

sim. time sim. time speedup sim. time speedup sim. time speedup
spec 5.54s (99%) 5.97s (99%) 0.93 4.22s (135%) 1.31 3.12s (187%) 1.78
arch 5.52s (99%) 6.07s (99%) 0.91 4.28s (135%) 1.29 3.15s (188%) 1.75

models sched 5.89s (99%) 6.38s (99%) 0.92 5.48s (108%) 1.07 5.47s (113%) 1.08
net 11.56s (99%) 49.3s (99%) 0.23 40.63s (131%) 0.28 37.97s (128%) 0.30
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