Multi-Core Parallel Simulation of System-Level Description Languages

Rainer Dbmer, Weiwei Chen, Xu Han Andreas Gerstlauer
Center for Embedded Computer Systems Dept. of ElectrichGomputer Engineering
University of California, Irvine, USA University of Texas Austin, USA
doemer@uci.edu, weiweic@uci.edu, hanx@uci.edu gersti@ecesigdya

Abstract— The validation of transaction level models described threading model cannot utilize any available parallelism i
in System-level Description Languages (SLDLs) often relies on multi-core host CPUs which nowadays are common and read-
extensive simulation. However, traditional Discrete Event (DE) ily available in regular PCs. In Section Ill, we extend the&p
simulation of SLDLs is cooperative and cannot utilize the avail- simulator for parallel multi-core execution which leadssig-
able parallelism in modern multi-core CPU hosts. In this work, nificant reduction of simulation time.
we study the SLDL execution semantics of concurrent threads
and present a multi-core pargllel.simulation approach which au- A. Related Work
tomatically protects communication between concurrent threads
so that parallel simulation on multi-core hosts becomes possible. Regular DE-based SLDL simulators issue only a single
We demonstrate significant speed-up in simulation time of several thread of execution at any time to avoid complex synchreniza
system models, including a H.264 video decoder and a JPEG en- tion of the concurrent threads. This way, however, the singl
coder. threaded simulator kernel is an impediment in improving-sim

ulation performance on multi-core host machines [11].
A well-studied solution to this problem is Parallel Dis@et
|. INTRODUCTION Event Simulation (PDES) [2, 8, 14]. To apply PDES solu-

Modern embedded system platforms often integrate mulﬁ'—onsf totoday's SLDLs and agtually allow paraliel execntan
ulti-core processors, the simulator kernel needs to be-mod

ple processing elements into the system, including gener .) .
purpose CPUSs, application-specific and digital signal sec %}ed to issue and properly synchronize multiple OS kernel

sors, as well as dedicated hardware accelerators. Thediaeye threads in each scheduling step. [5, 15, 16] discuss exten-

and complexity of these systems pose great challenges to (%Qnts to tth((aj _SysSteer]; ﬁLDL' Clulstt.elrs W'Lh jlnlgle-cor;frilé)des
sign and validation using traditional design flows. System d are targeted in [5] which uses multiple schedulers on '

signers are forced to move to higher levels of abstraction fyocessing nodes and defines a master node for time synchro-

address these challenges, including large number of meronlzation. A_para_llelized Syste_mC kerne] for fast_simulattm
neous components, complex interconnect, sophisticatect fu SMP machines is presented in [15] and [16] which issues mul-

tionality, and slow simulation. tiple runable OS kernel threads in each simulation cycle.

At the so-called Electronic System Level (ESL), system In comparison, our work [3, 4] targets.the SpecC S.LDI."
design and validation aim at a systematic top-down desi Y|oreover, our approach features a detailed synchronizatio

methodology which successively transforms a given hig _rotegtl?n rr(;echgnrll_sm Whr':.:h \;vehauton?atlczlly ggne}z[ratgrzra
level specification model into a detailed implementatiors auser-getined and hierarchical channe’s. Aiso, instea sy

one example, the System-on-Chip Environment (SCE) is zget|cdbencr:jma3l;sééve pr0\:j|de results for an actual H.28dwi
refinement-based framework for heterogeneous MPSoC desi freoderanda encoder.
[7]. SCE starts with a system specification model described i

the SpecC [10] System-Level Description Language (SLDL) II. SLDL M ULTI-THREADING SEMANTICS
and implements a top-down ESL design flow based on the
specify-explore-refine methodology. Both SystemC and SpecC SLDLs define their execution se-

Note that in contrast to flat and sequential C/C++ programmantics by use of DE-based scheduling of multiple concur-
ming code, a well-defined SLDL design modeblicitlyspeci- rent threads, which are managed and coordinated by a cen-
fies any potential for thread-level parallelism, among pkey tral simulation kernel. More specifically, both the SystemC
concepts. In this work, we exploit the existing explicit plar and SpecC reference simulators that are freely availabta fr
lelism in SLDL design models to speed-up their simulation. the corresponding consortia useoperativemulti-threading in

Regular SLDL model validation is based on traditional distheir schedulers. That is, both reference schedulerstamigc
crete event (DE) simulation. The SLDL simulator implements: single thread to run at all times.
the existing parallelism in the design model in the form afco However, the reference simulator implementations do not
current user-level threads within a single process. Theimuldefine the actual language semantics. In fact, the execution
threading model used is cooperative (i.e. non-preemptivegemantics of concurrent threads defined by the SystemC Lan-
which greatly simplifies communication through events anduage Reference Manual (LRM) differ significantly from the
variables in shared memory. Unfortunately, however, thisemantics defined in the SpecC LRM.

A. Cooperative multi-threading in SystemC vides the framework for solving the critical section prob-

. . em in the a preemptive multi-threading environment. The
Tr},e SyStemC LRM [12] clearly _states_(ln Sect_lon 4_'2'1'2 pecC Language Working Group realized this opportunity
that "process instances execute without interruptiontthich

. i . . . when defining the version 2.0 of the language in 2001 [9]. In
is known as cooperative (or co-routine) multitasking. thest fact, a new "time interval formalism” was developed that-pre
words, preemptive scheduling is explicitly forbidden. '

o cisely defines the parallel execution semantics of conatirre
As a consequence, when writing a SystemC model, the s y P

tem desianet that thod i %{ﬁ'reads in SpecC. Specifically, truly parallel executioritifw
em designefcan assume that a method process will execu reemption) is generally assumed in SpecC.

in its entirety without interruption”[12]. This is convenient To then allow safe communication and synchronization, a

when sharing variables among different threads (because ”%lﬁqgle exception was defined for channels. The SpecC LRM
tual exclusive access to such variables in a critical regaidm- [6] states (in Section 2.3.2(j)) that

plicitly guaranteed by the non-preemptive scheduling sema
tics). While this can aid significantly in avoiding bugs andea "For each instance of a channel, the channel meth-
conditions if one is only concerned with modeling and simu- ogs are mutually exclusive in their execution. Im-
lation, such semantics are hard to verify and synthesizeeif t plicitly, each channel instance has a mutex associ-

goal is to eventually reach an efficient implementation. -Fur ateqd with it that the calling thread acquires before

thermore, sharing of plain variables also violates the aler and releases after the execution of any method of the
system-level principle of separation of concerns wheremoem channel instance”

tation and communication are supposed to be clearly seguhrat

in modules and channels, respectively. In other words, each SpecC channel instance implicitly acts

The uninterrupted execution guaranteed by the Systends amonitorthat automatically protects the shared variables for
LRM makes it hard to synthesize concurrent threads intda trumutually exclusive access in the critical region of comnoani
parallel implementation. This same problem also prevents aion.
efficient implementation of a fully standards-compliantgia Note that the SpecC semantics based on separation of com-
lel multi-core simulator, which we are aiming for in this @ap putation and communication elegantly solve the problem-of a
This particular problem of parallel simulation is actuadlgi- lowing truly parallel execution of computational parts het
dressed specifically in the SystemC LRM [12], as follows: design, as well as provide built-in protection of criticajions

in channels for safe communication. This builds the bagis fo

"An implementation running on a machine that pro- poth synthesis of efficient concurrent hardware/softwasd-r
vides hardware support for concurrent processes izations as well as implementation of efficient parallel sim
may permit two or more processes to run concur- Jators. While the freely available SpecC reference simulato

rently, provided that the behavior appears identical does not utilize this possibility, we exploit these sememtn
to the co-routine semantics defined [...]. In other our parallel multi-core simulator.

words, the implementation would be obliged to an-
alyze any dependencies between processes and con-
strain their execution to match the co-routine seman- I1l. MULTI-CORE PARALLEL SIMULATION

ties. Design models with explicitly specified parallelism make it

promising to increase simulation performance by parakel e
cution on the available hardware resources of a multi-cost. h
However, care must be taken to properly synchronize the con-
current threads.

In this sectioh, we will first review the scheduling scheme
B. Preemptive multi-threading in SpecC in a traditional simulation kernel that issues only a sirigtead

In contrast to the cooperative scheduling mandated for Syg'E a time. We will then present our improved scheduling algo-

temC models, multi-threading in the SpecC LRM [6] is (in Sec[lthm with true multi-threading capability on symmetric u

tion 3.3) explicitly stated a&preemptive execution” Thus, tiprocessing (multi-core) machines and discuss the naogss

"No atomicity is guaranteed for the execution of any portionsync:hromzatlon mechanisms for safe parallel execution.

of concurrent code’” Consequently, shared variables need to
be carefully protected for mutually exclusive access iticai ~ A. Traditional Discrete Event Simulation

regions. . . In both SystemC and SpecC SLDLs, a traditional DE sim-
A"O\ng preemptive execution of concurrent threads regator is used. Threads are created for the explicit pdistte

quires the system designer to plan and Qes!gn t_he SYS®Bscribed in the models (e.par{} andpipe{} statements in

model carefully with respect to all communication (in pexti SpecC, andSCMETHODSand SC THREADSIN SystemC)

ular through shared variables!) and synchronization. Newe <o threads communicate via events and advance sinmulatio
exactly that is the main premise of clear separation of cdazpu time usingwait-for-timeconstructs

tion and communication in system-level models (which eesbl
the reuse of existing components, such as IP).

In other WOI‘dS,. if communication and computation are al- iwithout loss of generality, we assume use the SpecC SLDL éiecse-
ready separated in a well-written system model, this alse prmantics here. Please refer to Section II.A for a discussioBymtemC SLDL.

In short, complex inter-dependency analysis over all var
ables in the system model is a prerequisite to parallel reolte
simulation in SystemC.

To describe the simulation algorithm, we define the follow-

ing data structures and operations: .
l@ .
1. Definition of queues of threada in the simulator: No
e QUEUES = {READY, RUN, WAIT, WAITFOR, | th = Pick(READY, RUN); Go(th);
COMPLETE } | [sleep; |
e READY = {th | this ready to run !
. . YthEWAIT, if th’s event is notified;
e RUN = {th | this Currently runn|ng Move(th, WAIT, READI); Clear notifed events; el
e WAIT ={th | this waiting for some evenjs o No
.@.
e WAITFOR = {th | th is waiting for time advance Yes
e COMPLETE = {th | th has completed its executipn Update the simulation time;
move the earliest thEWAITFOR to READY; timed |
2. Simulation invariants: med-evee

Let THREADS = set of all threads which currently exist. @ No

Then, at any time, the following conditions hold: Yes
e THREADS = READY U RUN U WAIT U WAITFOR
U COMPLETE.

Fig. 1. Traditional SLDL scheduler.
e VA, BEQUEUES A4B:ANB=0.

3. Operations on thread4:

e Go(th): let threadth acquire a CPU and begin exe- |f the READY queue is still empty after event delivery,

cution. the scheduler advances the simulation time, moves alldsrea
e Stop(th): stop execution of threah and release the Wwith the earliest timestamp from thgAITFOR queue into the
CPU. READY queue, and resumes execution. At any time, there is

e Switch(thy, ths): switch the CPU from the execu- only one thread actively executing in the traditional siatiain.

tion of threadth, to threadths.
B. Multi-Core Discrete Event Simulation
4. Operations on threads with set manipulations: ,) ,
Supposet is a thread in one of the queues, A and B are The scheduler for ml_JI.t|—core parallel S|mylat|on works the
queuess QUEUES. same way as the traditional scheduler, with one exception:
in each cycle, it picks multiple OS kernel threads from the

e th = Create(): create a new threath and putitin READY queue and runs them in parallel on the available cores.

SetREADY. In particular, it fills theRUN set with multiple threads up to
o Deletgth): kill thread th and remove it from set the number of CPU cores avgﬂable. In other words, it keeps as
COMPLETE.. many cores as busy as possible.
e th = Pick(A, B): pick one threadh from set A and wait(Cond_s, L); -stan
put it into set B. sleep
e Move(th, A, B): move threadh from set A to B. No
M, wait(Cond_s, L)l
5. Initial state at beginning of simulation: : [_steep |
es
= Yes if th’s event is notified;
hd THREADS - {th’rl)(’t}' DT TRONT ’ Movexxi"xﬁk&gv), Cleatr noﬁ:Zdivents; ‘
® RUN = {th,oot}. ’ Golth); ‘ | o
e READY =WAIT =WAITFOR = COMPLETE =g. e T s
L] tzme = 0 ’ Update the simulation time; ‘
move the earliest thEWAITFOR to READY;
SLDL simulation is driven by events and simulation time

No
advances. Whenever events are delivered or time increhses, t
scheduler is called to move the simulation forward. As shown
in Fig. 1, at any time, the traditional scheduler runs a sng|
thread which is picked from thREADY queue. Within a delta-
cycle, the choice of the next thread to run is non-deterriinis
(by definition). If theREADY queue is empty, the scheduler
will fill the queue again by waking threads who have received
events they were waiting for. These are taken out ofher Fig. 2 shows the extended control flow of the multi-core
gueue and a new delta-cycle begins. scheduler. Note the extra loop at the left which issues OS ker

end

Fig. 2. Multi-core SLDL scheduler.

nel threads as long as CPU cores are available an@EA®Y scheme and well-defined ordering ensures safe synchrmmizat

gueue is not empty. among many parallel working threads. Fig. 4 summarizes the

detailed use of all locks and the thread switching mechanism

for the life-cycle of a working thread. Together with the edh

uler presented in Fig. 2, this flow chart defines our multiecor
The benefit of running more than a single thread at the sanmE simulator and also shows its design considerations.

time comes at a price. Explicit synchronization becomes nec

essary. In particular, shared data structures in the stionla [_s@m!:m =

engine, including the thread queues and event lists, arédgha ok el ConT ot

variables in communication channels of the application ehod .

need to be properly protected by locks for mutual exclusie a @%ﬂ»m el

cess by the concurrent threads. " Lock(t) RGeS0

a For any children, ti=Create(), [Gofschedule) |
o NumAliveChildren ++; '—-—' =
No Move(this, RUN, JOINING). signal(Cond_s);
wait(Cond_this, L);
unLock(L)
‘es

Lock(L;
) is, RUN, WAIT)

C. Synchronization for Multi-Core Simulation

C.1 Protecting Scheduling Resources

Release acquired channel locks

Re-acquire
released
channel locks

Lock(L)

Move(this, RUN, WAITFOR)
Yes =

sim)

To protect all central scheduling resourgese run the sched-
uler in its own thread and introduce locks and condition-vari
ables for proper synchronization. More specifically, we use

signal(Cond_s);
wait(Cond_this, L);
unLock(L)

e one central lock. to protect the scheduling resources,

[Move(Parent, JoINING, READY); |

e a condition variabl€Conds for the scheduler, and T
signal(Cond_s)
e a condition variabl&€ond th for each working thread. | =T omkesk®
When a working thread executeswait or waitfor instruc- erd

tion, we switch execution to the scheduling thread by wakin
the scheduler (signdonds) and putting the working thread
to sleep (waitCondth, L). The scheduler then uses the same
mechanism to resume the next working thread.

Igig. 4, Life-cycle of a thread in the multi-core simulator.

C.2 Protecting Communication
IV. EXPERIMENTS AND RESULTS

Communication between threads also needs to be explicitly

protected. As discussed in Section I1.B, SpecC channels are To demonstrate the improved simulation time of our multi-
defined to act as monitors. That is, only one thread at a ting®re simulator, we use a H.264 video decoder and a JPEG en-
may execute code wrapped in a specific channel instance. coder application.

! {Se"d(d) {recei"e (4 A. Case Study on a H.264 Video Decoder
’ b%ﬁ.kéé'ﬁ'ifé‘.’fﬁi{ b%‘ifé}?é?f““” The H.264 AVC standard [17] is widely used in video ap-
5 ‘x;t*(ZSend); ";;aif(;eRecv); plications, such as internet streaming, disc storage, elauit
7 ws ——; wr ——; sion services. H.264 AVC provides high-quality video asles
o butter. store (d): putter load (d): than half the bit rate compared to its predecessors H.263 and
it (wr){ if (ws){ H.262. At the same time, it requires more computing res@urce
to, noniy(eRee): , ety (esend); for both video encoding and decoding. In order to implement
13 unLock(this=>Lock); unLock (this=>Lock); the standard on resource-limited embedded systems, ghghi
} } desirable to exploit available parallelism in its algomith
Fig. 3. Queue channel implementation for multi-core simulation. The H.264 decoder takes as input a video stream consisting

of a sequence of encoded video frames. A frame can be fur-
ther split into one or more slices during H.264 encoding, as
To ensure this, we introduce a lock—Lockfor each chan- illustrated in the upper right part of Fig. 5. Notably, skcare
nel instance which is acquired at entry and released upen leandependenof each other in the sense that decoding one slice
ing any method of the channel. Fig. 3 shows this for the exanwill not require any data from the other slices (though it may
ple of a simple circular buffer with fixed size. need data from previously decoded reference frames). For th
The combination of a central scheduling lock and individfreason, parallelism exists at the slice-level and paralleé
ual locks for channel and signal instances with proper logki decoders can be used to decode multiple slices in a frame si-
2Protection of central scheduling resources is equallyiegiple to SpecC multaneously. s
and SystemC SLDLS. We have specified a H.264 decoder model based on the
3Communication protection is efficiently implementable only ipesc ~ H-264/AVC JM reference software [13]. In the reference code
SLDL (see Section I1.B). a global data structurenig) is used to store the input stream

and all intermediate data during decoding. In order to paraélapsed simulation time against the single-core refereime
lelize the slice decoding, we have duplicated this datacgire ulator (the table also includes the CPU load reported by the
and other global variables so that each slice decoder haiits Linux OS). Although simulation performances decrease when
copy of input stream data and can decode its own slice lacaligsuing only one parallel thread due to additional muteres f
As an exception, the output of each slice decoder is stittemi safe synchronization in each channel and the scheduler, our
to a global data structurelécpicture). This is valid because multi-core parallel simulation is very effective in redngithe

the macro-blocks produced by different slice decoders do nsimulation time for all the models when multiple cores in the

overlap. simulation host are used.
Table | also lists the measured speedup and the maximum
; A rame dvidediso ou e theoretical speedup for the models. The more threads are is-
Stice reader Stice 0 sued in each scheduling step, the more speedup we gain. How-
f‘“];;m:ilu—ﬁ; T“”j Slice 1 ever, the measured speedups are somewhat lower than the the-
| : : | T e oretical maximum, which is reasonable given the overhead in
st |1 st ||| st 1] st gL troduced due to parallelizing and synchronizing the sliee d
decoder0 | | | decoderl | | | decoderz | | | decoders NDetailed structure inside a slice decoder
) ! ot coders.
| | | B ecode Transformation
Lol L T
Synchvonizr N |, [=11 K B. Case Study on a JPEG Encoder

As a second experiment, Table Il shows the simulation
Fig. 5. Parallelized H.264 decoder model. speedup for a JPEG Encoder example [1] which performs the
DCT, Quantization and Zigzag modules for the 3 color
components in parallel, followed by a sequentfiéd. f fman
.) encoder at the end. Significant speedup is gained by our-multi
~ Fig. 5 shows the block diagram of our model. The decodsgre parallel simulator for the higher level modelsdc, arch).
ing of a frame begins with reading new slices from the iNpu§;my|ation performance decreases for the models at ther lowe
stream. T_hese are then dlgpatched into four parallel skee _dabstraction levelss¢hed, net) due to the high number of bus
coders. Finally, a synchronizer block completes the dewpdi ansactions and arbitrations which are not parallelizetiia-

by applying a deblocking filter to the decoded frame. All thgyoqyce large overhead due to the necessary synchromizatio
blocks communicate via FIFO channels. Internally, eaatesli) otection.

decoder consists of the regular H.264 decoder functiortdy su
as entropy decoding, inverse quantization and transféomat
motion compensation, and intra-prediction. V. SUMMARY AND CONCLUSION

Using SCE, we partition the above H.264 decoder model
as follows: the four slice decoders are mapped onto four SLDL design models at different levels of abstraction are
custom hardware units; the synchronizer is mapped onto &pically validated by use of extensive simulation. Desjgi-
ARM7TDMI processor at 100MHz which also implements theplicitly described thread-level parallelism in the desigadel,
overall control tasks and cooperation with the surroundiésty traditional SLDL simulators issue only a single simulation
bench. We choose Round-Robin scheduling for tasks in tileread at any time in order to avoid the otherwise necessary
processor and allocate an AMBA AHB for communication becomplex synchronization of concurrent threads. Consettyien
tween the processor and the hardware units. such simulators cannot utilize the available parallelisrmod-

For our H.264 experiment, we use the same stream "Hagfn multi-core CPU hosts.
bour” of 299 video frames, each with 4 slices of equal size. As In this work, we have compared the execution semantics of
shown in [3], 68.4% of the total computation time is spent irgoncurrent threads in the SystemC and SpecC SLDLs. We have
the slice decoding, which we have parallelized in our decodéhen presented an extension of the SpecC SLDL simulation ker

model. nel that supports truly parallel simulation on multi-co@sts.
As a reference point, we calculate the maximum possibleur careful channel protection scheme for safe synchreniza
performance gain as follows: tion and communication allows our parallel simulator tauiss
MazSpeedup — 1 as many simulation t_hree_lds smul?angously.as CPU cores are
%;m + Serial Part ayaﬂqble. The resultlr)g increase in simulation s.peed lesab
For 4 parallel cores, the maximum speedup is S|gp|f|cantly faster vglldatlon of Iargg SLDL deslgn models
1 Using two case studies on H.264 video decoding and JPEG
MazSpeedupy = 0881 4 (1 — .684) =2.05 encoding we have demonstrated the effectiveness of our ap-
The maximum speedup for 2 cores is accordingl;ProaCh'

MazxSpeedups = 1.52 .

Table | lists the simulation results for several design mod- ACKNOWLEDGMENT
els generated with SCE at different levels of abstractiorwh
using our multi-core simulator on a Fedora core 12 host PC This work has been supported in part by funding from the
with a 4-core CPU (Intel(R) Core(TM)2 Quad) at 3.0 GHz National Science Foundation (NSF) under research grant NSF
compiled with optimization (-O2) enabled. We compare théward #0747523. The authors thank the NSF for the valuable

TABLE |
SIMULATION RESULTS OFH.264 DECODER("HARBOUR”, 299 FRAMES 4 SLICES EACH 30FPY).

Simulator Reference Multi-Core
Par. issued threads: n/a 1 2 4
sim. time sim. time | speedup| sim. time speedup| sim. time speedup
spec | 20.80s (99%)| 21.12s (99%) 0.98 14.57s (146%) 1.43 11.96s (193%) 1.74
arch 21.27s (97%)| 21.50s (97%) 0.99 | 14.90s (142%) 1.43 | 12.05s (188%) 1.76
models| sched | 21.43s (97%)| 21.72s (97%)| 0.99 | 15.26s (141%) 1.40 | 12.98s(182%) 1.65
net 21.37s (97%)| 21.49s (99%) 0.99 | 15.58s(138%) 1.37 | 13.04s(181%) 1.64
tim 21.64s (98%)| 22.12s (98%)| 0.98 | 16.06s (137%) 1.35 | 13.99s (175%) 1.55
comm | 26.32s (96%) 26.25s (97%)| 1.00 | 19.50s (133%) 1.35 | 25.57s(138%) 1.03
maximum speeduq] 1.00 1.00 1.52 2.05
TABLE Il
SIMULATION RESULTS OF JPEG ENCODER
Simulator Reference Multi-Core
Par. issued threads: n/a 1 2 4
sim. time sim. time | speedup| sim. time speedup| sim. time speedup
spec 5.54s (99%) | 5.97s (99%)| 0.93 4.22s5 (135%)| 1.31 3.12s (187%)| 1.78
arch 5.525 (99%) | 6.07s (99%)| 0.91 4.28s (135%) | 1.29 3.155 (188%)| 1.75
models| sched | 5.89s(99%) | 6.38s (99%)| 0.92 5.48s (108%) | 1.07 5.47s (113%)| 1.08
net 11.56s (99%)| 49.3s (99%)| 0.23 | 40.63s(131%) 0.28 | 37.97s(128%) 0.30

support. Any opinions, findings, and conclusions or recom4{8] R. Fujimoto. Parallel Discrete Event SimulatidBommunications of the
mendations expressed in this material are those of the mutho ~ ACM, 33(10):30-53, Oct 1990.

and do not necessarily reflect the views of the National $eien [9] M. Fujita and H. Nakamura. The standard SpecC languagBrdoeed-
Foundation. ings of the 14th international symposium on Systems syis{f®SS '01,
pages 81-86, New York, NY, USA, 2001. ACM.

D. D. Gajski, J. Zhu, R. Pmer, A. Gerstlauer, and S. Zha®pecC:
Specification Language and Design Methodolagliwer, 2000.

(10]
REFERENCES

[11] K. Huang, |. Bacivarov, F. Hugelshofer, and L. Thielecagbly Dis-
tributed SystemC Simulation for Embedded Applications. Iriterna-
tional Symposium on Industrial Embedded Systems, 200& 3088,
pages 271-274, June 2008.

IEEE Computer SocietylEEE Standard SystemC Language Reference
Manual |IEEE Std 16667-2005, htt p: // st andar ds. i eee.
org/ geti eee/ 1666/ downl oad/ 1666- 2005. pdf , March 2006.

H.264/AVC JM Reference Software.htt p://i phone. hhi . de/
suehring/tm /.

[1] L.Cai,J.Peng, C.Chang, A. Gerstlauer, H. Li, A. SelkaSBka, L. Sun,
S. Zhao, and D. D. Gajski. Design of a JPEG encoding systenmniea
Report ICS-TR-99-54, Information and Computer Science, &hsity of
California, Irvine, November 1999.

K. Chandy and J. Misra. Distributed Simulation: A Casedstin Design
and Verification of Distributed ProgramsSoftware Engineering, |IEEE
Transactions onSE-5(5):440-452, Sept 1979.

[3] W. Chen, X. Han, and R. ®mer. ESL Design and Multi-Core Validation
using the System-on-Chip Environment. HLDVT'10: Proceedings
of the 15th IEEE International High Level Design Validatiand Test
Workshop2010.

[4] W. Chen, X. Han, and R. @mer. Multi-Core Simulation of Transaction
Level Models using the System-on-Chip EnvironmeéBEE Design and
Test of Computer28(3):to appear, May/June 2011.

(12]
(2]

(13]
[14] D. Nicol and P. Heidelberger. Parallel Execution fori8eSimulators.

ACM Transactions on Modeling and Computer Simulati6(8):210—
242, July 1996.

E. P, P. Chandran, J. Chandra, B. P. Simon, and D. RaviallBlazing
SystemC Kernel for Fast Hardware Simulation on SMP Machines. |
PADS '09: Proceedings of the 2009 ACM/IEEE/SCS 23rd Worksimo

(15]

[5] B. Chopard, P. Combes, and J. Zory. A Conservative AppgraasSys- Principles of Advanced and Distributed Simulatipages 80—87, Wash-
temC Parallelization. In V. N. Alexandrov, G. D. van AlbadaM A. ington, DC, USA, 2009. IEEE Computer Society.
Sloot, and J. Dongarra, editofsiternational Conference on Computa- [16] C. Schumacher, R. Leupers, D. Petras, and A. HoffmannS@asyn-
tional Science (4)volume 3994 ol ecture Notes in Computer Science cHronous ParaII’eI .SystemC,SihuIatior; on Ml:llti-COl’e Host Aeth
pages 653-660. Springer, 2006. tures. INCODES+ISSS’10: Proceedings of the International Confegen
[6] R. Domer, A. Gerstlauer, and D. GajskiSpecC Language Reference on Hardware/Software Codesign and System Synth8sisttsdale, AZ,
Manual, Version 2.0 SpecC Technology Open Consortiuht,t p: // USA, Oct 2010.
Wi, specc. or g, December 2002. [17] T. Wiegand, G. Sullivan, G. Bjontegaard, and A. Luthi@verview of
[7] R. Domer, A. Gerstlauer, J. Peng, D. Shin, L. Cai, H. Yu, S. Abdd an the H.264/AVC video coding standardCircuits and Systems for Video

D. Gajski. System-on-Chip Environment: A SpecC-based Framewo
for Heterogeneous MPSoC DesidJRASIP Journal on Embedded Sys-
tems 2008(647953):13 pages, 2008.

Technology, IEEE Transactions oh3(7):560 —576, july 2003.

