
Abstract System-Level Models for Early
Performance and Power Exploration

Andreas Gerstlauer, Suhas Chakravarty, Manan Kathuria, and Parisa Razaghi
Electrical and Computer Engineering

The University of Texas at Austin

gerstl@ece.utexas.edu, suhas.chakravarty@utexas.edu, manan@austin.utexas.edu, parisa.r@mail.utexas.edu

Abstract—With increasing complexity of today’s embedded
systems, research has focused on developing fast, yet accurate
high-level and executable models of complete platforms. These
models address the need for hardware/software co-simulation of
the entire system at early stages of the design. Traditional models
tend to be either slow or inaccurate. In this paper, we present
ingredients for a class of abstract, high-level platform models
that enable fast yet accurate performance and power simulation
of application execution on heterogeneous multi-core/-processor
architectures. Models are based on host-compiled simulation
of the application code, which is instrumented with timing
and power information. Back-annotated source code is further
augmented with abstract OS and processor models that are
integrated into standard co-simulation backplanes. The efficiency
of the modeling platform has been evaluated by applying an
industrial-strength benchmark, demonstrating the feasibility and
benefits of such models for rapid, early exploration of the power,
performance and cost design space. Results show that an accurate
Pareto set of solutions can be obtained in a fraction of the time
needed with traditional simulation and modeling approaches.

I. INTRODUCTION

In recent years, rising hardware and software complexity

in embedded systems has necessitated the elevation of the

design process to a higher level of abstraction. At the system

level, executable models of entire platforms can be built that

enable hardware-software co-development and rapid, early

design space exploration. Such models provide quick feedback

to the designers about the effect of their design decisions on

critical system metrics like performance, power consumption,

and system cost. Complex interactions and the highly dynamic

nature of systems make their static analysis difficult, which is

why such executable models are indispensable.

An overview of different platform modeling approaches is

shown in Fig. 1, organized by granularity of computation

and communication. Models of Computation (MoCs), such as

process networks, dataflow models or state machines are at the

most abstract level, describing application execution as purely

functional tasks that exchange messages over channels for

communication and synchronization. At the other end of the

spectrum are RTL models, which contain micro-architectural

details and are cycle-accurate but slow. In between, various

system modeling approaches have been developed to trade-

off simulation speed and accuracy. On the communication

side, transaction-level modeling (TLM) concepts abstract away

This research was partially supported by SRC Task 2085.001.

Communication

CyclesWordsPacketsMessages

Accuracy
Speed

Ta
sk
s

Ba
sic

Bl
oc
ks

In
st
ru
ct
io
ns

M
icr
o-

ar
ch
ite
ct
ur
e

Co
m
pu

ta
ti
on

A
cc
ur
ac
y

Sp
ee
d

MoC

RTL

HC

NS

Cycle Accurate
Simulator

CAS -

Virtual
Platform

VP -

Host
Compiled

HC -

Network
Simulator

NS -

Model of
Computation

MoC -

VP

CAS

TLM

IS
S

Fig. 1. Modeling space.

from pins and cycles to provide faster simulations at good

accuracy. This includes network simulators, which describe

communication over wired or wireless media at the level of

packet transactions. On the computation side, instruction-set

simulators (ISSs) are used to emulate execution of an instruc-

tion stream on an abstracted model of the target processor

in either micro-architectural or purely functional form. When

combined with TLM approaches, cycle-accurate or virtual

platform simulations of complete systems can be constructed,

respectively. These, along with RTL/gate level models, have

traditionally been used to perform performance and power

simulations. Their drawback is that, depending on the level

of detail, they are either inaccurate or slow. This is especially

true in large, full-system multi-core/-processor contexts.

As an alternative to ISS-based models, high-level software

and processor models based on native, host-compiled software

execution have recently become popular [1]. The underlying

concept is to follow TLM ideas from communication and

push computation modeling to higher abstractions above the

level of instructions [2]. Host-compiled approaches describe

computation at the source code level (typically in C-based

form). This allows a functional model to be natively compiled

onto the host for fastest possible execution. Timing and other

information, such as energy consumption, are added through

978-1-4673-0772-7/12/$31.00 ©2012 IEEE

S4-1

213

back-annotation of the source code at a particular granularity.

That granularity should be below complete functions or tasks,

such that dynamic effects of program execution paths can

be simulated, but simulation speeds remain fast. Lastly, the

back-annotated application is wrapped into lightweight models

of operating systems and processors that plug into standard

TLM backplanes to accurately simulate the impact of the

execution platform. Host-compiled models seek to provide

the best tradeoff between speed and accuracy. As such, they

complement existing modeling solutions specifically to enable

rapid yet precise early design space exploration.

In this paper, we present a comprehensive host-compiled

modeling approach that aims to incorporate both power and

performance metrics for fully heterogeneous multi-core and

multi-processor platforms. Previous host-compiled approaches

(as summarized in Section II) have thus far only focused on

timing (performance) simulations for limited platforms, e.g.

restricted to single-core processors. By contrast, we propose

a model that is built in a flexible and retargetable way by

annotating the application code, at the basic block level,

with both timing and energy consumption estimates (see Sec-

tion III). Back-annotated application code is further augmented

with fast and accurate host-compiled multi-core RTOS and

processor models, as described in Section IV. Finally, in Sec-

tion V, we apply our approach to a representative, industrial-

strength example in order to qualitatively and quantitatively

demonstrate the ability for rapid exploration of the design

space across power, performance and cost objectives. Results

show that a Pareto-optimal front of architecture candidates can

be determined in a fraction of the time taken using traditional

ISS-based virtual platform capabilities.

II. RELATED WORK

A range of so-called host-compiled or source-level modeling

concepts have been researched in recent years. Some of

the earliest approaches were centered around models of the

OS itself [3]–[5]. Later, these were extended into complete

processor models that include timing-accurate descriptions of

interrupt chains and TLM-based bus interfaces [6], [7]. Such

processor models have been shown to simulate at speeds

beyond 500 MIPS with more than 95% timing accuracy.

Application source code is usually back-annotated at a

basic block level [2], [8] to accurately capture dynamic data

dependencies while minimizing overhead. Several nearly iden-

tical approaches [9]–[11] use a standard compiler frontend to

first bring the code down to an intermediate representation.

This allows typical source-level compiler optimizations to be

accurately considered. Another approach is to use intelligent

algorithms to map binary code blocks and associated timing

characterization directly to the source level [12], [13].

In all cases, back-annotation is based on static emulation

of source code execution on a timing model of the target

processor. In some cases, this may be as complex as using

the target tool-chain to compile and simulate each block on a

cycle-accurate target model. Within such a framework, most

existing approaches are tied to a specific backend target.

C Source Code

Compiler Frontend
Optimisations

Intermediate Rep.
(IR)

Compiler Backend

Binary

a=b=c=0;
if(a<=0) {
a=1; c=2; }

printf();

bb_2:
a = 1;
b = 0;
c = 2;
goto bb_7;
bb_3:
..

bb_7: printf();

Compile-able
Intermediate Code

IR to C

Reference
Model
based
Timing
and

Energy
Back

Annotator

bb_2:
a = 1; b = 0; c = 2;
goto bb_7;
wait(15); energy(2);
bb_3:
..

If(prev_bb==3)
wait(25); energy(5);

else if(prev_bb==1)
wait(30); energy(6);
..

bb_7: printf();

Host-Compiled
Model

Basic Block
Timing and
Energy Cz.

Mapping
Table Builder

Back Annotator

Timing and Energy Back Annotator

Mapping
Table

Augmented
Mapping Table

uADL ISS
(timing

reference)

McPAT
(power

reference)

Compile-
able IR

Binary

Host-
Compiled
Model

Fig. 2. Back-annotation flow.

Several host-compiled approaches also support hybrid static

and dynamic timing models and back-annotation, either by

including dedicated simulation models of critical dynamic

micro-architecture features, such as caches or branch predic-

tors [8], [9], [14], or by toggling between host-compiled and

ISS-based models dynamically at simulation time [15], [16].

For power estimation, popular approaches are to develop

macro models for micro-architectural functional blocks [17],

[18] or use analytical modeling frameworks [19], [20]. These

utilize activity information gathered from cycle accurate per-

formance simulators to estimate power consumption. Tiwari

et al. [21] present an instruction level power model. However,

their model is not portable in that it requires detailed profiling

of the instruction set of the target. While our work leverages

existing low-level power reference models, to the best of our

knowledge, no true host-compiled power estimation work at

the level of basic blocks exists.

III. APPLICATION MODELING

In this section, we describe our methodology for obtaining

an abstract model of the application back-annotated with

timing and power metrics for execution on a given target.

This model does not take into account the remaining platform

environment, such as interactions with an RTOS or processor.

Rather it seeks to provide a basis for building complete models

of a whole platform as described in later sections.

A. Back-Annotation Flow

Fig. 2 shows the proposed flow for developing host-

compiled models, accompanied by representative code snip-

pets at various stages. The application C code is passed

through a generic cross-compiler front end (we use the gcc

S4-1

214

compiler suite for our approach), which performs optimiza-

tions and produces an intermediate representation (IR). Work-

ing with the IR allows us to take into account all typical

front-end optimization passes. Actual estimation and back-

annotation hence works at the IR level. This IR is massaged

(via IR to C conversion) into a compileable form, which is then

passed to the generic cross-compiler backend for generation of

the binary. The assumption is thereby that the backend does

not introduce any major changes in the control flow graph

(CFG) of the application and hence it is sufficient to work at

the IR level to capture all data-dependent execution behavior.

The next step, illustrated in the inset in Fig. 2, is to de-

termine the mapping between basic blocks in the compileable

IR and addresses in the binary. The resulting mapping table is

needed for extracting individual basic blocks from the binary.

This process can be automated using debug information that

associates a certain line number in the source code with the

address in the binary of the first assembly instruction that cor-

responds to the source code line. To be able to use debugging

information for this purpose, the binary has to be compiled

from the IR, since the mapping for back annotation is desired

to the compileable IR and not the original application code.

The fact that the compiler backend does not introduce any

major changes in the CFG allows us to find accurate mappings.

However, in a few cases we observed that backend control-flow

optimizations were present in the binary generated from the

IR. A constraint is therefore introduced that the generation of

the binary from the compileable IR should be done with such

optimizations turned off. This does not significantly affect the

final accuracy of the model, but is necessary to get rid of

artifacts of the two-step compilation process.

In the next step in the flow, each basic block extracted

from the binary is then characterized by executing it on a

retargetable cycle-accurate ISS that is complemented with a

reference power model, such as McPAT [20]. The timing

and energy consumption of a basic block depends on the

state of the processor at the start of execution of the block.

In a real execution flow, this state is determined by code

that has already been executed. To approximate this effect

during characterization, pair-wise executions of a particular

basic block and its possible predecessors are carried out. For

cycle-accurate simulation of execution time on the target,

we use a retargetable ISS that is based on an open-source

micro-architecture description language (uADL) [22]. For each

characterization run for a single basic block, the final state

of registers and data memory locations for a particular pre-

ceding block is used as the processor initial state. For power

estimation, execution statistics, such as number and types of

instructions executed, the number of times different functional

units and memory are accessed, cache misses and hits etc. are

extracted by analyzing the trace of the ISS execution of a given

basic block. McPAT also requires the configuration of the

target processors, which is provided separately. The per-block

power consumption reported by McPAT is then converted into

an energy consumption metric, utilizing the knowledge of the

execution time for that block.

TABLE I
APPLICATION MODEL ACCURACY.

Host-Compiled ISS/McPAT Error

Timing [cycles] 22,864,740 22,864,730 0.0004%

Energy [mJ] 222.6 241.4 7.8%

Sim. Speed [MIPS] 2000 0.8 -

Thereafter, the mapping table is augmented with timing

and energy consumption numbers and is used for directing

the annotation of the compileable IR at the correct points.

For reasons explained earlier, a function is annotated, which

returns the appropriate timing/energy figure depending on the

predecessor of the current basic block. This results in the back-

annotated, host-compiled application model, which is then

natively compiled for the simulation host and executed to

obtain overall performance and energy consumption figures

for the application running on the given target processor.

An average power consumption profile can be computed by

dividing the total energy consumed by the total time taken, as

reported by the host-compiled model.

B. Back Annotation Experiments and Results

To demonstrate the feasibility and benefits of our approach,

we applied it to a generic PowerPC dual-issue core with

a static branch predictor and no cache, MMU, or Floating

Point Unit (FPU). A custom application implementing “Er-

atosthenes’ Sieve” was used to develop and validate the timing

and power (energy) back annotation flow. The application

finds prime numbers in a given range starting from 0. For

our experiments, the range was 500000. Table I shows the

timing and energy numbers of the host-compiled simulation as

compared to execution on the reference model. Result show a

negligible timing error of 10 cycles in the host-compiled model

compared to the cycle-accurate ISS. The error in the energy

consumption calculated by the host-compiled model is about

8% when compared against the results obtained from the ISS

+ McPAT combination. As future work, we plan to investigate

the sources of this error. Finally, the comparison of simulation

speeds shows a big speedup of 2400x for the host-compiled

model compared to the cycle-accurate ISS execution.

IV. PLATFORM MODELING

In the previous section, we described source-level modeling

of applications into which power consumption and execution

delays corresponding to a target processor are back-annotated.

In order to evaluate the real-time performance and power

consumption of a complete platform, we need to further embed

applications into accurate models of their complete execution

environment. For this purpose, we introduce abstract RTOS

and processor models that can be integrated through standard

TLM backplanes. Fig. 3 outlines the structure of the proposed

platform model. At the highest level, the user application

consists of a set of back-annotated high-level tasks that are

controlled by and interact with an underlying OS model.

The OS model manages the scheduling of application tasks

across available cores. A hardware abstraction layer (HAL)

includes models of necessary I/O drivers and implements an

S4-1

215

OS

Multi-Core Scheduler

Dispatch

Global
ReadyQueue

SLDL Simulation Kernel

Intr.
Handler

Application

HAL

TLM

I/O
Drv

I/O IF

T1

CH

Intr.
Handler

Intr. IF

TLM
Communication

Channel

T2

Intr.
Task

Intr.
Task

T3

Fig. 3. Host-compiled, multi-core platform model.

abstract interrupt handling mechanism. The HAL combined

with a TLM layer provide a high-level processor model that

interfaces with the TLM backplane, which provides a fast

system-wide co-simulation. The complete platform model is

developed on top of a standard system-level design language

(SLDL) simulation kernel, which provides basic concurrency

and discrete event handling on a host machine.

A. OS Modeling

An abstract RTOS model replicates a typical multi-core

OS kernel to emulate the execution of high-level tasks across

available cores [23]. The OS model wraps around the basic

SLDL event handling mechanism and ensures that at any time

only as many SLDL threads as there are cores are active. Our

OS model provides the facilities to integrate an application

with OS services through a canonical API that supports OS

initialization and startup, task management, execution delay

modeling, and event synchronization.

The OS model internally consists of typical queues that

maintain the state of tasks running on the processor. Tasks

are transfered between these queues whenever API methods

are called: a Ready queue holds tasks that are ready to execute

and is sorted based on a user-defined scheduling policy. An

Idle queue holds periodic tasks that have called the kernel’s

method to finish their current job execution and sleep until

the start of the next period. Tasks waiting for an event are

transfered to a Wait queue and are placed back in the Ready
queue when a method is called to release them. Finally, a Sleep
queue holds tasks that have been suspended until an active task

calls a method to resume them.

At the core of the OS model is the multi-core scheduler.

The scheduler is an internal function of the OS model and is

called by the OS API methods whenever a task switching is

possible or required. The main functionality of the scheduler is

to retire the currently active task on a core, if any, and place

it in a proper queue and assign a new task from the Ready
queue to that core. The OS kernel supports both partitioned

and global scheduling schemes, which are distinguished by

the number of Ready queues associated with each core. In

a partitioned scheme, each core has a separate ready queue

and tasks are initially assigned to a fixed core and queue. The

T1 T2 T3Co
re

 1
Co

re
 0

IntrA IntrH_0
IRQ0

IF PIC
OS Layer

HAL Layer

tim
e HW

TLM Layer

IRQ
t1

t3

t5

t7

t6

Processor Model

t0

t8

t2

t4

Fig. 4. Processor modeling trace.

OS picks tasks for a core only from the associated queue,

but it can perform load balancing to migrate tasks between

queues and cores either at regular intervals or whenever a task

leaves a core. In the global scheme, the OS maintains only a

single Ready queue and tasks can be freely assigned to the next

available core based on a used-defined cores affinity. In both

schemes, the scheduler can organize the Ready queues based

on different scheduling policies including time-sliced round-

robin, FIFO, or static priority. In addition to basic OS services,

the OS kernel simulates back-annotated task execution delays

using underlying SLDL primitives wrapped inside an OS API

TimeWait() method. After advancing the simulation time

at the SLDL level, this method calls the OS scheduler to allow

for preemption of the current task by any higher priority task

that became available in the meantime.

Overall, using the presented OS model, the designer can

easily adjust the OS kernel for a desired application to meet

system requirements. Overall, our OS model helps designers to

evaluate the real-time behavior of applications across different

scheduling policies and schemes on platforms with different

number of cores.

B. Processor Modeling

The OS model is combined with the HAL and TLM layer

to form a complete multi-core processor model (Fig. 3). The

HAL and TLM layers contain any necessary bus drivers

and interfaces to integrate the processor model into a TLM

platform. The HAL layer implements an accurate and flex-

ible model of a general multi-core interrupt handling chain.

An external programmable interrupt controller (PIC) model

manages interrupt sources and generates the interrupt request

(IRQ) signals for each core. The TLM layer contains processes

that listen for interrupt requests and trigger corresponding

interrupt handlers in the HAL. Interrupt handlers are modeled

as special tasks associated with each core, created via API

methods exported by the OS layer. Interrupt handlers in turn

communicate with the PIC and trigger regular interrupt tasks

in the OS layer for a specific interrupt source. Finally, user-

supplied code in the interrupt tasks can communicate with

external hardware, with application tasks or with the OS

model, e.g. to spawn additional processing tasks.

Fig. 4 shows an example of a simulated task execution and

interrupt handling sequence for an application with three tasks

S4-1

216

TABLE II
OS MODEL ACCURACY AND SPEED EVALUATION.

Task Sets Small Sets Medium Sets Large Sets
Avg. Tasks #/Core 11 4 3

Avg. Core Utilization 0.6 0.7 0.7

Avg. Err. (1μs) 0.5% 0.25% 0.11%

Avg. Err. (10μs) 0.71% 0.22% 0.10%

Avg. Err. (100μs) 0.64% 0.69% 0.43%

Avg. Err. (1000μs) 10.3% 6.46% 4.0%

Speed [GIPS] (1μs) 0.15 GIPS 0.13 GIPS 0.13 GIPS

Speed [GIPS] (10μs) 1.68 GIPS 1.3 GIPS 1.17 GIPS

Speed [GIPS] (100μs) 10.5 GIPS 8.2 GIPS 8.0 GIPS

Speed [GIPS] (1000μs) 23 GIPS 31 GIPS 36 GIPS

running on two cores. Tasks indices are ordered by decreasing

priorities. At time t0, the two highest priority tasks are running

on the two processor cores. At time t1, Task T1 is blocked by

an external event, and the OS schedules task T3 on core 0.

At time t2, an external HW component generates an interrupt

that is detected by the PIC. The PIC is programmed to route

this interrupt to core 0 and consequently sets the IRQ0 signal.

This is detected by the TLM layer, which activates the IntrH 0
handler and inserts it into the OS interrupt queue on core 0.

At the next preemption point offered by the back-annotated

timing model in the current task on core 0 (task T3), IntrH 0
is then scheduled (time t3). IntrH 0 communicates with the

PIC to acknowledge the interrupt source. At time t4, task

T2 is blocked and accordingly, task T3 is scheduled on core

1. At time t5, IntrH 0 releases a corresponding user-level,

high-priority interrupt task IntA in the OS. Finally, at time

t6, IntrH 0 completes execution and removes itself from the

OS interrupt queue. This results in IntrA being scheduled on

core 0, which in turn then communicates with the external

HW component (time t7). At the end of sequence (time t8),

the processor resumes execution of normal application task

T1 on core 0. Overall, the combined host-compiled model

is able to faithfully replicate the execution sequence of the

real platform. However, accurate modeling of task preemptions

(e.g. by interrupts) is a function of the back-annotated timing

granularity. As such, there exist fundamental tradeoffs between

simulation speed and modeling accuracy.

C. Accuracy and Speed Evaluation

To evaluate the simulation performance and accuracy of

the proposed OS and processor models, we compared the

response time of randomly generated periodic task sets running

on our host-compiled model to a virtual reference model of

a dual-core MIPS34Kc Malta platform running real binaries

on top of a 2.6.24 Linux SMP kernel [24]. Task periods are

uniformly distributed over [1, 100] ms, while task utilization

are distributed over [0.001, 0.1], [0.1, 0.4], and [0.001, 0.4] for

a small, large or medium range of execution delays. In each

case, we generated task sets with different numbers of tasks to

achieve a variety of light, medium and heavy core loads. Tasks

priorities are assigned inversely to their periods following a

rate-monotonic scheduling policy. Actual task execution delays

were measured on the reference simulator and back-annotated

at different levels of timing granularity.

476

486

496

4:6

4;6

446

<==6

8

<=

<8

>=

>8

5=

��
��
��
��
�	

�

�
��
��
�
��
��
��
��
	�
��
��

?@AAB

CDDEFGDH

4>6

456

476

486

496

4:6

4;6

446

<==6

=

8

<=

<8

>=

>8

5=

<EI <=EI <==EI <===EI

��
��
��
��
�	

�

�
�
��
��
�
��
��
��
��
	�
��
��

���������������

?@AAB

CDDEFGDH

Fig. 5. OS model accuracy-speed tradeoffs.

Table II summarizes the simulation speed and accuracy for

different task sets. Model error was measured as the average

absolute difference in individual task response times over all

tasks and task iterations. Results show that with a timing

granularity of 1μs, the average timing error across all task

sets is less than 0.5%. The timing error is higher for task sets

with a large number of small tasks. This is because we have

ignored OS context switch delays in this model. We ran each

task set for 10s of simulated time, which at a nominal rate

of 100MIPS simulated by the reference ISS corresponds to

1000 million instructions on each core. The reference platform

simulates each set for about 30s of wall time. By contrast,

our model simulates the same setup in faster than real time

with a throughput of more than 1000MIPS per core at timing

granularities of 10μs and above.

Fig. 5 plots the tradeoff between accuracy and simulation

speed over all task sets. As can be seen, decreasing the timing

granularity results in a higher accuracy but comes at a loss

in simulation performance. Overall, designers can achieve fast

simulation speed while having accurate results by selecting

proper timing granularities that fall into an intermediate range.

In addition, techniques for automatic timing granularity ad-

justment can be integrated into the OS model in order to

significantly improve the speed-accuracy tradeoff [25].

V. EXPLORATION

To demonstrate the capabilities enabled by our approach,

we consider design space exploration for a task set composed

out of a modified subset of applications from the automotive

category of the MiBench suite [26]. The characteristics of

these tasks as determined by back-annotation for a single-

core, 100MHz PowerPC target processor are summarized

in Table III. The tasks basicmath large, qsort large and

susan edge+susan corner are scheduled to run periodically

with periods of 2.5, 2 and 1 second(s) respectively. The

output of susan edge is thereby communicated to the input of

susan corner, forming a pair of dependent tasks. The resulting

task set is run for 10 seconds of simulated time.

TABLE III
MIBENCH TASK CHARACTERISTICS

Execution time [ms] Energy [mJ]

Basicmath large 80.08 83.9

Qsort large 509.83 541.9

Susan edge 78.89 83.3

Susan corner 43.38 46.6

S4-1

217

328, 465,6

228, 518,12

222, 571,18

400

450

500

550

600

650

200 250 300 350 400 450

Sy
st

em
 P

ow
er

 (m
W

)

Average Task Delay (ms)

Pareto-optimal Full design space

(delay,power,cost)

Fig. 6. Design space exploration.

We explored a design space with up to four processors,

a choice of two OS schedulers (priority-based or round-

robin) and required communication architectures in the form of

busses and bridges. This forms a design space of almost 2000

unique architectures. By scripting the SCE [27] framework,

we automatically generated host-compiled models with back-

annotated delay and energy numbers for all architectures. Sim-

ulating those models provides total delay, power consumption

and cost for each design alternative. This results in 35 distinct

design points (Fig. 6), where the set of Pareto-optimal designs

comprises less than 1% of the total design space.

As shown in Table IV, a design space exploration (DSE)

approach utilizing host-compiled models is able to evaluate all

2000 design alternatives in 47 hours of CPU time on a cluster

of 2.5GHz Intel Xeon workstations. By contrast, we estimate

that an ISS-based approach for full design space exploration

would take more than 500 hours. This is prohibitive already

for such a simple example, requiring compromises in which

certain design decisions are chosen manually, which can

potentially lead to optimal design alternatives being missed.

Exploration time can be further reduce by exploiting the

fact that host-compiled models are constructed in layers. In

a two-step exploration, the design space is initially pruned of

infeasible designs using variants of host-compiled models that

only consider computational effects, i.e. that lack HAL and

TLM layers and hence trade off increased simulation speed

for an inaccurate (zero-delay) communication model. Only

designs close to the Pareto front are then further explored

using full host-compiled platform simulations. This allows us

to further reduce exploration time down to 8 hours.

VI. SUMMARY AND CONCLUSIONS

In this paper, we presented a comprehensive approach for

host-compiled power and performance modeling of heteroge-

neous multi-processor and multi-core platforms. Retargetable

back-annotation of application code coupled with abstract OS,

processor and platform models allows for flexible, fast yet

accurate full-system simulations. Experimental results show

that host-compiled modeling provides a feasible platform for

large design space exploration under high accuracy and fast

simulation speed. Generally, different stages of the design

process call for models at different levels of abstraction, where

host-compiled models at varying levels can play a key role for

early and intermediate exploration steps.

Ongoing and future work will require extensions to further

increase accuracy and applicability of such models, e.g. by

TABLE IV
DESIGN SPACE EXPLORATION TIME

CPU Time [hours]

System-level full DSE 47

System-level step-wise DSE 8

taking into account the data (input) dependent nature of power

consumption or by considering more advanced target platform

architectures that include caches, out-of-order executions or

dynamic branch prediction.

REFERENCES

[1] A. Gerstlauer, Host-compiled simulation of multi-core platforms, RSP,
Jun. 2010.

[2] R. Domer, Transaction level modeling of computation, Center for
Embedded Computer Systems, University of California, Irvine, Tech.
Rep. CECS-06-11, Aug. 2006.

[3] A. Gerstlauer, H. Yu, D. Gajski, “RTOS modeling for system-level
design,” DATE, Mar. 2003.

[4] H. Posadas, et al., “RTOS modeling in SystemC for real-time embedded
SW simulation: A POSIX model,” DAES, 10(4), Dec. 2005.

[5] J.C. Prevotet, et al., “A Framework for the Exploration of RTOS
Dedicated to the Management of Hardware Reconfigurable Resources,”
Reconfigurable Computing and FPGAs, 2008.

[6] A. Bouchhima, et al., “Using abstract CPU subsystem simulation model
for high level HW/SW architecture exploration,” ASPDAC, Jan. 2005.

[7] G. Schirner, A. Gerstlauer, R. Dömer, “Fast and Accurate Processor
Models for Efficient MPSoC Design,” TODAES, 15(2), Feb. 2010

[8] J. Schnerr, O. Bringmann, A. Viehl, W. Rosenstiel, “High-performance
timing simulation of embedded software,” DAC, Jun. 2008.

[9] Z. Wang, A. Herkersdorf, “An efficient approach for system-level timing
simulation of compiler-optimized embedded software,” DAC, Jul.2009.

[10] Y. Hwang, S. Abdi, D. Gajski, “Cycle approximate retargettable perfor-
mance estimation at the transaction level,” DATE, Mar. 2008.

[11] A. Bouchhima, et al., Automatic instrumentation of embedded software
for high level hardware/software co-simulation, ASP-DAC, Jan. 2009.

[12] Z. Wang, et al., An approach to improve accuracy of source-level tlms
of embedded software, DATE, Mar. 2011.

[13] S. Stattelmann, et al., Fast and accurate source-level simulation of
software timing considering complex code optimizations, DAC, Jun.
2011.

[14] A. Pedram, D. Craven, and A. Gerstlauer, Modeling cache effects at the
transaction level, IESS, Langenargen Germany, Sep. 2009.

[15] L. Gao, et al., Multiprocessor performance estimation using hybrid
simulation, DAC, Anaheim CA, Jun. 2008.

[16] M. Krause, et al., Combination of instruction set simulation and abstract
rtos model execution for fast and accurate target software evaluation,
CODES+ISSS, Atlanta GA, Oct. 2008

[17] D. Sunwoo, et al., Presto: An fpga-accelerated power estimation method-
ology for complex systems, FPL, Aug-Sep 2010.

[18] E. Copty, et al., Transaction level statistical analysis for efficient
microarchitecture power and performance studies, DAC, Jun. 2011.

[19] D. Brooks, V. Tiwari, and M. Martonosi, Wattch: a framework for
architectural-level power analysis and optimizations, ISCA, 2000.

[20] S. Li, et al., McPAT: An integrated power, area, and timing modeling
framework for multicore and manycore architectures, MICRO, Dec.
2009.

[21] V. Tiwari, S. Malik, and A. Wolfe, Power analysis of embedded software:
a first step towards software power minimization, IEEE Trans. VLSI
Syst., vol. 2, pp. 437445, Dec. 1994.

[22] The architectural description language project, ver 2.0.0. [Online].
Available: http://opensource.freescale.com/fsl-oss-projects

[23] P. Razaghi, A. Gerstlauer, “Host-Compiled Multicore RTOS Simulator
for Embedded Real-Time Software Developement,” DATE, Mar. 2011.

[24] Open Virtual Platform [online]. Available: http://www.ovpworld.org
[25] P. Razaghi, A. Gerstlauer, “Automatic Timing Granularity Adjustment

for Host-Compiled Software Simulation,” ASPDAC, Jan. 2012.
[26] MiBench V.1.0 [online]. Available: http://www.eecs.umich.edu/mibench
[27] R. Dömer, et al., ”System-on-Chip Environment: A SpecC-based Frame-

work for Heterogeneous MPSoC Design,” EURASIP JES, 2008(647953),
13 (2008).

S4-1

218

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.6
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType true
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize false
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Arial-Black
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /ComicSansMS
 /ComicSansMS-Bold
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FranklinGothic-Medium
 /FranklinGothic-MediumItalic
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Gautami
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /Impact
 /Kartika
 /Latha
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaConsole
 /LucidaSans
 /LucidaSans-Demi
 /LucidaSans-DemiItalic
 /LucidaSans-Italic
 /LucidaSansUnicode
 /Mangal-Regular
 /MicrosoftSansSerif
 /MonotypeCorsiva
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /MVBoli
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Raavi
 /Shruti
 /Sylfaen
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Tunga-Regular
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /Vrinda
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Required" settings for PDF Specification 4.0)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

