
BUQS: Battery- and User-aware QoS Scaling
for Interactive Mobile Devices

Wooseok Lee1, Reena Panda1, Dam Sunwoo2, Jose Joao2, Andreas Gerstlauer1, and Lizy K. John1

1The University of Texas at Austin and 2Arm Research, Austin, TX

Abstract—Battery life has become one of major concerns for mobile
user experience. Existing approaches for balancing device quality-of-
service (QoS) and energy often over- or under-provision available battery
capacity, or do not properly account for the non-obvious impact of QoS
and battery state on actual user experience. In this paper, we propose
BUQS, Battery- and User-aware QoS Scaling to maximize user experience
under desired battery lifetime goals by leveraging insights about mobile
device users. BUQS continually evaluates optimal QoS based on battery
status and varying user expectations, and it dynamically adjusts the
device service level to maximize user experience and simultaneously
meet the battery lifetime requirements. BUQS recognizes dependence
of user experience on both device use and battery life using an extended
battery-aware quality-of-experience (QoE) model. Furthermore, BUQS
learns user’s behavior to predict energy demands in time and proactively
rebalance energy to improve user experience. Experimental results show
that our approach delivers about 30% higher QoE than the state-of-the-
art QoS and energy balancing approach.

I. INTRODUCTION

Battery life has become one of major concerns for mobile user
experience. In response, various previous works have been proposed
to balance quality-of-service (QoS) and energy of mobile devices
using dynamic voltage and frequency scaling (DVFS) to adjust
QoS goals and minimize energy. Traditional academic [15] and
industrial [3], [5] approaches switch between two QoS levels and
adjust performance to stretch battery life at a low battery status
(e.g., 20%). More recent studies [23], [20] aim to maximize battery
life using more fine-grain, quantifiable quality of user experience
(QoE) models [17] to find QoS and energy balancing goals that meet
minimum user satisfaction requirements with minimal energy.

Such prior best-effort approaches, however, ignore users’ desired
battery lifetime goals and thus often over- or under-provision avail-
able battery capacity. For the best user experience and optimal use
of battery capacity, mobile systems should aim to provide the largest
QoS that guarantees desired battery lifetime and avoids early battery
depletion. Some prior works [14] have proposed methods to maximize
performance under battery charging predictions. However, they are
oblivious to the non-trivial dependencies between actual lifetime
goals, QoS, battery state and actual user experience, which misses
significant optimization chances.

In this paper, we propose BUQS, a novel, battery- and user-
aware feedback control approach that maximizes user experience
under user’s desired battery lifetime goals (Figure 1). Our approach
continually reasons about optimal performance targets and dynam-
ically adjusts performance using DVFS (A© in Figure 1). BUQS
compares expected energy usage against current battery status to
gauge how much energy savings are needed or how much energy
budget is available. Using this information, it not only prevents early
battery depletion, but also maximizes user experience. In addition,
BUQS uses a novel QoE model that captures human’s varying QoS
expectations in response to remaining battery status (B© in Figure 1).
Our user studies indicate that users, afraid of being unable to use
the mobile devices once battery depletes, are willing to give up
certain performance requirements as remaining battery diminishes.
Prior works [11], [7] also make similar observation. Our approach

Fig. 1: Overview of BUQS.

models such varying QoS expectations to gradually relax minimum
QoS requirements and stretch battery life while conforming to users’
expectations. Our approach further improves QoE by customizing
energy allocation to specific users (C© in Figure 1). Using a learning-
based approach, BUQS can predict users’ diurnal energy usage
patterns. This allows BUQS to find optimal personalized energy
distributions, i.e., saving energy in light device usage hours while
allowing more energy consumption in high utilization hours. In
summary, our contributions are as follows:

• We propose a battery- and user-aware feedback control that maxi-
mizes QoE while meeting user’s battery lifetime requirements. We
design a dynamic QoS scaling system that incorporates battery
state, a QoE model accounting for users’ varying and battery-
dependent QoS expectations, and methods to learn and predict
unique user behavior in order to continuously rebalance energy.

• We compare our approach against state-of-the-art battery- and/or
QoE-oblivious approaches. We validate BUQS with extensive
usage patterns and show that BUQS can deliver the best QoE.
Experimental results show that BUQS can achieve 30% higher QoE
than state-of-the-art QoS-energy balancing approaches.

II. RELATED WORK

Various prior studies have explored ways to maximize battery life
for mobile users. Yang et al. [16] presented a user- and application-
aware CPU frequency scaling approach. Donohoo et al. [8] minimize
energy of CPU and screen by leveraging human’s interactive slack
and change blindness, respectively. Yan et al. [15] proposed an
approach to maximize user satisfaction in low battery status. Zhu
et al. [23], Song et al. [19], Li et al. [21], and Lee et al. [20]
have proposed ways to maximize battery by balancing QoS and
energy of individual applications. However, none of these approaches
have specific battery lifetime goals. They simply aim battery life.
As such, they fail to optimally exploit available battery capacity
versus energy required for the best user experience. Banerjee et
al. [18] studied battery charging behaviors and proposed a simple
energy-adaptive approach under battery lifetime goals. More recently,
Shen [14] proposed an approach that maximizes performance under
battery charging predictions using linear programming. However,
these approaches are unaware of the impact of QoS on actual user
experience, and, thus, show suboptimal performance control. Instead,
we propose a battery- and user-aware approach that maximizes user
experience under battery lifetime goals using insights about mobile
device users.

Fig. 2: Quality of experience of web applications [17].

III. BACKGROUND

In this section, we discuss about QoE model and define our battery-
aware model. We further define user event models, battery models,
and performance and energy models.

A. Our Battery-aware QoE model
To design interactive systems that satisfy users and to facilitate

the proposed BUQS, we need to quantify how they feel about
given services. In this section, we describe quality-of-experience
(QoE), the quantified level of user experience given services such
as web browsing. Recent studies [17], [15], [22] have introduced
ways to quantify QoE. In this paper, we define QoS as the objective
measurement such as web page loading time. QoE is modeled from
users’ quantified mean opinion scores given QoS levels.

Among proposed models, we use IQX hypothesis (exponential
Interdependency of Quality-of-eXperience and quality-of-service) be-
cause it can well describe QoS and QoE relationship [17]. Figure 2
shows an example of the QoE model for interactive web services split
into three regions separated by QoSI and QoSU . In constant optimal
QoE region (QoS < QoSI), providing higher QoS (faster loading
time) than QoSI does not increase QoE since users are already
satisfied with QoSI service level. In sinking QoE region (QoSI ≤
QoS < QoSU), QoE exponentially decreases as QoS degrades. In
unacceptable region (QoS ≥ QoSU), users abandon service due to
the low quality of service. One discussion about the QoE model is that
QoSU shows relatively large variation than other model parameters.
We study and identify the variation in depth in Section V-C and
propose a way to adapt to it.

We further enhance the QoE model [17] by incorporating user
dissatisfaction when battery is fully-depleted (4th statement in Equa-
tion 1). Our battery-aware QoE model is defined as follows:

QoE =

QoEmax if QoS < QoSI .

α· e−β·QoS + γ if QoSI ≤ QoS < QoSU .

0 if QoSU ≤ QoS.
−QoEmax if no battery left.

(1)

where α, β, and γ are 85.96, −0.347, and 27.8, respectively [17]. We
define QoSmax, QoSI , and QoSU as 100, 0.5, and 2, respectively.
Although the original QoE scales from 0 to 5, we multiply the
coefficients, α and γ, by 20 to scale QoE up to 100 for simplicity and
clarity. For the QoSU , various research [9], [23] and industry [2] have
different requirements ranging from 1 to 4 seconds. We define QoSU
as 2 seconds for tight requirement and will discuss the reasoning more
in Section V-C.

B. Experimental Setup
User event models: Using limited user patterns lacks generality

because it is known that there are significant diversities in device
usage patterns between users [13], and partial validation cannot
guarantee its effectiveness for other type of users. Thus, we compare
our approach with others using average QoE value across a variety of
user patterns. For the comprehensive pattern generation, we diversify
event intensity by permutating the four event rates (Table I) in three

Fig. 3: Performance and energy models for BBench eBay.

TABLE I: User event rates
name (rate) events/min name (rate) events/min

UL (ultra light) 5 M (medium) 20

L (light) 10 H (high) 30

periods (e.g., three 4 hour periods), comprising 64 combinations. For
example, generating events with a L (light) event rate during all three
periods is denoted as [L,L,L]. Individual user events are generated
with Poisson distributions.

Battery models: We use a battery model (3.7V, 3000mAh) and
allocate the effective battery capacity (1500mAh) to processors
to compare various approaches. In real mobile devices, however,
multiple energy-consuming components such as display draw current
from one battery. Thus, the battery capacity allocated for processors
may differ, e.g., if users change the brightness level. We fix the
battery capacity in this overview but later show evaluation results
using various battery capacities (Section VI).

Performance and energy models: We model the performance
and energy of various applications by running them at different
frequencies and core types on a recent mobile platform, a Exynos5422
system-on-chip (as used in the Samsung Galaxy S5 with quad Cortex-
A15 (2GHz-800MHz) and quad Cortex-A7 (1.4GHz-600MHz) cores)
in an ODROID-XU3 board [4]. Among the web applications, we
select eBay from BBench [6] in this overview because it shows the
exemplary QoS-energy tradeoffs (Figure 3). We collect the web page
loading time (QoS) and energy using Chrome browser using ARM’s
DS-5 tool [1]. We use eBay in Section IV and V as an example but
evaluate different types of workloads in Section VI.

IV. QOE OF PRIOR WORKS

Shortened battery life negatively affects mobile user experience.
Fast battery depletion disturbs users by forcing them to stay around
outlets and recharge battery whenever possible. In addition, users are
frustrated to use their mobile devices in a low battery state due to
the fear of battery depletion, qualitatively hurting user experience.
Most importantly, once battery depletes, users are unable to use their
mobile devices, leading to severe dissatisfaction.

In this section, we discuss why prior QoS-energy balancing ap-
proaches that have no battery lifetime goals fail to provide maximum
QoE (Equation 1) during k daily hours; in the remainder of this paper,
without loss of generality, we define k as 12 hours (8am-8pm). In
Sections IV and V, we focus our discussion on a web application
to clearly contrast ours with prior works. However, other types of
applications will be evaluated in Section VI. We first describe various
state-of-the-art QoS and energy balancing approaches and discuss
about their challenges.

A. QoS and Energy Balancing Approaches

Oracle approach: To gauge how far various approaches are
from optimum, we conduct an oracle study. We assume that oracle
approach knows all user events and can determine one maximum
operating point that can maximize QoE without battery depletion. In

(a) QoS approach (b) QPE approach

Fig. 4: Battery life and QoE of conventional approaches.

the following figures, we show QoE of oracle approach along with
QoE of one of the specific approaches.

QoS approach: Recent works [9], [23], [20] have proposed ways
to minimize energy while maintaining QoEmax of individual user
events. The general principle is to slack performance so that users
can obtain computation results just before QoSI because using more
energy to increase QoS gives no additional utility to users. On the
other hand, industry-quality mobile systems have battery management
policies that lower the initial highest service level when battery drops
to a certain level (e.g., 20%) to stretch battery life. We combine the
two state-of-the-art approaches, and denote it as the QoS approach.
For example, in the eBay performance model, since the fastest web
page loading time is slower than QoSI , a QoS approach will start at
a 2GHz operating frequency on A15 and reduces it to 1.2GHz (40%
performance loss [3]) at the 20% battery level [5].

QPE approach: Zhu et al. [23] propose a way to find an operating
frequency that maximizes QPE (QoE per energy). We denote it as
QPE approach. For example, based on the performance and energy
model of eBay, we select 1GHz operating frequency on A15 because
it shows maximum QPE.

B. Challenges in QoS and QPE Approaches
In this section, we show a case study of the prior works us-

ing an event pattern, [L,L,L], and discuss their major challenges.
Figure 4 shows battery life (x-axis), remaining battery (primary y-
axis, 0∼100%), and QoE (secondary y-axis, -100∼100) of a web
application loading eBay page. QoS approach maintains maximum
QoE (2GHz) for about 6 hours (at 20% battery) and thereafter can
only provide limited QoE (1.2GHz) (Figure 4a). However, the heavy
energy use for maximum QoE in early hours leads to fast battery
depletion (about 10 hours). After the depletion, users are dissatisfied,
and overall QoE are degraded, leading to 68 on average. On the
contrary, QPE approach (1GHz) can have more than 12 hours of
battery life due to the reduced energy per event (Figure 4b). However,
about 40% battery remains unused, which could have been used to
improve average QoE (79). This case study clearly shows that because
conventional approaches have no battery lifetime goals and dynamic
QoS controls, they show limitations in delivering the best QoE.

V. BATTERY- AND USER-AWARE QOS SCALING

Although maximum QoE per event satisfies users instantly, it might
result in early battery depletion for heavy device users, degrading
overall QoE. On the other hand, degraded service levels ensure
longer battery life, but fails to maximize QoE for light device users.
Therefore, we need a dynamic approach that can adapt service level to
various types of users under given battery lifetime goals. Specifically,
unlike the prior approaches that have QoS targets invariable to user
events, our approach aims to scale them proactively and insightfully.
In this section, we detail the three steps of our battery- and user-
aware QoS scaling approach (BUQS) using selected cases out of the
64 total user event scenarios evaluated in Section VI. We first propose
dynamic QoS scaling to handle various user patterns under battery

(a) BUQS1 [L,L,L] (b) BUQS1 [M,M,M]

Fig. 5: BUQS1: dynamic QoS scaling.

lifetime goals (BUQS1). Additionally, we propose a user-aware QoE
model that recognizes human’s risk-avoiding nature to further stretch
battery life (BUQS2). Finally, we pr/opose a learning-based energy
model that allows to learn about energy usage of a specific user and
enable customized energy distributions (BUQS3).

A. Defining QoS Scaling
Before delving into details, we define QoS scaling. Given a target

QoS, a workload can be computed at a minimum frequency that
allows to meet the QoS goal and save energy. Mobile systems use a
performance model (e.g., Figure 3) to select such operating frequency.
For instance, if the QoS goal of eBay is 1.5s, 1.0GHz on A15 core is
selected. In this paper, we define QoS scaling as dynamic adjustment
of target QoS. In particular, mobile systems change its operating
frequency according to the target QoS change. Note that the QoS
alternation simultaneously affects QoE and battery life. The target
QoS, however, can only scale between QoSI and QoSU because
higher QoS than QoSI gives no additional utility to users, and lower
QoS than QoSU will make users to abandon the service.

B. Dynamic QoS Scaling
In this section, we propose a dynamic QoS scaling approach

(referred to as BUQS1) that automatically balances QoS and energy
to maximize average QoE and simultaneously meet battery lifetime
goals. To determine whether to increase or decrease target QoS,
BUQS1 needs to predict battery status in time, and compare it
with current battery status. Assuming consistent, distributed energy
usage over desired battery hours, BUQS1 use a linearly decreasing
energy model as reference battery status. BUQS1 then compares
the reference with current battery status, and adjust operating fre-
quency accordingly. Specifically, BUQS1 starts by computing at
the frequency that meets the QoSI . If energy saving is needed
(current battery is lower than reference), BUQS1 lowers QoS and,
thus, decreases frequency to avoid early battery depletion. Since the
difference between reference and current battery is good estimates
of how much energy savings are needed, we decrease 100MHz
frequency per 10% difference (e.g., decreasing 200MHz for 20%
difference). When the operating frequency needs to cross the core
type boundary (800MHz for A15 and 1.4GHz for A7), BUQS1 alters
core type accordingly. It works similarly in the opposite case where
users consume less energy (current battery is higher than reference)
except increasing frequency to improve QoE.

The current battery status can be easily obtained on real systems
from one of the available resources such as OS. For the reference
battery status, we can compute it by drawing a line from 100% at
0 hours to 0% at N (12) hours. We add 10% of extra margin to
minimize chances of unwanted battery depletion due to sudden heavy
user events at around 12 hours. The dotted line in the figures indicates
the reference battery status (e.g., Figure 5a).

Figure 5 shows the battery life and QoE of BUQS1. With the user
event, [L,L,L], BUQS1 can successfully adjust QoS based on the
current and reference battery, leading to 12 hours of device operation

Fig. 6: User QoSU model.

(a) BUQS2 [M,M,M] (b) BUQS2 [UL,UL,M]

Fig. 7: BUQS2: relaxing QoSU.

(Figure 5a). The remaining battery after 12 hours is about 10%, less
than the QPE approach. The extra energy are used to improve QoE
(82), higher than both QoS (68) and QPE (79) approaches. However,
we find that doubling the event rate ([M,M,M]) makes BUQS1 to fail
to meet 12 hours of device operation even with the lowest frequency
from the beginning (Figure 5b).

C. Users’ QoS Expectation
In this section, we propose our user-aware QoE model that allows

BUQS1 to stretch battery life by gradually relaxing the minimum QoS
requirement (QoSU) (referred to as BUQS2). Although BUQS1 can
dynamically adjust QoS, there are limitations in guaranteeing battery
lifetime if users generate heavy user events. We find that this limi-
tation originates from the tight minimum QoS requirement, QoSU ,
that still requires non-trivial energy consumption. We study mobile
device users to find out whether the minimum QoS requirement is
absolute, and if not, how we can relax it while conforming to users’
expectations.

Prior works [7], [15] suggest that humans often show risk-avoiding
nature to limited resources. We want to know if mobile device users
have similar psychological attitude to battery status. In particular,
we study if they are willing to sacrifice QoS when battery is low
due to the fear of running out of battery. We surveyed 42 mobile
phone users in ages between 20s and 40s about their expectations to
web applications. We asked their expectations of maximum allowable
web page loading time (between 0.5s and 10s) at various battery
levels (from 100% to 5%). The dashed lines in Figure 6 show the
survey results. As we expected, there exist trend that shows such
risk-avoiding nature. We model the varying QoS expectations using
a regression of the data obtained from our user study as follows:

QoSU = α· (e(−b·batt+c) + d) (2)
where batt is the current battery status. To learn a generic QoSU
model used for our evaluation, we estimate the parameters α, b, c,
and d based on median values and data coverage as 2, 0.045, 1.4,
and 0.96, respectively (middle line in Figure 6). Although we use
a generic expectation model for our experiments, users can select
different QoSU models based on their preferences. E.g., different
quality expectations can be easily obtained by varying the parameter,
α, as shown in Figure 6 (e.g., 0.5, 2, or 3).

In full battery status of the generic QoSU model (α = 2), QoSU
is 2 seconds, requiring mobile systems to provide the best QoS. As
the remaining battery reduces, the QoSU requirements are gradually
reduced as well. At 20% battery, users can tolerate about 5 seconds

(a) Learning energy usage [UL,UL,M] (b) BUQS3 [UL,UL,M]

Fig. 8: BUQS3: rebalancing energy.
web page loading time. Figure 7 shows the battery life and QoE after
we apply our user-aware QoE model. In Figure 7a, we can observe
that BUQS2 gradually saves more energy, meeting 12 hours battery
life with average QoE (67), higher than BUQS1 (45).

Until now, we tested constant rates of user events ([L,L,L] and
[M,M,M]). We further evaluate [UL,UL,M] to see how BUQS2
performs with irregular user patterns (Figure 7b). Alas, when the
number of events abruptly increases during the last 4 hours, BUQS2
shows bad performance in managing QoS. BUQS2 provides highest
QoS (highest energy) for the first 8 hours and significantly reduces
QoS during the last 2 hours. This unbalanced energy usage leads to
a lower QoE (79) and increases the chances of battery depletion at
the last moment. This is mainly attributed to the lack of information
about how the specific user will generate events in the future.

D. Users’ Energy Usage Pattern
Our energy prediction model needs improvement to handle such

abrupt change of device usage. In particular, we need to save some
energy in advance when users lightly use mobile devices such that
the saved energy can be used when users heavily interact with
them. This user-specific optimization is mainly from the insights
that although there might be differences in device utilization between
users, individuals often have their own diurnal use patterns [13]. If
we have the information about when and how users use their mobile
devices, we can proactively distribute energy to minimize the sudden
drops of QoS and the chances of battery depletion.

For online learning of user energy usage patterns, we measure
energy consumption every 30 minutes and accumulate the measure-
ments using a weighted daily moving average with exponentially de-
caying coefficients (Equation 4, 5). Because energy differs depending
on operating frequency, we scale up the collected energy to maximum
frequency (Equation 3) for fair, consistent data accumulation.

E0,i = ei·
Freqmax
Freqavg

(3)

(4)
Esum,i = E0,i + β·Esum,i

= E0,i + β1·E1,i + β2·E2,i + ...

Hi =
Esum,i
βmax

(5)

where ei is today’s collected energy usage for 30 minutes, and thus
i ranges from 0 to 23 with 12 hours of energy trace. We scale up ei
to maximum frequency and denote it as EN,i where N increases as
one day passes. β and βmax are set to 0.9 and 10, respectively, and
are specifically designed to both emphasize recent history and hold
information of up to the last 64 days; β64 becomes almost 0. Hi is
the user’s energy usage history.

Figure 8a shows the energy usage history averaged over 64 days of
user events [UL,UL,M] and the corresponding training result. Using
the energy usage history (Equation 5), we draw the new reference
battery line by computing the cumulative distribution function of Hi,
and deducting the values from 100%. We add extra 10% margin to
reduce the chances of battery depletion.

Algorithm 1 Battery- and user-aware approach (BUQS3)
freq,max freq = user hist max()
batt = curr batt() . maximum battery capacity
while batt > 0 do

batt ref = curr user batt history()
if batt < batt ref then . decrease freq

freq = max(freq − int((1 − batt
batt ref), · 10), 0)

else if batt > batt ref then . increase freq
freq = min(freq + int((batt

batt ref − 1)· 10),max freq)
end if
if QoS(freq) < QoSU (batt) then

freq = min user freq(batt)
else if QoS(freq) > QoSI then

freq = min(freq QoSI(),max freq)
end if
set freq(freq) . after freq change, wait for one minute
batt = curr batt()

end while

Using the history, our approach can rebalance energy (referred to
as BUQS3). Figure 8b shows the battery life and QoE of BUQS3 with
the user event, [UL,UL,M]. Knowing that this user tends to spend
more energy during the last 4 hours, BUQS3 saves energy in early
hours. The saved energy is used to avoid the sudden drop of QoS
for the last 4 hours. In addition, BUQS3 predicts overall expected
energy by summing all energy history based on the assumption that
all events are computed at the highest frequency. For example, the
total sum of the user history in Figure 8a is 123%. This implies
that mobile systems may need about 23% additional battery capacity
if all user events are computed at the maximum frequency. Using
such information, BUQS3 can proactively reduce maximum operating
frequency to 1.8GHz on A15 (about 23% lower energy than at 2GHz).
In summary, the user-specific energy rebalance in BUQS3 allows
higher average QoE (88) than BUQS2 (79).

E. Algorithm
This section presents the overall algorithm of our approach (Al-

gorithm 1). For simple explanation, the operating frequencies are
managed by index; 100MHz increases as we increase one index
except when core type changes. We set 21 as the highest frequency
(2GHz) of A15 and 9 as the lowest frequency (800MHz) of A15
while the highest (1.4GHz) and lowest (600MHz) frequency of A7
are set to 8 and 0, respectively.

At first, we assign the current and maximum frequency, freq and
max freq, respectively, from user hist max() function (BUQS3).
In addition, the current battery capacity (batt) is initialized. Ev-
ery minute, until battery lasts (batt > 0), our approach com-
pares the current battery to reference battery status, and either
increases or decreases operating frequency. If battery capacity is
higher than reference battery, meaning extra budget for QoS, we
increase operating frequency and vice versa (BUQS1). We obtain
the reference battery status from past user energy history model,
curr user batt history() function (BUQS3). Once the operating
frequency is determined, we check if the selected one falls in the
boundary of QoSI and QoSU ; QoSU is relaxed as the battery
capacity reduces (BUQS2). As a final step, our approach updates
the operating frequency and waits for a minute. We believe that per-
minute computational overhead of our approach is small. Similarly,
the computational and storage overhead for history processing every
30 minutes in BUQS3 is negligible.

VI. EXPERIMENTAL RESULTS

To validate the effectiveness of our approach, we systemically test
various user patterns with multiple workloads.

Workloads: We add several user-facing mobile workloads that
show distinctive performance and energy characteristics. Table II

TABLE II: Workloads
Workloads Max perf/energy Min perf/energy QoSI /QoSU

Google search engine [6] 115ms/1205mJ 393ms/295mJ 0.5/(2-10) sec

eBay e-commerse site [6] 0.8s/3627mJ 4.4s/727mJ 0.5/(2-10) sec

Image recognition,
Ferret (4 threads,
64 images) [10]

0.9s/6769mJ 5.6s/1042mJ 0.5/(2-10) sec

Video playback (big buck
bunny 720p, 2sec) [12] 33.5FPS/5615mJ 12.8FPS/539mJ 60/(30-10) FPS

shows the details of the workloads. We notice that although the
absolute numbers differ on workloads, the performance and energy
tradeoffs follow similar trend to the eBay workload.

QoS (FPS) and QoE: We use the QoE model defined in Sec-
tion III-A for interactive applications. For video applications that
require frame per seconds (FPS) as a QoS metric, we use a QoE
model that follows the MNQT model [22] where αt and βt are 3.5
and 0.63, respectively, and max/min FPS are 60/30. We use the user
QoS model defined in Section V-C to relax min FPS (30-10).

Methodology: We run all 64 user event patterns (defined in
Section III-A) and repeat individual patterns 10 times. We average
values of all 640 runs. We randomly select one of the workloads and
associate it to the individual event at event generation stage.

Evaluation: Figure 9 shows the evaluation results of various
proposed approaches. There are three major and one minor metrics
that measure the performance of our approach. Average QoE, battery
life, and battery outage count are used as the major factors of
performance while average remaining battery can be viewed as a
minor performance indicator. The battery outages are only counted
when more than 5 out of 10 repeated experiments fail to meet the
battery life requirement.

Figure 9a shows the average QoE of various approaches along
with standard deviation and minimum QoE. The maximum achievable
QoE is 85 in oracle approach. Ironically, QoS approach shows the
lowest QoE due mainly to early battery depletion. As we mature our
approach from BUQS1 to BUQS3, QoE becomes higher, outperform-
ing QPE approach from BUQS2, and eventually, BUQS3 achieves
93% of QoE compared to oracle approach and 30% higher QoE
compared to QPE approach. For average battery hours (Figure 9b),
the trend is similar but both BUQS2 and BUQS3 can mostly deliver
12 hours of battery life. Figure 9c further verifies the battery guar-
anteeing performance. While oracle approach can remove recharging
of battery for all 64 user event patterns, there are few cases where
BUQS2 (8/64) and BUQS3 (4/64) cannot meet the requirement. Other
proposed approaches significantly violate the battery life requirement.

Figure 9d shows the average remaining battery after 12 hours.
It is true that if average QoE is same, higher remaining battery
indicates that one approach performs better than others in managing
energy. BUQS3 perform well in that perspective. However, since
oracle approach delivers slightly higher QoE than BUQS3, but its
average remaining battery is lower, it suggests that there might be
some room for BUQS3 to increase QoE more by spending the extra
10% of battery.

TABLE III: Max Tolerable User Event Rate
Oracle QoS QPE BUQS1 BUQS2 BUQS3

Max Event Rate 43 8 14 14 23 25

Maximum user event rate: The battery capacity, the number of
user events, and the amount of energy per event determine the battery
life. As we observed, there are limitations in delivering 12 hours of
battery life in BUQS3 if the number of user events are excessive.
To specify the limitations, we uniformly generate user events in

(a) QoE (b) Battery life (c) Battery outage count (d) Avg. remaining battery

Fig. 9: Evaluation of various QoS-energy approaches. We report average number of 64 user event patterns.

Fig. 10: BUQS3 (train with [UL,UL,M] and test with [H,H,L]).

sequential order of the four applications and measure the maximum
user event rate. Table III shows that BUQS3 can tolerate higher user
event rate than other proposed approaches. This also explains why
there are small number of battery outage in BUQS3. Since maximum
number of events that BUQS3 can tolerate is 25, for user events more
than 25, (e.g.,[H,H,M] (30+30+20)/3=26.6), BUQS3 will fail to meet
the 12 hours of battery life.

User behaviors and BUQS3: Since BUQS3 depends on users’
energy usage history, any irregular user behavior might interfere with
optimal energy rebalancing. To gauge how BUQS3 performs with
distinctive user patterns, we evaluate the worst case scenarios by
using the opposite user patterns, e.g., training with [UL,UL,M] and
testing with [H,H,L]. We observe that although the mispredictions
of user behavior may harm optimal energy distribution, BUQS3 can
endure them since it builds on top of the feedback-based, user-aware
approaches, BUQS1 and BUQS2, (Figure 10). Experimental results
using 64 user event patterns show that BUQS3 performs similar to or
slightly better than BUQS2. This indicates that BUQS3 can provide at
least the average performance of BUQS2 in distinctive user behaviors.

Sensitivity to battery capacity: We also evaluate the proposed
approaches with diverse energy consumption scenarios by varying the
battery capacity as the energy consumption from other components
such as display alters the allotted battery capacity for processors. In
addition to the base capacity (1500mAh), we repeat the experiments
(all 64 user event patterns) with 500, 1000, 2000, and 2500mAh
(16% to 83% of total battery). Figure 11 shows the sensitivity test
results. In general, while average QoE and battery hours degrade as
the battery capacity decreases, the relative performance order remains
same to what we observe in 1500mAh battery. BUQS3 still delivers
best QoE and battery hours among the proposed approaches. This
indicates that although the performance gaps with Oracle approach
become larger as the battery capacity diminishes, our approach can
deliver best performance in various energy usage scenarios.

VII. CONCLUSION

In this paper, we propose a novel, battery- and user-aware QoS
scaling approach (BUQS) that maximizes QoE under battery lifetime
goals by dynamically adjusting QoS based on current and predicted
battery status, a user-aware QoE model, and energy usage history.
Experimental results using extensive user event patterns show that
our approach can deliver 30% higher average QoE compared to
state-of-the-art approaches while reliably delivering desired battery
life. Our feedback-based battery management approach is flexible in
that users can choose desired battery lifetime. In addition, it works

Fig. 11: Sensitivity to processor battery capacity.

for any mobile system architecture given an application QoS and
performance model. Instead of ending up with unused battery because
of conservative strategies, BUQS enables users to obtain the highest
quality while still meeting desired battery lifetime goals.

ACKNOWLEDGEMENTS

This work is supported by a Samsung PhD Fellowship and NSF
grant CCF-1337393. The opinions and views expressed in this paper
are those of the authors and not those of NSF or any other sponsors.

REFERENCES

[1] ARM DS-5 Development Studio. https://developer.arm.com/products/software-
development-tools/ds-5-development-studio.

[2] Delivering the sub one second rendering experience.
https://developers.google.com/speed/docs/insights/mobile.

[3] iOS9 tips: Manually enable Low Power Mode to maximize your iPhone’s bat-
tery life. http://appleinsider.com/articles/15/09/22/ios-9-tips-manually-enable-low-
power-mode-to-maximize-your-iphones-battery-life.

[4] ODROID XU3 Development Board. http://www.hardkernel.com.
[5] Use battery saver mode. https://support.google.com/pixelphone/answer/6187458.
[6] A. Gutierrez et al. Full-System Analysis and Characterization of Interactive

Smartphone Applications. In IISWC, 2011.
[7] A. Rahmati et al. Understanding Human-battery Interaction on Mobile Phones. In

MobileHCI, 2007.
[8] B. Donohoo et al. AURA: An application and user interaction aware middleware

framework for energy optimization in mobile devices. In ICCD, 2011.
[9] B. Gaudette et al. Improving smartphone user experience by balancing performance

and energy with probabilistic QoS guarantee. In HPCA, 2016.
[10] C. Bienia. Benchmarking Modern Multiprocessors. PhD thesis, Princeton Univer-

sity, 2011.
[11] D. Hillson et al. Understanding and managing risk attitude. 2004.
[12] D. Pandiyan et al. Performance, energy characterizations and architectural implica-

tions of an emerging mobile platform benchmark suite - MobileBench. In IISWC,
2013.

[13] H. Falaki et al. Diversity in Smartphone Usage. In MobiSys, 2010.
[14] H. Shen et al. Battery aware stochastic QoS boosting in mobile computing devices.

In DATE, 2014.
[15] K. Yan et al. Characterizing, Modeling, and Improving the QoE of Mobile Devices

with Low Battery Level. In MICRO, 2015.
[16] L. Yang et al. HAPPE: Human and Application-driven frequency scaling for

Processor Power Efficiency. IEEE tran. on mobile computing, 2013.
[17] M. Fiedler et al. A Generic Quantitative Relationship Between Quality of Experi-

ence and Quality of Service. IEEE Network Magazine of Global Internetwoking,
2010.

[18] N. Banerjee et al. Users and Batteries: Interactions and Adaptive Energy Manage-
ment in Mobile Systems. In UbiComp, 2007.

[19] T. Song et al. Prediction-Guided Performance-Energy Trade-off with Continuous
Run-Time Adaptation. In ISLPED, 2016.

[20] W. Lee et al. Cloud-guided QoS and Energy Management for Mobile Interactive
Web Applications. In Proc. of International Conference on Mobile Software
Engineering and Systems (MobileSOFT) , 2017.

[21] X. Li et al. SmartCap: User Experience-Oriented Power Adaptation for Smart-
phone’s Application Processor. DATE, 2013.

[22] Y. Ou et al. Q-STAR: a perceptual video quality model considering impact of
spatial, temporal, and amplitude resolutions. In IEEE Trans Image Process, 2014.

[23] Y. Zhu et al. Event-based scheduling for energy-efficient QoS (eQoS) in mobile
Web applications. In HPCA, 2015.

