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Abstract—In modern cloud computing and analytics appli-
cations, large-scale data is often represented in the form of
graphs. Many recent works have focused on understanding and
improving performance of graph processing frameworks. Power
consumption, which also serves as a key factor in the deployment
and management of graph processing frameworks, has not been
extensively studied. In this paper, we demonstrate the use of an
online software power estimation tool that is capable of obtaining
fine-grained power traces. By leveraging component-level power
behavior, we show that static power consumption still constitutes
a significant portion of the total power. Moreover, we illustrate the
impact of various dynamic voltage and frequency scaling polices
on these workloads, and observe that setting the computing node
to its maximum frequency can achieve optimal performance and
energy consumption. From our analysis on the impact of machine
scale-up, we conclude that computing nodes with small number
of computing threads consume more energy than the powerful
ones. This observation can help cloud administrators on energy-
efficient resource allocation.

I. INTRODUCTION

The total amount of digital data stored in the world today is
exceeding 4.4 zettabytes, and it is expected to increase ten-fold
by the year 2020 [[1]. As data volumes are increasing exponen-
tially, graph has been proposed as a concise data structure for
representing these massive amount of data. Operations and
analytics on large graphs span multiple application domains
such as online retail, social applications, and bioinformatics
[2]. Over the years, graph processing has become one of
the most important applications on modern cloud computing
platforms. In order to select and manage computing resources
for graph processing applications, we need to understand their
underlying performance and power characteristics.

Optimizing graph processing can be achieved from both
software and hardware perspective. On the software side, var-
ious graph processing frameworks focusing on programmabil-
ity and performance have been proposed [3l, [4], [Sl, [6], [Z],
[8], [9], where different programming models, compute en-
gines, and methods of traversing are studied. On the hardware
side, domain-specific accelerators dedicated towards graph
processing has also been proposed [10], [[L1] to achieve high
performance. These works mostly optimizes graph processing
with respect to performance, where power efficiency is not
typically considered. However, energy consumption of modern
data center has become a critical issue for cloud service

providers. In this paper, we characterize the power behavior
of various graph processing applications and compared to all
the prior works mentioned above, our main contributions are:

1) First, we demonstrate the use of an online component-
level power monitoring tool for graph processing work-
loads on the modern server, which allows cloud service
providers to measure the dynamic and static power of
each individual core. We show that 33% of the total power
still belongs to static power.

2) Secondly, we perform detailed studies on the effect of var-
ious dynamic voltage frequency scaling scheme. We show
that on-demand power governor does not provide optimal
performance and energy efficiency, whereas by simply
setting operating frequency to the maximum achieves
the best performance with an average of 5.8% energy
reduction. This phenomenon indicates the need of better
power governors, and validates that the “race to idle”
concept [[12] still holds for these emerging workloads.

3) Finally, we analyze the scale-up behavior in terms of both
performance and energy cost. Our results show that graph
processing workloads consume more energy as the total
number of available computing threads decreases. This
is particularly interesting, as modern cloud computing
service providers, such as Amazon EC2 [13], always
charge less for less powerful machines, which means they
are making less profit on those machines due to the higher
energy cost.

We expect such observations to be useful in managing the
energy-efficiency and performance of cloud deployments. Po-
tential actions include keeping inactive servers in power-gated
mode and racing to finish for total energy savings. Similarly,
charging less for less powerful servers may not be a smart
policy from cloud service provider’s energy cost perspective.

II. ONLINE DIGITAL POWER MEASUREMENT
A. Tool Overview

In this paper, we employ WattWatcher [14] for online power
measurement, which is a toolkit that integrates a number of
Linux utilities and McPAT [15] power model with configurable
system models and functional unit estimators. As shown in
Figure [T} this toolkit can be split into three modules that are
Controller, Collector, and Analyzer.
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Fig. 1: Overview of WattWatcher Toolkit [14]].

Controller: Controller is the interface for any user (like
cloud administer) to define the hostname and location of
the System-Under-Test (SUT). As WattWatcher is a power
estimator based on the hardware event activities, user needs to
describe the microarchitectural features (cache layout, number
of active CPUs, and operating frequency) and underlying event
counters. The Controller uses these statistics to generate an
XML file that represents the SUT. The Controller then stores
the system configuration and proceeds to launch the Collector.

Collector: The Collector is operating in the SUT, which
gathers the runtime information. Perf [16] is the tool that
is used to collect fine-grained hardware activities, whose
sampling frequency can be pre-defined by user. Perf will
only probe the counters defined by user via Controller. For
online mode, the Collector periodically outputs the data to the
Analyzer for post power estimation.

Analyzer: This is the main module of the toolkit, as it is
in charge of converting the raw data obtained from Collector
to the power estimations. These dynamic raw data will be
combined with system configurations defined in Controller to
populate an input file for McPAT. For each captured sample, a
corresponding power spread sheet will be generated for future
analysis. As this process is done away from the SUT, there is
no impact on the SUT’s power behaviors.
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Fig. 2: GAS Computation Model.

B. Power Modeling

The tight correlation between power consumption and hard-
ware counters has been discovered by many Researchers
[17]. As we mentioned above, WattWatcher leverages this
knowledge by using hardware event counters to estimate a
large number of statistics for McPAT. Every microarchitecture
needs a mapping file that defines the relationship between
its performance counters and backend McPAT event counts.
Some of them can be directly measured via available perfor-
mance counters on the chip. However, others, like the number
of reads/writes to an Reorder-buffer (ROB), requires some
reasonable assumptions. The mappings in WattWatcher have
been build for AMD Piledriver, Intel Haswell, and Intel Sandy
Bridge microarchitectures. We add our own mapping function
for Intel Ivy Bridge in this work.

C. Advantages Over Other Existing Methods

There are many different approaches have been purposed
to either measure or estimate the processor’s power cost.
However, the WattWatcher we chose has many advantages that
makes it suitable for the cloud computing management. Direct
measurement via external analog probe can only accurately
provide the power data at the coarse-granularity, which reflects
entire power consumption of all the devices that draw the
energy from the wall outlet. Finer-grained power watching
requires destructive shunting of the circuits. Breaking down
the power allocation at the core level is almost impossible. In
addition, this type of measurement is really hard to expand for
large scale systems. Wattwatcher can be easily scaled out, as
the users just have to identify the hostnames and locations of
the target SUTs. On-chip power/performance counters, such
as Intel’s Running Average Power Limit (RAPL) counters,
provide estimations on the SUT. The overhead of this approach
is very low, however, it only reports the power data at the
processor or package level. WattWatcher can break down the
power cost for each core, and monitor individual components’
power behaviors. Offline Curve Fitting is highly used in
academia that correlates the performance to the power cost.
While this method is often effective, it does require exten-
sive training and calibration. Bias training set or architecture
changes will lead extremely inaccurate results. Moreover, it
does need the reference power data before training occurs.
However, WattWatcher does not suffer from any of these
disadvantages.

III. GRAPH PROCESSING

In this section, we would like to review the advanced tech-
niques deployed in the modern graph processing frameworks,
and discuss the state-of-the-art works in this field.

A. Graph Processing Frameworks

Many frameworks have been proposed to improve the
performance of graph processing algorithms. GraphLab [3],
GraphChi [4], and GraphMat [3] focus on the multithreading
performance on a single computing node. Different from these
single-node platforms, PowerGraph [6], Grappa [7], GraphX



[8], and PGX.D [9]] target improvements of graph processing
in a distributed system.

In this paper, we deploy the PowerGraph framework for
demonstration. First, let us briefly review some highlights of
this framework.

Computation Model: Same as the other state-of-the-art
graph processing frameworks, PowerGraph deploys the vertex
computation model to express graph algorithms. The com-
putation model consist of three phases, which are gather,
apply, and scatter (GAS), as shown in the Figure |2| Logically,
each vertex needs to iterate through these three steps of a
program independently of each other with barrier to enforce
the correctness and synchronization. During the gather phase,
the graph engine performs a map/reduce operation on the
edges and adjacent vertices of vertex v. The results from
reduction will go to the apply stage. The current information in
v and reduced result will be merged to compute a new value.
Finally, this new value will be scattered out to the adjacent
vertices and used in the next GAS iteration.

Graph Engine: To iterate through the GAS phases, Pow-
erGraph employs two different computing engines, which
are synchronous and asynchronous engines. The synchronous
engine guarantees the steps of the vertex-centric algorithms
via using strict synchronization barriers. Alternatively, the
asynchronous engine are more flexible, as it allows vertices
to run out of synchronization. However, it does deploy the
fine-grained locking to maintain data consistency. Intuitively,
these two engines will result in different level of performance
boost/loss. Xie et al. [18] makes a comprehensive performance
comparison on these two, and illustrates the performance
of the two engines varies significantly with different graph
algorithms, input graphs, and many other factors. Coloring
is the application that uses the asynchronous engine in our
experiment.

B. Architectural Improvements

Besides the platform-level work mentioned above, many
researchers also argue for the optimizations on the hard-
ware level for graph processing applications. Except those
single-node graph platforms, such as GraphChi, almost all
the distributed ones keep the graph data in the memory to
avoid the disk I/O overhead during execution. Ahn et al. [10]
purposes to alleviate conventional concept of processing-in-
memory (PIM) to design a programmable PIM accelerator
that can achieve memory-capacity-proportional performance
for large scale graph processing. Graphicionado [L1] graph
processing accelerator exploits both data structure-centric dat-
apath specialization and memory subsystem specialization,
which improves the inefficiencies of general-purpose CPUs.
However, none of these work deep dive into the power
consumptions of current server-level CPUs. Our work presents
the dynamic power behaviors of several popular graph analysis
applications on modern server CPUs at a fine-granularity. This
can provide insights for both hardware designers to optimize
the current CPUs’ power efficiency and for cloud administers

to better manage/control the resources for graph processing
applications.

IV. EXPERIMENT SETUP

This section introduces our experimental setup, including
the machine configurations, data sets, and graph applications
used in the evaluation. Our experiments are performed on an
Intel Ivy Bridge ES5-2430 v2 processor with 12 computing
cores (six physical cores with multithreading support), 64 GB
DRAM and ITB hard drive. In order to study the scale-up
behaviors, we manually enable and disable compute cores to
form six different configurations with on-demand power gov-
ernor. To analyze the effects of different dynamic voltage and
frequency policies, we perform the studies of four governors,
which are on-demand, performance, powersave, and userspace.
Different policies are executed on using all 12-cores. Various
graph datasets used in our experiments are shown in Table
Their total memory usage varies from 40 Megabytes to over
1 Gigabyte with diverse edge density. The edge density factor
specifies the underlying sparseness of the graph.

TABLE I: Real world graphs [19].

Name Vertices Edges Footprint | Edge Density Factor
amazon 403,394 3,387,388 46MB 2.004
citation 3,774,768 | 16,518,948 268MB 2.169

social_network | 4,847,571 | 68,993,773 1.1GB 1.950
wiki 2,394,385 5,021,410 64MB 2.478

We selected four popular graph applications from various
machine learning and data mining (MLDM) applications.
Those applications are briefly described as follows:

Pagerank: The Pagerank algorithm [20] is a method to
measure the importance of web pages based on their link
connected. Its main use is to compute a ranking for every
website in the world. This algorithm is defined as:

PR(u) = % +dv§ PLIE(V?.

(D

Here, d is the damping factor and N is the total number of
pages. B, is the set of pages. L(v) represents the number of
outbound links on page v.

Coloring: The Coloring application is a special case of
graph labeling. It attempts to color the vertices with different
colors such that no two connected vertices share the same
color. In PowerGraph, this application is implemented to color
directed graphs, and count the total number of colors in use.

Connected Component (CC): The Connected Component
algorithm is designed to count fully connected subgraphs in
which any two vertices are connected by a path. The algorithm
counts connected components in a given graph, as well as the
number of vertices and edges in each connected component.

Triangle Count (TC): Each graph triangle is a complete
subgraph formed by three vertices. The Triangle Count ap-
plication counts the total number of triangles in a given
graph, as well as the number of triangles for each vertex.
The number of triangles of a vertex indicates the graph
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Fig. 3: Dynamic/Static power comparison and online power monitoring for pagerank benchmark with social network graph
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(c) Triangle Count benchmark.
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(d) Coloring benchmark.

Fig. 4: Performance and power consumption comparison among various operating frequencies and power governors.

connectivity around that vertex. The application implemented
in PowerGraph maintains a list of neighbors for each vertex
in a hash set. It counts the number of intersections of vertex
u’s and vertex v’s neighbor sets for every edge (u,v).

V. EVALUATION

A. Dynamic vs. Static Power

In this section, we demonstrate the results of using
WattWatcher for emerging graph processing workloads. As
we mentioned before, WattWatcher has the capability of
being allocated to any individual or multiple SUTs that
cloud administrator wants to monitor. The results shown in
this section are captured from the SUT. As illustrated in
Figure [3] the dynamic and static power consumption can be
measured via WattWatcher, where we observe that the static
power in the modern server processor still contributes 33%
of the total power on average. Therefore, the processor node

would require circuit-level techniques such as power-gating
in order to minimize static energy consumption. In addition,
we demonstrate that different graphs data can cause the same
graph application to consume different amount of dynamic
power. The relationship between dynamic power depends upon
the characteristics of the underlying graph, such as the average
edges per vertices and edge distribution. In Figure [3b] we see
the component-level dynamic power breakdown of pagerank,
where out-of-order execution and L1-D cache consume 23.9%
and 32.2% of the total dynamic power respectively. Server
architects can optimize these two components’ energy con-
sumption to minimize the total energy cost of the processor.

B. Governor Settings

This section compares the energy and power consumption
for various operating frequencies and power governors. The
performance governor sets the machine to its highest operating
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Fig. 5: Processor scale-up study for pagerank benchmark with
social network graph.

frequency, whereas the powersave governor sets the frequency
to the lowest. The Userspace governor allows the user/cloud
administrator to manually controls the operating frequency.
The Ondemand power governor is designed to save both
dynamic and static power by setting the processor operating
frequency based on the current utilization. During the low
utilization phase, it will reduce the voltage and frequency and
vice versa. The negative effect of this dynamic voltage and
frequency scaling method is caused by the post-reactions. For
example, when the frequency/voltage are just reduced to the
lower level and the processor’s utilization goes up, then the
frequency and voltage has to be increased for the next period.
This false reaction results in performance loss. In order to
comprehending our experiments, we employ both synchronous
and asynchronous graph engines. Pagerank, CC, and Trian-
gle Count are operating on the synchronous engine, while
Coloring is executed by asynchronous engine. However, the
power/energy reactions of synchronous/asynchronous engines
are very similar with different power governors and frequency
settings. As shown in Figure [ the minimal energy consump-
tions of all four application locates around the maximum
operating frequency bar (the performance governor). Setting
the machine to operate at its highest frequency point can save
5.8% energy cost on average and simplify the complexity
of cloud management. Therefore, we encourage the cloud
providers to follow the “race-to-idle” concept when servicing
graph processing applications.

C. Scale-up Analysis

As modern data centers trending towards a more hetero-
geneous composition of compute resources, selecting suitable
machines for emerging workloads, such as graph processing
applications, becomes a critical problem. In this section, we
demonstrate the performance and energy costs of machines
with various amount of compute cores. Similar to our ex-
periment, the Amazon AWS machines in the same category
have same type of processor with different amount of virtual
cpus. To mimic a heterogeneous compute environment, we
manually turn on and off cores. As illustrated in Figure [}
the average power is monotonically decreasing with respect to
the number of compute cores. However, the minimal energy
consumption is achieved at the machine with the 12-core. This

phenomenon is caused by significant performance degradation
of the less powerful machine. Interestingly, the modern cloud
service providers, such as Amazon EC2 [13]], charges less for
less powerful compute nodes. In fact, this leads to an increase
in the energy budget from the service provider’s perspective.

VI. CONCLUSION

Graph Processing applications are emerging as an extremely
important class of workloads during the era of big data.
Characterizing the power behavior of representative graph
processing applications can signicantly help cloud service
providers to select and manage the existing computing re-
sources. In this paper, we demonstrate the use of an online
fine-grained power watching toolkit for graph processing ap-
plications. The toolkit can allow cloud operators to probe the
power consumptions of underlying hardware dynamically. In
addition, this toolkit can be easily distributed in the large-
scale data center. Besides this, we perform a comprehensive
analysis on the performance and energy cost of various power
governors. Compared to the ondemand governor, operating
at machine’s highest frequency (performance governor) can
reduce an average of 5.8% energy. Lastly, we study the scale-
up effects to help cloud administrators select the optimal
computing resource. Based on our results, we observe that
machines with higher computing slots can finish the task
signicantly faster and achieve minimal energy consumption,
although the average power cost is higher.
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