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ABSTRACT 
Raising the level of abstraction in system design promises to 
enable faster exploration of the design space at early stages. 
While scheduling decision for embedded software has great 
impact on system performance, it's much desired that the 
designer can select the right scheduling algorithm at high 
abstraction levels so as to save him from the error-prone 
and time consuming task of tuning code delays or task pri- 
ority assignments at the final stage of system design. In this 
paper we tackle this problem hy introducing a RTOS model 
and an approach to refine any unscheduled transaction level 
model (TLM) to a TLM with RTOS scheduling support. 
The refinement process provides a useful tool to the system 
designer to quickly evaluate different dynamic scheduling d- 
gorithms and make the optimal choice at the early stage of 
system design. 

Categories and Subject Descriptors 
D.4.m [Operating Systems]: Miscellaneous; B.7.2 [Design 
Aids]: Simulation 

General Terms 
System Design, Specification Languages 

Keywords 
RTOS, SpecC, System Design, Model 

1. INTRODUCTION 
Real time systems differs fundamentally from other sys- 

tems in that both computation result and time affect the 
correctness of the whole system. These two aspects are ad- 
dressed separately in system design. The computation cor- 
rectness is usually determined at the early stage of system 
design by a high level mode1,whereas the actual timing p rop  
erties are checked at run time through target specific binary 
code implementation. Wether a piece of computation can he 
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finished on time or not largely depends on both the schedul- 
ing scheme and the system architecture. Since the schedul- 
ing behavior is hard to capture through high level model 
simulation, the timing properties of a system design usually 
change from high level model to implementation. As a re 
sult, the designer has to tune code delays or task priority 
assignments at final stage of system design which is both 
error prone and time consuming. However, this situation 
can he avoided if we provide a way to abstract the dynamic 
scheduling behavior and adjust the scheduling algorithm at 
higher abstraction levels. 

Transaction level modeling is a high level approach to 
model digital systems where communication among system 
components is separated from the implementation of t,he 
processing elements (PE) [ll]. This allows to abstract the 
communication between PES independently from the imple- 
mentation of the PES. A high level of communication a b  
straction achieves high simulation speeds, hence enabling 
early architecture exploration and speeding embedded soft- 
ware development. 

Many designers use preemptive, priority-driven and task- 
based real time operating systems (RTOS) [l, 31 to support 
the dynamic real-time behavior of the the system. To c a p  
ture the dynamic scheduling behavior at higher level, we 
need techniques to abstract the RTOS scheduling because 
using a real RTOS implementation would negate the pur- 
pose of a high level model. Furthermore, at higher levels, 
not enough information might be available to target a spe- 
cific RTOS. 

In this paper, we address this design challenge by intro- 
ducing a high level RTOS model and a set of refinement 
steps to create a TLM with RTOS scheduling support from 
any unscheduled TLM. We make a scheduling refinement 
tool implementing these refinement steps. The output model 
generated by our tool provides simulation result close to the 
final implementation (in terms of RTOS timing) and the tool 
can be easily integrated into the existing system level design 
flows to accurately evaluate a potential system design (e.g. 
in respect to timing constraints) for early and rapid design 
space exploration. 

The rest of this paper is organized as follows: Section 
2 gives an insight into the related work on software mod- 
eling and synthesis. Section 3 describes how the schedul- 
ing refinement process is integrated with the system level 
design Row. Section 4 provides information of the RTOS 
model used to model dynamic scheduling, Section 5 gives 
the detailed information of the RTOS scheduling refinement 
process. Experimental results are shown in Section 6 and 
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Section 7 concludes this paper with a brief summary and an 
outlook on future work. 

2. RELATED WORK 
A lot of work recently has been focusing on automatic 

RTOS and code generation for embedded software. In [6], 
a method for automatic generation of application-specific 
operating systems and corresponding application software 
for a target processor is given. In [4], a way of combining 
static task scheduling and dynamic scheduling in software 
synthesis is proposed. While both approaches mainly focus 
an  software synthesis issues, their papers do not provide any 
information regarding high level model of dynamic schedul- 
ing integrated into the whole system. 

In [lZ], a technique for modeling fixed-priority preemptive 
multi-tasking systems based on concurrency and exception 
handling mechanisms provided by SpecC is shown. However, 
their model is limited in its support for different scheduling 
algorithms and inter-task communication, and its complex 
structure makes it hard to use. 

In [5 ] ,  a high-level model of OS called SoCOS is introduced 
as a high level RTOS model supporting software genera- 
tion. The main difference between our approach and theirs 
is that SoCOS requires its own proprietary simulation en- 
gine while our RTOS model is build on top of existing system 
level design language (SLDL) and can be directly integrated 
into any system model and design flow supported by the 
chosen SLDL. Besides, we generate RTOS based dynamic 
scheduling TLM automatically while the SoCOS based svs- 
tem model is created manually. 

3. DESIGN FLOW 
Figure 1 shows a typical system level design flow [Q]. The 

system design process starts with the specification model 
written by the designer to specify the desired system func- 
tionality. During system design, the specification function- 
ality is partitioned onto multiple processing elements (PES). 
The result is a TLM in which each PE executes a spe- 
cific behavior in parallel with other PES and communica- 
tion between PES takes place through abstract channels. 
After that, the communication synthesis step generates the 
bus functional model in which a communication architec- 
ture consisting of busses and bus interfaces is synthesized to 
implement communication between PES. 

Due to the inherently sequential nature of PEs, processes 
inside the same PE need to be serialized. Depending on the 
nature of the P E  and the data inter-dependencies, processes 
are scheduled statically or dynamically. In case of dynamic 
scheduling, a RTOS is required for the final implement% 
tion. Usually, the scheduling process takes place after the 
bus functional model has been generated. In our approach, 
we move the scheduling into higher level of abstraction, i.e. 
perform scheduling at  TLM level. Since a detailed commu- 
nication architecture is not required to evaluate scheduling 
results, using a TLM can improve the simulation speed and 
result in faster design space exploration. 

Current definition of TLM is general and ambiguous. De- 
pending on the abstraction of transaction, there are different 
kind of TLMs. In the higher abstraction level, transaction 
between the PES is represented by the message passing chan- 
nels. On the other hand,abstracting only low level bus pro- 
tocol primitives (i.e. send, receive) between the PES results 
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Figure 1: Design flow 

in a different TLM where the bus drivers are used inside 
each PE to drive the protocol channels. Note that interrupt 
handlers are used as part of the bus drivers. Our scheduling 
refinement tool can be used in both of the TLMs. However, 
in order to demonstrate the effect of the interrupt schedul- 
ing, we use the latter TLM in our example. 

In order to validate the scheduling in TLM, a represen- 
tation of the dynamic scheduling implementation, which is 
usually handled by a RTOS in the real system, is required. 
Therefore, a high level model of the underlying RTOS is 
needed for inclusion into TLMs during system design. The 
RTOS model provides an abstraction of the key features 
that define a dynamic scheduling behavior independent of 
any specific RTOS implementation. 

The scheduling refinement tool (Figure 2) refines the nn- 
scheduled TLM into a scheduled TLM based on the refine 
ment decisions from the designer. In general, for each P E  
in the system a RTOS model corresponding to the selected 
scheduling strategy is imported from the library and instan- 
tiated in the PE. Processes inside the PES are converted into 
tasks with assigned priorities. Synchronization as part of 
communication between processes is refined into OS-based 
task synchronization. In the scheduled output TLM, each 
PE runs multiple tasks on top of its local RTOS model 
instance. Therefore, the output model can he validated 
through simulation or verification to evaluate different dy- 
namic scheduling approaches (e.g. in terms of timing) as 
part of system design space exploration. 

As the last step of the design flow, each P E  in the bus func- 
tional model is then implemented separately. Custom hard- 
ware PES are synthesized into a RTL description. Commu- 
nication interfaces are synthesized in hardware and software. 
Finally, embedded software is generated from the scheduled 
output TLM of the schedule refinement tool. In this process, 
services of the RTOS model are mapped onto the API of a 
specific standard or custom RTOS. The code is then com- 
piled into the processor's instruction set and linked against 
the RTOS libraries to produce the final executable. 

4. THE RTOS MODEL 
As mentioned previously, the RTOS model is a very im- 

port component of the scheduling refinement tool. We im- 
plemented the RTOS model on top of the SpecC SLDL [8]. 
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1 i n t e r f a c e  RTOS 
I C / *  OS management * /  
3 vo id  i n i t 0 ;  
I v o i d  s t a r t ( i n t  s c h e d - a l g ) ;  
5 / *  Task management * /  
B T a s k  t a s k - c r e a t e c c o n s t  c h a r  *name, 

8 v o i d  t a s k - t e r m i n a t e ( ) ;  
9 v o i d  t a s k - s l e e p  0; 

10 v o i d  t a s k - a c t i v a t e ( T a s k  t ) ;  
I I  v o i d  t a s k - e n d c y c l e  0 ; 
12 v o i d  t a s k _ k i l l ( T a s k  t ) ;  
13 Task f o r k 0 ;  
14 v o i d  j o i n ( T a s k  t ) ;  
LS / *  Event h a n d l i n g  * /  
16 Task e n t e r - w a i t  0; 
1,  v o i d  wakeup-wait (Task t ) ;  
18 / *  Delay  model ing  * /  
19 v o i d  t ime-wa i t  ( s im- t ime  n s e c ) ;  
2" 1:  

i n t  t y p e ,  sim-time p e r i o d ) ;  

Figure 3: Interface of the RTOS model 

Figure 2: Scheduling refinement tool 

It is incorporated into the RTOS model library of the refine- 
ment tool. The library provides RTOS models with different 
scheduling algorithms typically found in RTOS implemen- 
tations, e.g. round-robin or priority-based scheduling. In ' . 
addition, the models are parameterizable in terms of task 
parameters, preemption, and so on. The detailed informa- 
tion about the RTOS model can be found in [lo]. 

The 
RTOS model provides four categories of services: operating 
system management, task management, event handling, and 
time modeling. 

Operating system management mainly deals with initial- 
ization of the RTOS during system start where init initial- 
izes the relevant kernel data structures while start starts the 

.... . .  

'"I. . &J Figure 3 shows the interface of the RTOS model. 

(a) unscheduled model (b) scheduled model 

Figure  4: Refinement example 

multi-task scheduling. 
Task management is the most important function in the 

RTOS model. It includes various standard routines such as 
task creation (taskcreate), task termination (task-terminate, 
tastkill), and task suspension and activation (tasksleep, 
task-activate). Two special routines are introduced to model 
dynamic task forking and joining: fork suspends the call- 
ing task and waits for the child tasks to finish after which 
join resumes the calling task's execution. Our RTOS model 
supports both periodic hard real time tasks with a critical 
deadline and non-periodic real time tasks with a fixed prior- 
ity. In modeling of periodic tasks, task.endcycle notifies the 
kernel that a,periodic task has finished its execution in the 
current cycle. 

Event handling in the RTOS model sits on top of the 
basic SLDL synchronization events. Two system calls, en- 
ter-wait and wakeup-wait, are wrapped around each SpecC 
wait primitive. This allows the RTOS model to update its 
internal task states (and to reschedule) whenever a task is 
about to get blocked on and later released from a SpecC 
event. 

During simulation of high level system models, the logical 

time advances in discrete steps. SLDL primitives (such as 
waitfor in SpecC) are used to model delays. For the RTOS 
model, those delay primitives are replaced by time-wait calls 
which model task delays in the RTOS while enabling support 
for modeling of task preemption. 

The RTOS model interface introduced in this section will 
he later implemented by using the real RTOS APIs during 
software synthesis. Generally, this means that each routine 
of the RTOS model interface will be mapped to 1 or N target 
RTOS APIs. 

5. SCHEDULING REFINEMENT 
The scheduling refinement tool refines the input unsched- 

uled model into a RTOS based multi-task model. In this sec- 
tion, we illustrate the scheduling refinement process through 
a simple yet typical example (Figure 4). The unscheduled 
model (Figure 4(a)) executes behavior B1 followed by the 
parallel composition of behaviors BB and 83. Behaviors 82 
and 8 3  communicate via two channels Cl and CB while 8 3  
communicates with other PES through a bus driver. As part 
of the bus interface implementation, the interrupt handler 
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Algorithm 1 TaskCreate(IRD.,i,,, B P E )  
1: for all  Behavior B t IRD,,,,, do 
2: if IsChildBehavior(B,BpE~ t h e n  
3: BInst  = FindInstance(L3); 
4: while BInst # N U L L  do 
5: if IsParallel(BInst,BpE) then 
6:  GenTaskFromBehavior(B,BInst); 
7: end if 
8 BInst = FindNextInstance(B.BInst): 

j ,  I. 

9: end while 
10 e n d i f  
11: end for 
12: for all Function F E  I R D ~ ~ , ~ , ,  do 
13: if IsMemberFunction(F,BpE) then 
14: Stmnt = GstFirstStatement(B); 
15: while Stmnt # N U L L  do 
16: if IsParStatment(Stmnt) then 
17: GenDynamicTasks( Stmnt); 
18: end  if 
19: Stmnt = GetNextStatment(B,Stmnt); 
2 0  end while 
21: end if 
22: end for 

ISR for external events signals the main bus driver through 
a semaphore channel SI. 

5.1 RTOS Model Instantiation 
As the first step of the scheduling refinement, a RTOS 

model implementing in t e r f ace  RTOS is selected from the 
RTOS library and a run time environment which coordi- 
nates the interaction between the RTOS model and tasks 
is created for each PE. The run time environment is imple- 
mented as a behavior which wrappers around the toplevel 
PE behavior. The RTOS model gets instantiated in the run 
time environment and the initial values of the internal data 
structures for the RTOS model are set. At the same time, a 
main task (taskPE) for the P E  is created which i s  the only 
task available for the RTOS model to schedule at  system 
start time. 

5.2 Task Creation 
The task creation step converts parallel processes/behaviors 

in the specification into RTOS-based tasks. This is hy far 
the most important and time consuming part of the schedul- 
ing refinement process. The task creation process is shown 
in Algorithml. The input to Algorithml is the internal r e p  
resentation for the whole design I R D ~ ~ ~ ~ , ,  and the top level 
behavior for the PE BPE. 

Task creation is carried out in a two-step process. In the 
first step (line 1-11), each behavior instance BInst inside 
BPE are checked to see if they are running in parallel with 
other behavior instance inside BPE. If such a behavior in- 
stance is found (line 5), a task definition for this behavior 
instance is created (line 6 ) .  

In our example, since behavior E2 and 83 are running in 
parallel (Figure 4(a)), function GenTaskFkomBehavior cre- 
ate the task definition Task.B2 (Figure 5(b)) for behavior 
8 2  (Figure 5(a)). The task is modeled as a behavior[2] 
and there’s an method os.task.create inserted into to the 
behavior for construction of the task. Finally, the main 
body of the task (method main ) is enclosed in a pair of 

Algorithm 2 SyncRefine(IRD,,,,,, BPE) 
1: for all Channel C E IRD,,,,, do 
2: if IsUsedInBehavior(C,BpE) then 
3: for all Function F E C do 
4: Stmnt=GetFirstStatement ( E ) ;  
5: while Stmnt # N U L L  do 
6:  if IsWaitStatment(Stmnt) then 
7: Refinewait (Stmnt); 
8: end if 
9: Stmnt = GetNextStatment(I3,Stmnt); 

10 end while 
11: end  for 
12: end if 
13: end for 
1 4  for all  Function F E IRD,,,,, do 
15: if IsMemberFunction(F,BpE) then 
16: Stmnt = GetFirstStatement(L3); 
17: while Stmnt # N U L L  do 
18: if IsWaitStatment(Stmnt) then 
19: Refinewait (Stmnt); 
20: end if 
21: Stmnt = GetNextStatment(B,Stmnt); 
22: end while 
23: end if 
2 4  end for 

taskactivate 1 task-terminate calls so that the RTOS model 
can control the task activation and termination. 

The second step (line 12-22) involves dynamic creation of 
child tasks in a parent task. The tool goes through each 
statement of the member functions of behavior BPE or any 
of it’s child behaviors. If a parallel statement (par statement 
in SpecC) is found (line I6), a dynamic task instances are 
created for this statement (line 17). 

This step is illustrated by our example in Figure 6. The 
par statement in the input model (line 9-12 in Figure 6(a)) 
is converted to dynamically fork and join child tasks as part 
of the parent’s execution (line 613 in Figure 6(b)). Dur- 
ing this refinement process, the init methods of the children 
are called to create the child tasks (line 6,7 in Figure 6(b)). 
Then, fork is inserted before the par statement to suspend 
the calling parent task by the RTOS model before the chil- 
dren are actually executed in the par statement. After the 
two child tasks finish execution and the par exits, join is 
inserted to resume the execution of the parent task by the 
RTOS model. 

5.3 Synchronization Retnement 
Replacing SLDL synchronization primitives with RTOS 

calls is necessary to keep the internal task state of the RTOS 
model updated. This is achieved by synchronization re- 
finement which wraps event wait primitives in the input 
model with the RTOS model interface routines enter-wait 
and wakeup-wait. The two routines make sure that the 
RTOS model can intercept event wait primitives thus takes 
care of task switching. 

Algorithm 2 shows how the synchronization refinement 
works. It is also a two step process: the first step (line 1-13) 
refines all the wait statements inside the channels used in 
the selected PE while the second step (line 1423) refines the 
w a i t  statements inside all the member functions of behavior 
BPE and its child behaviors. 
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b e h a v i o r  B2O 
{vo id  m a i n ( v o i d )  

. . .  
waitfor(BLOCKl_DELAY);/*model d e l a y * /  

waitfor(BLOCK2_DELAY);/*model d e l a y * /  
. . .  

(a) unscheduled model 

b e h a v i o r  task_B2(RTOS o s )  implements  I n i t  
{Task h ;  

o i d  i n i t ( v o i d )  C 
h = o s , t a s k _ c r e a t e ( " B 2 " ,  APERIODIC, 0); 

o i d  m a i n ( v o i d )  C 
o s . t a s k - a c t i v a t e ( h ) ;  

os.time_wait(BLOCKlLDELAY);/*model d e l a y * /  

os.time-wait(BLOCK2_DELAY);/*model d e l a y * / 2  

o s . t a s k - t e r m i n a t e ( h ) ;  
> 

. . .  

. . .  

. . .  

(b) scheduled model 

F igure  5: Task modeling 

Figure i shows the synchronization refinement for our ex- 
ample: the w a i t  statement inside channel C1 in the input 
model (line 10 in Figure i (a)) is refined into three lines of 
code in the output model (line 9-11 in Figure 7(b)). 

5.4 Preemption Point Creation 
In high level system models, simulation time advances in 

discrete steps based on the granularity of waitfor state 
ments used to model delays (e.g. at behavior or basic block 
level) (line 4,6 in Figure 5(a)). The time-sharing implemen- 
tation in the RTOS model makes sure that delays of con- 
current task are accumulative as required by any model of 
serialized task execution. 

Usually the task switch happens when a task calls the 
RTOS routine (e.g. wait event ), however, additionally re- 
placing waitfor statements with corresponding RTOS time 
modeling calls is necessary to accurately model preemption. 
The time-wait method (line 9,11 in Figure 5(b)) allows the 
RTOS kernel to reschedule and switch tasks whenever time 
increases, i.e. in between regular RTOS system calls. Nor- 
mally, this would not be an issue since task state changes 
can not happen outside of RTOS system calls. However, 
external interrupts can asynchronously trigger task changes 
in between system calls of the current task in which case 
proper modeling of preemption is important for the accuracy 
of the model (e.g. response time results). For example, an 
interrupt handler can release a semaphore on which a high 
priority task for processing of the external event is blocked. 

5.5 Scheduling Reenement Example 
Figure 8 illustrates the simulation result of the output 

model generated from our refinement tool for the example 
from Figure 4. Figure 8(a) shows the simulation trace of 

b e h a v i o r  8 2 8 3 0  I 

IB2 b 2 0 ;  
B 3  b 3 0 ;  

v o i d  m a i n ( v o i d )  I 

C 

B 

par C b 2 . m a i n O ;  LO 
b 3 .  main 0 ; 1 1  > 12 

> 14 

13 

(a) before 

b e h a v i o r  B2B3(RTOS o s )  
{ T a s k - B Z  t a s k _ b 2 ( o s ) ;  

Task-B3 t a s k - b 3 ( o s ) ;  
v o i d  m a i n ( v o i d )  

t a s k - b 2 .  i n i t  0 ; 
t a s k - b 3 .  i n i t  0 ; 
t = o s . f o r k 0 ;  

b2 . m a i n 0  ; 
b3 . m a i n 0  ; 

{Task t ;  

p a r  C 

> 
o s .  j o i n  ( t )  ; 

1 
(b) after 

F igure  6: Task creation 

c h a n n e l  C 1 0  1 c h a n n e l  Cl(RT0S o s )  
{even t  eRdy; z { e v e n t  eRdy; 

e v e n t  eAck; 3 e v e n t  eAck; 
v o i d  s e n d ( .  . . )  4 v o i d  s e n d ( .  . . )  
C 5 C Task  t ;  

. . .  . . .  
n o t i f y  eRdy; 7 n o t i f y  eRdy; 
. . .  ... 

t = o s .  e n t e r - w a i t  0 ; 
w a i t  (eAck) ; 10 w a i t  ( eAck) ;  

11 o s .  wakeup-wait  ( t )  ; . . .  iz 
> 13 > 

I4 >; 

(a) before (b) after 

F igure  7: Synchronization refinement 

the unscheduled model. Behaviors BZ and 8 3  are executing 
truly in parallel, i.e. their simulated delays overlap. 

After executing for time d l ,  E3 waits until it receives a 
message from BZ through the channel c l .  Then it continues 
executing for time di! and waits for data from another PE. 
BZ continues for time (ds+d,) and then waits for data from 
8 3 .  At time td, an interrupt happens and B3 receives its 
data through the bus driver. 8 3  executes until it finishes. 
At time t 5 ,  8 3  sends a message to BZ through the channel 
cZ which wakes up BZ and both behaviors continue until 
they finish execution. 

Figure 8(b) shows the simulation result of the scheduled 
model for a priority based scheduling. It demonstrates that 
in the refined model task-BZ and task-B3 execute in an in- 
terleaved way. Since task.B3 has the higher priority, it  exe- 
cutes unless it is blocked on receiving or sending a message 
from/to tasLB2 (tl  through t2 and ts through te) ,  waiting 
for an interrupt ( t 3  through t4),  or it finishes ( tv)  at which 
points execution switches to task.BZ. Note that at time t l ,  
the interrupt wakes up task433 and taskBZ is preempted 
hy task.B3. However, the actual task switch is delayed until 
the end of the discrete time step ds in tasLB2 based on 
the granularity of the task's delay model. In summary, as 
required by priority based dynamic scheduling, at any time 
only one task, the ready task with the highest priority, is 
executing. 
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I I Lines I Sim. I Context I Transcodine 1 I of code I time 1 switches I delay 
11,313 27.3s S.7ms 

10.29ms 
11.34ms 

Decod>encod 13,356 28.5s 10.30ms 
Impl. 79,096 11.7ms 

- 

Table 1: Vocoder  exper imenta l  results. 

6. EXPERIMENTAL RESULTS 
We used the scheduling refinement tool in the design of 

a voice codec for mobile phone applications.The vocoder 
contains two tasks for encoding and decoding in software, 
assisted by a custom hardware cuprocessor. For the im- 
plementation, the Vocoder was compiled into assembly code 
for the Motorola DSP56600 processor and linked against a 
small custom RTOS kernel that uses a scheduling algorithm 
where the decoder has higher priority than the encoder[7]. 

Table 1 shows the results for the vocoder model. The 
vocoder models were exercised by a testbench that feeds 
a stream of 163 speech frames corresponding to 3.26 s of 
speech into encoder and decoder. The transcoding delay 
is the latency when running encoder and decoder in back- 
tuback mode and is related to response time in switching 
between encoding and decoding tasks. 

Experimental results show that the simulation overhead 
introduced by the scheduling refinement tool is negligible 
while providing accurate results. As explained by the fact 
that both tasks alternate with every time slice, round-robin 
scheduling causes by far the largest number of context switches 
while providing the lowest response times. Note that context 
switch delays in the RTOS were not modeled in this exam- 
ple, i.e. the large number of context switches would in t ru  
duce additional delays that would offset the slight response 
time advantage of round-robin scheduling in a final imple- 
mentation. The simulation result shows that in priority- 
based scheduling, it is of advantage to give the decoder the 
higher relative priority. Since the encoder execution time 
dominates the decoder execution time this is equivalent to 
a shortest-job-first scheduling which minimizes wait times 
and hence overall response time. Furthermore, the num- 
ber of context switches is lower since the RTOS does not 
have to switch back and forth between encoder and decoder 
whenever the encoder waits for results from the hardware 
cmprocessor. Therefore, priority-based scheduling with a 
high-priority decoder was chosen for the final implementa- 
tion. Note that the final delay in the implementation is 
higher due to inaccuracies of execution time estimates in the 
high-level model. In summary, compared to the huge com- 
plexity required for the implementation model, the schedul- 
ing refinement tool enables early and efficient evaluation of 
dynamic scheduling implementations. 

7. SUMMARY AND CONCLUSIONS 
In this paper,we presented a RTOS model and the re- 

finement steps for transforming an unscheduled TLM into 
TLM with RTOS scheduling support. In the design flow, 
our contribution is primarily the automation of the schedul- 
ing refinement process that facilitates rapid evaluation of 
scheduling algorithms in the early stage of system design us- 

."s._ " 

0 11 n t3 14 15(ts) 17 

(a) unscheduled model 

b-pt 

lwk.82 

logical 11" 

0 11 t2 13 ld fd' 15 16 17 

(b) scheduled model 

F igure  8: Simulat ion t r a c e  for model example. 

ing TLM. We developed a tool to automate the refinement 
process. Experiments are performed to show the usefulness 
of the tool in system design. Currently the tool is written 
for SpecC SLDL because of its simplicity. However, the con- 
cepts can be applied to any SLDL (SystemC, Superlog) with 
support for event handling and modeling of time. 

Future work includes the development of tools for softwpe 
synthesis from the scheduled TLM down to target-specific 
application code linked against the target RTOS libraries. 
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