
RTOS Scheduling in Transaction Level Models

Haobo Yu, Andreas Gerstlauer, Daniel Gajski
Center for Embedded Computer Systems

University of California, lrvine
Irvine, CA 92697, USA

{haoboy,gerstl,gajksi} @cecs.uci.edu

ABSTRACT
Raising the level of abstraction in system design promises to
enable faster exploration of the design space at early stages.
While scheduling decision for embedded software has great
impact on system performance, it's much desired that the
designer can select the right scheduling algorithm at high
abstraction levels so as to save him from the error-prone
and time consuming task of tuning code delays or task pri-
ority assignments at the final stage of system design. In this
paper we tackle this problem hy introducing a RTOS model
and an approach to refine any unscheduled transaction level
model (TLM) to a TLM with RTOS scheduling support.
The refinement process provides a useful tool to the system
designer to quickly evaluate different dynamic scheduling d-
gorithms and make the optimal choice at the early stage of
system design.

Categories and Subject Descriptors
D.4.m [Operating Systems]: Miscellaneous; B.7.2 [Design
Aids]: Simulation

General Terms
System Design, Specification Languages

Keywords
RTOS, SpecC, System Design, Model

1. INTRODUCTION
Real time systems differs fundamentally from other sys-

tems in that both computation result and time affect the
correctness of the whole system. These two aspects are ad-
dressed separately in system design. The computation cor-
rectness is usually determined at the early stage of system
design by a high level mode1,whereas the actual timing p rop
erties are checked at run time through target specific binary
code implementation. Wether a piece of computation can he

Permission to make digital or hard copies of all or p a t of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on sewers or to redistribute to lists, requires prior specific

finished on time or not largely depends on both the schedul-
ing scheme and the system architecture. Since the schedul-
ing behavior is hard to capture through high level model
simulation, the timing properties of a system design usually
change from high level model to implementation. As a re
sult, the designer has to tune code delays or task priority
assignments at final stage of system design which is both
error prone and time consuming. However, this situation
can he avoided if we provide a way to abstract the dynamic
scheduling behavior and adjust the scheduling algorithm at
higher abstraction levels.

Transaction level modeling is a high level approach to
model digital systems where communication among system
components is separated from the implementation of t,he
processing elements (PE) [ll]. This allows to abstract the
communication between PES independently from the imple-
mentation of the PES. A high level of communication a b
straction achieves high simulation speeds, hence enabling
early architecture exploration and speeding embedded soft-
ware development.

Many designers use preemptive, priority-driven and task-
based real time operating systems (RTOS) [l, 31 to support
the dynamic real-time behavior of the the system. To c a p
ture the dynamic scheduling behavior at higher level, we
need techniques to abstract the RTOS scheduling because
using a real RTOS implementation would negate the pur-
pose of a high level model. Furthermore, at higher levels,
not enough information might be available to target a spe-
cific RTOS.

In this paper, we address this design challenge by intro-
ducing a high level RTOS model and a set of refinement
steps to create a TLM with RTOS scheduling support from
any unscheduled TLM. We make a scheduling refinement
tool implementing these refinement steps. The output model
generated by our tool provides simulation result close to the
final implementation (in terms of RTOS timing) and the tool
can be easily integrated into the existing system level design
flows to accurately evaluate a potential system design (e.g.
in respect to timing constraints) for early and rapid design
space exploration.

The rest of this paper is organized as follows: Section
2 gives an insight into the related work on software mod-
eling and synthesis. Section 3 describes how the schedul-
ing refinement process is integrated with the system level
design Row. Section 4 provides information of the RTOS
model used to model dynamic scheduling, Section 5 gives
the detailed information of the RTOS scheduling refinement
process. Experimental results are shown in Section 6 and

31

mailto:cecs.uci.edu

Section 7 concludes this paper with a brief summary and an
outlook on future work.

2. RELATED WORK
A lot of work recently has been focusing on automatic

RTOS and code generation for embedded software. In [6],
a method for automatic generation of application-specific
operating systems and corresponding application software
for a target processor is given. In [4], a way of combining
static task scheduling and dynamic scheduling in software
synthesis is proposed. While both approaches mainly focus
an software synthesis issues, their papers do not provide any
information regarding high level model of dynamic schedul-
ing integrated into the whole system.

In [lZ], a technique for modeling fixed-priority preemptive
multi-tasking systems based on concurrency and exception
handling mechanisms provided by SpecC is shown. However,
their model is limited in its support for different scheduling
algorithms and inter-task communication, and its complex
structure makes it hard to use.

In [5] , a high-level model of OS called SoCOS is introduced
as a high level RTOS model supporting software genera-
tion. The main difference between our approach and theirs
is that SoCOS requires its own proprietary simulation en-
gine while our RTOS model is build on top of existing system
level design language (SLDL) and can be directly integrated
into any system model and design flow supported by the
chosen SLDL. Besides, we generate RTOS based dynamic
scheduling TLM automatically while the SoCOS based svs-
tem model is created manually.

3. DESIGN FLOW
Figure 1 shows a typical system level design flow [Q]. The

system design process starts with the specification model
written by the designer to specify the desired system func-
tionality. During system design, the specification function-
ality is partitioned onto multiple processing elements (PES).
The result is a TLM in which each PE executes a spe-
cific behavior in parallel with other PES and communica-
tion between PES takes place through abstract channels.
After that, the communication synthesis step generates the
bus functional model in which a communication architec-
ture consisting of busses and bus interfaces is synthesized to
implement communication between PES.

Due to the inherently sequential nature of PEs, processes
inside the same PE need to be serialized. Depending on the
nature of the P E and the data inter-dependencies, processes
are scheduled statically or dynamically. In case of dynamic
scheduling, a RTOS is required for the final implement%
tion. Usually, the scheduling process takes place after the
bus functional model has been generated. In our approach,
we move the scheduling into higher level of abstraction, i.e.
perform scheduling at TLM level. Since a detailed commu-
nication architecture is not required to evaluate scheduling
results, using a TLM can improve the simulation speed and
result in faster design space exploration.

Current definition of TLM is general and ambiguous. De-
pending on the abstraction of transaction, there are different
kind of TLMs. In the higher abstraction level, transaction
between the PES is represented by the message passing chan-
nels. On the other hand,abstracting only low level bus pro-
tocol primitives (i.e. send, receive) between the PES results

I Panition I

c
Communication

Implementation Model

Figure 1: Design flow

in a different TLM where the bus drivers are used inside
each PE to drive the protocol channels. Note that interrupt
handlers are used as part of the bus drivers. Our scheduling
refinement tool can be used in both of the TLMs. However,
in order to demonstrate the effect of the interrupt schedul-
ing, we use the latter TLM in our example.

In order to validate the scheduling in TLM, a represen-
tation of the dynamic scheduling implementation, which is
usually handled by a RTOS in the real system, is required.
Therefore, a high level model of the underlying RTOS is
needed for inclusion into TLMs during system design. The
RTOS model provides an abstraction of the key features
that define a dynamic scheduling behavior independent of
any specific RTOS implementation.

The scheduling refinement tool (Figure 2) refines the nn-
scheduled TLM into a scheduled TLM based on the refine
ment decisions from the designer. In general, for each P E
in the system a RTOS model corresponding to the selected
scheduling strategy is imported from the library and instan-
tiated in the PE. Processes inside the PES are converted into
tasks with assigned priorities. Synchronization as part of
communication between processes is refined into OS-based
task synchronization. In the scheduled output TLM, each
PE runs multiple tasks on top of its local RTOS model
instance. Therefore, the output model can he validated
through simulation or verification to evaluate different dy-
namic scheduling approaches (e.g. in terms of timing) as
part of system design space exploration.

As the last step of the design flow, each P E in the bus func-
tional model is then implemented separately. Custom hard-
ware PES are synthesized into a RTL description. Commu-
nication interfaces are synthesized in hardware and software.
Finally, embedded software is generated from the scheduled
output TLM of the schedule refinement tool. In this process,
services of the RTOS model are mapped onto the API of a
specific standard or custom RTOS. The code is then com-
piled into the processor's instruction set and linked against
the RTOS libraries to produce the final executable.

4. THE RTOS MODEL
As mentioned previously, the RTOS model is a very im-

port component of the scheduling refinement tool. We im-
plemented the RTOS model on top of the SpecC SLDL [8].

32

I \ PE>

, .;;e -
Y z

I Scheduling Refinement

1 i n t e r f a c e RTOS
I C / * OS management * /
3 vo id i n i t 0 ;
I v o i d s t a r t (i n t s c h e d - a l g) ;
5 / * Task management * /
B T a s k t a s k - c r e a t e c c o n s t c h a r *name,

8 v o i d t a s k - t e r m i n a t e () ;
9 v o i d t a s k - s l e e p 0;

10 v o i d t a s k - a c t i v a t e (T a s k t) ;
I I v o i d t a s k - e n d c y c l e 0 ;
12 v o i d t a s k _ k i l l (T a s k t) ;
13 Task f o r k 0 ;
14 v o i d j o i n (T a s k t) ;
LS / * Event h a n d l i n g * /
16 Task e n t e r - w a i t 0;
1, v o i d wakeup-wait (Task t) ;
18 / * Delay model ing * /
19 v o i d t ime-wa i t (s im- t ime n s e c) ;
2" 1:

i n t t y p e , sim-time p e r i o d) ;

Figure 3: Interface of the RTOS model

Figure 2: Scheduling refinement tool

It is incorporated into the RTOS model library of the refine-
ment tool. The library provides RTOS models with different
scheduling algorithms typically found in RTOS implemen-
tations, e.g. round-robin or priority-based scheduling. In ' .
addition, the models are parameterizable in terms of task
parameters, preemption, and so on. The detailed informa-
tion about the RTOS model can be found in [lo].

The
RTOS model provides four categories of services: operating
system management, task management, event handling, and
time modeling.

Operating system management mainly deals with initial-
ization of the RTOS during system start where init initial-
izes the relevant kernel data structures while start starts the

.... . .

'"I. . &J Figure 3 shows the interface of the RTOS model.

(a) unscheduled model (b) scheduled model

Figure 4: Refinement example

multi-task scheduling.
Task management is the most important function in the

RTOS model. It includes various standard routines such as
task creation (taskcreate), task termination (task-terminate,
tastkill), and task suspension and activation (tasksleep,
task-activate). Two special routines are introduced to model
dynamic task forking and joining: fork suspends the call-
ing task and waits for the child tasks to finish after which
join resumes the calling task's execution. Our RTOS model
supports both periodic hard real time tasks with a critical
deadline and non-periodic real time tasks with a fixed prior-
ity. In modeling of periodic tasks, task.endcycle notifies the
kernel that a,periodic task has finished its execution in the
current cycle.

Event handling in the RTOS model sits on top of the
basic SLDL synchronization events. Two system calls, en-
ter-wait and wakeup-wait, are wrapped around each SpecC
wait primitive. This allows the RTOS model to update its
internal task states (and to reschedule) whenever a task is
about to get blocked on and later released from a SpecC
event.

During simulation of high level system models, the logical

time advances in discrete steps. SLDL primitives (such as
waitfor in SpecC) are used to model delays. For the RTOS
model, those delay primitives are replaced by time-wait calls
which model task delays in the RTOS while enabling support
for modeling of task preemption.

The RTOS model interface introduced in this section will
he later implemented by using the real RTOS APIs during
software synthesis. Generally, this means that each routine
of the RTOS model interface will be mapped to 1 or N target
RTOS APIs.

5. SCHEDULING REFINEMENT
The scheduling refinement tool refines the input unsched-

uled model into a RTOS based multi-task model. In this sec-
tion, we illustrate the scheduling refinement process through
a simple yet typical example (Figure 4). The unscheduled
model (Figure 4(a)) executes behavior B1 followed by the
parallel composition of behaviors BB and 83. Behaviors 82
and 8 3 communicate via two channels Cl and CB while 8 3
communicates with other PES through a bus driver. As part
of the bus interface implementation, the interrupt handler

33

Algorithm 1 TaskCreate(IRD.,i,,, B P E)
1: for all Behavior B t IRD,,,,, do
2: if IsChildBehavior(B,BpE~ t h e n
3: BInst = FindInstance(L3);
4: while BInst # N U L L do
5: if IsParallel(BInst,BpE) then
6: GenTaskFromBehavior(B,BInst);
7: end if
8 BInst = FindNextInstance(B.BInst):

j , I.

9: end while
10 e n d i f
11: end for
12: for all Function F E I R D ~ ~ , ~ , , do
13: if IsMemberFunction(F,BpE) then
14: Stmnt = GstFirstStatement(B);
15: while Stmnt # N U L L do
16: if IsParStatment(Stmnt) then
17: GenDynamicTasks(Stmnt);
18: end if
19: Stmnt = GetNextStatment(B,Stmnt);
2 0 end while
21: end if
22: end for

ISR for external events signals the main bus driver through
a semaphore channel SI.

5.1 RTOS Model Instantiation
As the first step of the scheduling refinement, a RTOS

model implementing in t e r f ace RTOS is selected from the
RTOS library and a run time environment which coordi-
nates the interaction between the RTOS model and tasks
is created for each PE. The run time environment is imple-
mented as a behavior which wrappers around the toplevel
PE behavior. The RTOS model gets instantiated in the run
time environment and the initial values of the internal data
structures for the RTOS model are set. At the same time, a
main task (taskPE) for the P E is created which i s the only
task available for the RTOS model to schedule at system
start time.

5.2 Task Creation
The task creation step converts parallel processes/behaviors

in the specification into RTOS-based tasks. This is hy far
the most important and time consuming part of the schedul-
ing refinement process. The task creation process is shown
in Algorithml. The input to Algorithml is the internal r e p
resentation for the whole design I R D ~ ~ ~ ~ , , and the top level
behavior for the PE BPE.

Task creation is carried out in a two-step process. In the
first step (line 1-11), each behavior instance BInst inside
BPE are checked to see if they are running in parallel with
other behavior instance inside BPE. If such a behavior in-
stance is found (line 5), a task definition for this behavior
instance is created (line 6) .

In our example, since behavior E2 and 83 are running in
parallel (Figure 4(a)), function GenTaskFkomBehavior cre-
ate the task definition Task.B2 (Figure 5(b)) for behavior
8 2 (Figure 5(a)). The task is modeled as a behavior[2]
and there’s an method os.task.create inserted into to the
behavior for construction of the task. Finally, the main
body of the task (method main) is enclosed in a pair of

Algorithm 2 SyncRefine(IRD,,,,,, BPE)
1: for all Channel C E IRD,,,,, do
2: if IsUsedInBehavior(C,BpE) then
3: for all Function F E C do
4: Stmnt=GetFirstStatement (E) ;
5: while Stmnt # N U L L do
6: if IsWaitStatment(Stmnt) then
7: Refinewait (Stmnt);
8: end if
9: Stmnt = GetNextStatment(I3,Stmnt);

10 end while
11: end for
12: end if
13: end for
1 4 for all Function F E IRD,,,,, do
15: if IsMemberFunction(F,BpE) then
16: Stmnt = GetFirstStatement(L3);
17: while Stmnt # N U L L do
18: if IsWaitStatment(Stmnt) then
19: Refinewait (Stmnt);
20: end if
21: Stmnt = GetNextStatment(B,Stmnt);
22: end while
23: end if
2 4 end for

taskactivate 1 task-terminate calls so that the RTOS model
can control the task activation and termination.

The second step (line 12-22) involves dynamic creation of
child tasks in a parent task. The tool goes through each
statement of the member functions of behavior BPE or any
of it’s child behaviors. If a parallel statement (par statement
in SpecC) is found (line I6), a dynamic task instances are
created for this statement (line 17).

This step is illustrated by our example in Figure 6. The
par statement in the input model (line 9-12 in Figure 6(a))
is converted to dynamically fork and join child tasks as part
of the parent’s execution (line 613 in Figure 6(b)). Dur-
ing this refinement process, the init methods of the children
are called to create the child tasks (line 6,7 in Figure 6(b)).
Then, fork is inserted before the par statement to suspend
the calling parent task by the RTOS model before the chil-
dren are actually executed in the par statement. After the
two child tasks finish execution and the par exits, join is
inserted to resume the execution of the parent task by the
RTOS model.

5.3 Synchronization Retnement
Replacing SLDL synchronization primitives with RTOS

calls is necessary to keep the internal task state of the RTOS
model updated. This is achieved by synchronization re-
finement which wraps event wait primitives in the input
model with the RTOS model interface routines enter-wait
and wakeup-wait. The two routines make sure that the
RTOS model can intercept event wait primitives thus takes
care of task switching.

Algorithm 2 shows how the synchronization refinement
works. It is also a two step process: the first step (line 1-13)
refines all the wait statements inside the channels used in
the selected PE while the second step (line 1423) refines the
w a i t statements inside all the member functions of behavior
BPE and its child behaviors.

34

b e h a v i o r B2O
{vo id m a i n (v o i d)

. . .
waitfor(BLOCKl_DELAY);/*model d e l a y * /

waitfor(BLOCK2_DELAY);/*model d e l a y * /
. . .

(a) unscheduled model

b e h a v i o r task_B2(RTOS o s) implements I n i t
{Task h ;

o i d i n i t (v o i d) C
h = o s , t a s k _ c r e a t e (" B 2 " , APERIODIC, 0);

o i d m a i n (v o i d) C
o s . t a s k - a c t i v a t e (h) ;

os.time_wait(BLOCKlLDELAY);/*model d e l a y * /

os.time-wait(BLOCK2_DELAY);/*model d e l a y * / 2

o s . t a s k - t e r m i n a t e (h) ;
>

. . .

. . .

. . .

(b) scheduled model

F igure 5: Task modeling

Figure i shows the synchronization refinement for our ex-
ample: the w a i t statement inside channel C1 in the input
model (line 10 in Figure i (a)) is refined into three lines of
code in the output model (line 9-11 in Figure 7(b)).

5.4 Preemption Point Creation
In high level system models, simulation time advances in

discrete steps based on the granularity of waitfor state
ments used to model delays (e.g. at behavior or basic block
level) (line 4,6 in Figure 5(a)). The time-sharing implemen-
tation in the RTOS model makes sure that delays of con-
current task are accumulative as required by any model of
serialized task execution.

Usually the task switch happens when a task calls the
RTOS routine (e.g. wait event), however, additionally re-
placing waitfor statements with corresponding RTOS time
modeling calls is necessary to accurately model preemption.
The time-wait method (line 9,11 in Figure 5(b)) allows the
RTOS kernel to reschedule and switch tasks whenever time
increases, i.e. in between regular RTOS system calls. Nor-
mally, this would not be an issue since task state changes
can not happen outside of RTOS system calls. However,
external interrupts can asynchronously trigger task changes
in between system calls of the current task in which case
proper modeling of preemption is important for the accuracy
of the model (e.g. response time results). For example, an
interrupt handler can release a semaphore on which a high
priority task for processing of the external event is blocked.

5.5 Scheduling Reenement Example
Figure 8 illustrates the simulation result of the output

model generated from our refinement tool for the example
from Figure 4. Figure 8(a) shows the simulation trace of

b e h a v i o r 8 2 8 3 0 I

IB2 b 2 0 ;
B 3 b 3 0 ;

v o i d m a i n (v o i d) I

C

B

par C b 2 . m a i n O ; LO
b 3 . main 0 ; 1 1 > 12

> 14

13

(a) before

b e h a v i o r B2B3(RTOS o s)
{ T a s k - B Z t a s k _ b 2 (o s) ;

Task-B3 t a s k - b 3 (o s) ;
v o i d m a i n (v o i d)

t a s k - b 2 . i n i t 0 ;
t a s k - b 3 . i n i t 0 ;
t = o s . f o r k 0 ;

b2 . m a i n 0 ;
b3 . m a i n 0 ;

{Task t ;

p a r C

>
o s . j o i n (t) ;

1
(b) after

F igure 6: Task creation

c h a n n e l C 1 0 1 c h a n n e l Cl(RT0S o s)
{even t eRdy; z { e v e n t eRdy;

e v e n t eAck; 3 e v e n t eAck;
v o i d s e n d (. . .) 4 v o i d s e n d (. . .)
C 5 C Task t ;

.
n o t i f y eRdy; 7 n o t i f y eRdy;
.

t = o s . e n t e r - w a i t 0 ;
w a i t (eAck) ; 10 w a i t (eAck) ;

11 o s . wakeup-wait (t) ; . . . iz
> 13 >

I4 >;

(a) before (b) after

F igure 7: Synchronization refinement

the unscheduled model. Behaviors BZ and 8 3 are executing
truly in parallel, i.e. their simulated delays overlap.

After executing for time d l , E3 waits until it receives a
message from BZ through the channel c l . Then it continues
executing for time di! and waits for data from another PE.
BZ continues for time (ds+d,) and then waits for data from
8 3 . At time td, an interrupt happens and B3 receives its
data through the bus driver. 8 3 executes until it finishes.
At time t 5 , 8 3 sends a message to BZ through the channel
cZ which wakes up BZ and both behaviors continue until
they finish execution.

Figure 8(b) shows the simulation result of the scheduled
model for a priority based scheduling. It demonstrates that
in the refined model task-BZ and task-B3 execute in an in-
terleaved way. Since task.B3 has the higher priority, it exe-
cutes unless it is blocked on receiving or sending a message
from/to tasLB2 (tl through t2 and ts through te) , waiting
for an interrupt (t 3 through t4), or it finishes (tv) at which
points execution switches to task.BZ. Note that at time t l ,
the interrupt wakes up task433 and taskBZ is preempted
hy task.B3. However, the actual task switch is delayed until
the end of the discrete time step ds in tasLB2 based on
the granularity of the task's delay model. In summary, as
required by priority based dynamic scheduling, at any time
only one task, the ready task with the highest priority, is
executing.

35

I I Lines I Sim. I Context I Transcodine 1 I of code I time 1 switches I delay
11,313 27.3s S.7ms

10.29ms
11.34ms

Decod>encod 13,356 28.5s 10.30ms
Impl. 79,096 11.7ms

-

Table 1: Vocoder exper imenta l results.

6. EXPERIMENTAL RESULTS
We used the scheduling refinement tool in the design of

a voice codec for mobile phone applications.The vocoder
contains two tasks for encoding and decoding in software,
assisted by a custom hardware cuprocessor. For the im-
plementation, the Vocoder was compiled into assembly code
for the Motorola DSP56600 processor and linked against a
small custom RTOS kernel that uses a scheduling algorithm
where the decoder has higher priority than the encoder[7].

Table 1 shows the results for the vocoder model. The
vocoder models were exercised by a testbench that feeds
a stream of 163 speech frames corresponding to 3.26 s of
speech into encoder and decoder. The transcoding delay
is the latency when running encoder and decoder in back-
tuback mode and is related to response time in switching
between encoding and decoding tasks.

Experimental results show that the simulation overhead
introduced by the scheduling refinement tool is negligible
while providing accurate results. As explained by the fact
that both tasks alternate with every time slice, round-robin
scheduling causes by far the largest number of context switches
while providing the lowest response times. Note that context
switch delays in the RTOS were not modeled in this exam-
ple, i.e. the large number of context switches would in t ru
duce additional delays that would offset the slight response
time advantage of round-robin scheduling in a final imple-
mentation. The simulation result shows that in priority-
based scheduling, it is of advantage to give the decoder the
higher relative priority. Since the encoder execution time
dominates the decoder execution time this is equivalent to
a shortest-job-first scheduling which minimizes wait times
and hence overall response time. Furthermore, the num-
ber of context switches is lower since the RTOS does not
have to switch back and forth between encoder and decoder
whenever the encoder waits for results from the hardware
cmprocessor. Therefore, priority-based scheduling with a
high-priority decoder was chosen for the final implementa-
tion. Note that the final delay in the implementation is
higher due to inaccuracies of execution time estimates in the
high-level model. In summary, compared to the huge com-
plexity required for the implementation model, the schedul-
ing refinement tool enables early and efficient evaluation of
dynamic scheduling implementations.

7. SUMMARY AND CONCLUSIONS
In this paper,we presented a RTOS model and the re-

finement steps for transforming an unscheduled TLM into
TLM with RTOS scheduling support. In the design flow,
our contribution is primarily the automation of the schedul-
ing refinement process that facilitates rapid evaluation of
scheduling algorithms in the early stage of system design us-

."s._ "

0 11 n t3 14 15(ts) 17

(a) unscheduled model

b-pt

lwk.82

logical 11"

0 11 t2 13 ld fd' 15 16 17

(b) scheduled model

F igure 8: Simulat ion t r a c e for model example.

ing TLM. We developed a tool to automate the refinement
process. Experiments are performed to show the usefulness
of the tool in system design. Currently the tool is written
for SpecC SLDL because of its simplicity. However, the con-
cepts can be applied to any SLDL (SystemC, Superlog) with
support for event handling and modeling of time.

Future work includes the development of tools for softwpe
synthesis from the scheduled TLM down to target-specific
application code linked against the target RTOS libraries.

8. REFERENCES
[l] QNX. Available: http://www.qnx.com/.
[2] SpecC. Available: http://www.specc.org/.
[3] VxWorks. Available: http://www.vxworks.com/.
[4] J. Cortadella. Task generation and compile time

scheduling for mixed data-control embedded software.
In IEEE Design Automation Conference, Jun. 2000.

system based software generation for system-on-chip.
In IEEE Design Automation Conference, Jun. 2000.

161 L. Gauthier, S. Yoo, and A. A. Jerraya. Automatic
generation and targeting of application-specific
operating systems and embedded systems software.
IEEE Tnns. on CAD, Nov. 2001.

SpecC Methodology. Technical Report ICS-TR-99-11,
UCI, Feb. 1999.

manual. In SpecC Technology Open Consortium, Dec.
2002.

[9] A. Gerstlauer and D. Gajski. System-level abstraction
semantics. In ISSS, Oct. 2002.

[lo] A. Gerstlauer, H. Yu, and D. Gajski. RTOS modeling
for system level design. In DATE, Mar. 2003.

[ll] T. Grhtker, S. Liao, G. Martin, and S. Swan. System
Design with SystemC. Kluwer Academic Pub, 2002.

[12] H. Tomiyama, Y. Cao, and K. Murakami. Modeling
fixed-priority preemptive multi-task systems in SpecC.
In SASIMI, October 2001.

[5] D. Desmet, D. Verkest, and H. D. Man. Operating

[7] A. Gerstlauer et al. Design of a GSM Vocoder using

[8] A. Gerstlauer and D. Gajski. Specc language reference

36

http://www.qnx.com
http://www.specc.org
http://www.vxworks.com

