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ABSTRACT
Increasing system complexity and heterogeneity make sys-
tem integration and communication synthesis a growing con-
cern. Even with transaction-level modeling and high-level
synthesis of hardware, communication interfaces still have
to be manually designed at a low protocol level. To ad-
dress this challenge, we present a design flow for automatic
synthesis of hardware transactors, which realize abstractly
specified communication semantics on top of protocol-level
transactions. Transactor synthesis is tightly coupled with
high-level synthesis of computation for integrated computa-
tion/communication co-design of complete hardware proces-
sors, thus establishing a seamless path from abstract system
specifications down to hardware implementations in synthe-
sizable RTL. The flow supports a generic set of communica-
tion semantics and target implementations, where transac-
tors are custom-generated for a specific application and ar-
chitecture combination. Furthermore, we develop protocol
stack optimizations that reduce the area and performance
overhead of synthesized communication interfaces. We have
applied our synthesis flow to several industrial-strength ex-
amples under various communication settings. Results show
that synthesized interfaces are comparable to manual de-
signs in terms of area and latency, where protocol stack op-
timizations can reduce area and latency overhead by up to
77% and 21%, respectively.

1. INTRODUCTION
Addressing ever-increasing complexity and heterogeneity

of Multi-Processor Systems-on-Chip (MPSoCs), Transaction-
Level Models (TLMs) have emerged to raise the design ab-
straction to higher levels [3]. Fundamentally, this is achieved
by a separation of computation and communication, which
enables independent design space exploration [13]. In a TLM
methodology, communication details are abstracted away to
the level of protocol transactions. This makes simulations
faster and, on the computation side, a High-Level Synthesis
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Figure 1: System design flow.

(HLS) tool can be used to refine C descriptions into RTL,
enhancing design productivity as compared to a traditional
design flow. However, communication interfaces still have to
be designed manually at a low, detailed protocol level. Fur-
thermore, their separation does not allow for optimizations
across computation and communication boundaries.

Low-level system integration is a tedious, time-consuming
bottleneck in the MPSoC design process. What is lack-
ing are approaches that raise communication design to the
same level as C-based computation, where system interac-
tions of hardware components are abstractly specified using
message-passing, queue, semaphore or other communication
primitives, and hardware transactors are automatically syn-
thesized to realize high-level semantics over protocol-level
transactions while applying computation/communication co-
design optimizations. Over the years, several approaches for
system-level communication synthesis have been proposed.
However, existing solutions are mostly library- or template-
based and as such either limited to a single, canonical target
architecture or to a generic implementation that comes with
high overhead. By contrast, we aim to provide a synthesis
flow that is (a) general in supporting a wide range of com-
munication semantics and target implementations, while (b)
able to custom generate communication interfaces optimized
for a specific application and architecture.

In this paper, we present an approach for automatic syn-
thesis of optimized hardware transactors from high-level com-
munication specifications. The approach is tightly integrated
with high-level synthesis of computation. Combined, this
enables efficient, fully automated system integration includ-
ing automatic generation of optimized bus-based communi-



cation interfaces and protocol stacks. Fig. 1 illustrates how
the approach integrates into a typical system design flow
based on standard system-level design languages (SLDLs),
such as SpecC [7] or SystemC [10]. Starting from an archi-
tecture model in which the desired network topology and
interactions between system components are specified us-
ing abstract SLDL channels, communication synthesis takes
user decisions on targeted communication mechanisms and
refines communication channels into a protocol-level TLM.
The TLM can be used to explore the design space of possible
communication implementations. In the TLM, components
communicate over actual system busses using internally gen-
erated hardware or software transactor stacks. In this pa-
per, we specifically focus on the hardware side. Synthesis
of protocol stacks for hardware components is integrated
with back-end hardware synthesis to automatically gener-
ate final RTL descriptions of complete hardware processors,
which include all computation, transactors and external bus
interfaces. In the process, hardware-specific protocol stack
optimizations are applied to reduce area and communication
overhead of the final RTL design.

The rest of the paper is organized as follows: following a
discussion of related work and an overview of our synthe-
sis flow, Sections 2, 3 and 4 elaborate on each step of our
methodology. Section 5 shows experimental results of apply-
ing the flow to a set of industrial-strength design examples.
Finally, Section 6 concludes the paper with a summary and
an outlook on future work.

1.1 Related Work
Many communication synthesis approaches aim to provide

integrated environments for design space exploration and
mapping of applications onto custom or generic network-on-
chip type of system architectures [9, 18, 15]. In almost all
cases, complete system implementations are composed out of
a fixed library of communication components, often limited
to a single, canonical target architecture template that is
proprietary and custom-designed [22] or based on an indus-
try standard [14, 17]. Solely targeting design space explo-
ration, several approaches support the automatic generation
of TLMs for early prototyping and validation, but without
the capability to generate actual implementations [20, 1, 19].

The focus in synthesis of component interfaces has been
mainly on automatic generation of bridges or transducers
that translate between protocols of incompatible cores. Sev-
eral approaches [22, 12, 21] propose a generic architecture of
the interface as a wrapper that connects processors to a com-
mon bus network. All of these approaches allow modularity
in the design. However, they do not address the vertical in-
tegration path to bridge the semantic gap between abstract,
high-level communication primitives and RTL. By contrast,
our approach can synthesize communication from user-level
channels at a range of abstraction levels.

Only recently have approaches emerged that try to syn-
thesize communication implementations from higher-level
TLMs. Cho et al. [5] describe a tool for synthesizing a TLM
into a universal RTL bridge that translates the canonical
TLM interface into a target bus protocol using platform def-
initions and protocol libraries. The bridge contains a FIFO
and a dedicated controller for each bus protocol. Hatami et
al. [11] and Bombieri et al. [2] propose a similar approach
but with the interfaces written in SystemC TLM-2.0. Moss
et al. [16] utilize communication refinement and HLS tools to
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Figure 2: Hardware synthesis flow.

generate a data slicing transactor that realizes pin-level in-
terfaces down to a final RTL bus adapter. Beyond academia,
several commercial HLS tools [4, 6] have started to integrate
similar capabilities of synthesizing interface functions writ-
ten in TLM form. In all cases, however, synthesis is only
supported from TLMs at a low protocol level. Designers
are still required to manually implement transactors that
translate from abstract communication semantics down to
a protocol- or cycle-accurate level. Furthermore, existing
approaches are purely database-, IP- or transducer-based,
where a generic architecture template can add overhead in
terms of area and latency. Our approach, on the other hand,
supports tight integration with computation to synthesize a
custom, application- and target-specific implementation of
optimized bus transactors on top of a thin realization of the
basic bus protocol taken out of a pre-designed RTL database.

1.2 Hardware Synthesis Flow
Our flow supports hardware synthesis from models at vary-

ing levels of abstraction (Fig. 2). Starting from an untimed
architecture model, we follow a four-step methodology to
synthesize communication down to a protocol-level TLM,
transform the TLM into a block-level model (BLM), further
synthesize block modules down to cycle-accurate RTL us-
ing a traditional HLS tool, and perform logic synthesis to
generate a final gate-level netlist. The design flow utilizes
databases in various forms through which the synthesis pro-
cess can be adapted to different targets and HLS backends.

The architecture model describes the desired system topol-
ogy, as well as its functional behavior. Computation is
mapped to Processing Elements (PEs) that interact through
logical point-to-point links. Communication is specified in
abstract form, where links are user-defined through untimed
channels of specific semantics, such as message-passing trans-
fers, shared memory accesses, and event notifications.

Hardware interface synthesis uses the architecture model
as input and generates the TLM. In the protocol refine-
ment step, layers of protocol transactors are synthesized
and inserted into PEs to implement communication follow-
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Figure 3: Protocol refinement.

ing user-defined specifications, which include a given address
map and the choice between interrupt- and polling-based
synchronization mechanisms. As a result, message-passing
channels of the architecture model are refined down to bus
protocol transactions on top of loosely- or approximately-
timed TLMs of busses brought in from a database. In the
process, generated protocol stacks are flattened and opti-
mized. Protocol optimizations are specifically developed to
target synthesis of transactors down to efficient hardware.

Finally, the TLM is converted into a BLM. Block-level
synthesis generates synthesizable C++/SystemC code for
each computation module in a hardware PE. It thereby ex-
tracts single-threaded processes and merges them with gen-
erated code for protocol transactors. In the process, thin
media access (MAC) layer implementations taken out of a
database translate a canonical MAC interface targeted by
code generation into bus- and HLS-specific code required for
further synthesis. Finally, block-level synthesis uses light-
weight templates stored in a protocol database to generate
both SystemC models and RTL implementations of inter-
face IPs realizing external bus state machines. To form the
BLM, generated computation blocks are combined with bus
protocol IPs and a pin-level netlist that connects all blocks
and external bus interface IPs.

Computation blocks are further synthesized down to cycle-
accurate RTL descriptions using an external HLS tool, which
transforms combined block-level computation and commu-
nication code into a merged RTL implementation of each
hardware block. Generated RTL blocks, RTL bus protocol
IPs, and the SystemC module netlist converted into RTL
form can then be synthesized into a gate-level netlist using
a traditional logic synthesis tool.

2. PROTOCOL REFINEMENT
We utilize an existing communication synthesis engine for

generation of basic protocol stacks. In the following, we
briefly summarize its operation, further details of which can
be found in [8].

In the architecture model, hardware PEs are described
in the form of C-based computation processes that com-
municate externally through a user-defined set of abstract,
untimed messaging channels (Fig. 3(a)). We support both
synchronous message-passing (double-handshake) and pure
event synchronization (single-handshake). Double-handshake
channels implement a synchronous, buffer-free, two-way block-
ing transfer of typed data streams from a sender to a re-
ceiver. By contrast, single-handshake channels perform asyn-
chronous, data-less event notifications where the receiver
blocks until the sender invokes the event. Protocol refine-
ment then generates necessary transactor stacks to imple-
ment high-level semantics down to protocol-level transac-
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Figure 4: Message-passing protocol stack.
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Figure 5: Event transfer protocol stack.

tions. In the TLM (Fig. 3(b)), protocol layers are inserted
into an additional network level of the PE hierarchy to re-
alize channel communication over external busses. Inserted
layers include a presentation layer for data conversion, a
network layer for packeting and routing, a link layer for syn-
chronization, and a MAC layer for data slicing, alignment
and media access.

Both message-passing and event communication require
synchronization between slaves and masters, where we sup-
port interrupt- and polling-based mechanisms. Both types
of channels can be synthesized into either implementation.
Without loss of generality, we assume for the following dis-
cussions that the hardware processor is a bus slave commu-
nicating with a software processor acting as bus master.

Interrupt- and polling-based implementations of message-
passing communication are shown in Fig. 4. In all cases,
a link adapter is responsible for synchronizing with the ex-
ternal communication partner, either by generating an inter-
rupt (Fig. 4(a)) or by setting a separate polling flag that can
be accessed by the master (Fig. 4(b)). After synchroniza-
tion, the actual data transfer is performed via MAC layer
operations. Sharing of interrupts among multiple channels
also requires a polling flag in addition to interrupt genera-
tion (Fig. 4(c)). In both cases, flags are cleared once the
transaction is completed.

Pure event transfer channels are synthesized as buffered
event notifications. As shown in Fig. 5, their implementation
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Figure 6: Protocol stack optimizations.

is a variant of the message-passing synchronization scheme.
Depending on the event direction, either master or slave can
be sender or receiver. When sending an event from slave to
master, the link adapter realizes interrupt, interrupt-sharing
or polling-based synchronization. In a pure polling case
(Fig. 5(a)), a separate Send process serves an event mail-
box that is set by the link layer to indicate event availability
to the master. When receiving an event from the master,
neither interrupts nor polling can be utilized. Instead, the
link layer blocks on an event flag in a separate Recv process,
which serves the flag to be written and set by the master
over the bus (Fig. 5(b)). In all cases, the Send behavior or
link adapter will clear the flag once it has been consumed.

3. PROTOCOL STACK OPTIMIZATIONS
Basic protocol refinement generates unoptimized code for

protocol stacks following a strict layer-based organization.
For efficient backend synthesis, protocol code needs to be
further optimized across layer boundaries.

In an unoptimized TLM (Fig. 6(a)), protocol code in-
serted into the PEs during basic refinement consists of four
stacked adapter channels realizing layers of communication.
The presentation layer converts abstract data types in ap-
plication messages to untyped blocks of bytes transferred
over the network layer following a canonical data layout be-
tween PEs. The network layer then optionally packetizes
byte blocks into smaller chunks (packets) that are routed
and transferred from PE to PE over bridges and transduc-
ers in the network. In case of synchronous message-passing
over more than one hop, the network layer also performs

end-to-end synchronization via acknowledge packets to re-
store barrier synchronicity and confirm successful comple-
tion of each message transfer. Finally, the link layer realizes
point-to-point synchronization using one of the mechanisms
described in Section 2, while the MAC layer slices data pack-
ets into external protocol transactions as supported by the
underlying bus.

Protocol stack optimizations flatten basic communication
layers and apply hardware-specific cross-layer optimizations
for message merging, protocol fusion and interrupt hoist-
ing (Fig. 6(b)). In addition, protocol coupling supports
application-specific co-optimization of protocol stacks and
bus protocol state machines. Each of these optimizations
can be selectively enabled or disabled during synthesis. In
the following, we describe optimizations in more detail.

3.1 Message Merging
Message merging combines consecutive messages trans-

ferred over one or more channels between two PEs into a
single message over a common channel. This reduces the
total number of channels and messages in the system. Con-
sequently, overall resource demands are minimized.

Messages of different channels can generally be re-mapped
onto a single logical link if they are exchanged between the
same two partners and if channels are accessed sequentially
on both sides. For example, if sequential application pro-
cesses exchange messages over separate application chan-
nels, and if there is no overlapped sending or receiving of
such messages, the applications channels can be merged. As
shown in Fig. 6(a), after conversion of data types to a canon-
ical byte layout, this is achieved by multiplexing presenta-
tion layers to access a single untyped lower-layer stream.
Overall, the number of network- and link-level streams is
reduced, which in turn can lead to reduced hardware area
requirements, e.g. for bus address decoding.

On top of basic channel merging, further message merging
is applied (Fig. 6(b)). An analysis of data dependencies de-
termines if two or more messages are sent (sequentially) over
the same (merged) network-/link-level stream and are inde-
pendent, i.e. can be considered logically consecutive with no
intermediate computations. Such consecutive messages are
then combined into a single, larger message. This eliminates
the need for synchronization of each individual message. As
such, message merging can reduce the total number of syn-
chronization points and hence lead to less synchronization
overhead in the system.

3.2 Protocol Fusion
After flattening of protocol stacks, a fusion of presenta-

tion, network and MAC layers is performed to interleave
data conversion, packetizing and slicing. Protocol fusion
can significantly reduce memory and area requirements, as
well as generally unlock opportunities for optimization and
scheduling in following high-level synthesis steps. Note that
many HLS tools can internally perform loop fusion/merging.
However, without further application-level knowledge, back-
end tools can not perform such optimizations across multiple
layers of functionality in all cases.

In the unfused case, the presentation layer first converts a
complete message into a block of bytes, the link layer then
packetizes each byte block and the MAC layer finally slices
each packet into bus words/frames. This requires buffer-
ing of complete messages and packets between layers. By



  void send(struct my_st d, int d1) 

  {   

     unsigned char buf[4];

     char temp_0; 

     short temp_1; 

     int temp_2;

     intr.receive();

     temp_0 = d.len;

     buf[0] = temp_0; 

     for (int i = 0; i < 4; i+=2) {   

        temp_1 = d.a[i];

        htonshort(&buf[2],&temp_1);

        bus.write(&buf[0], 4);

        temp_1 = d.a[i+1];

        htonshort(&buf[0],&temp_1);

     }

     bus.write(&buf[0], 2);    

     temp_2 = d1;

     htolong(&buf[0], temp_2);

     bus.write(&buf[0],4);

  }   

P1

struct my_st {

  char len;

  short a[4];

} m2;

int m3;

C23.send(m2,m3);

C23

Figure 7: Example code after protocol fusion.

contrast, protocol fusion merges the loops of different layers
and reschedules processing steps such that messages are pro-
cessed on a word by word or frame by frame basis (Fig. 6(b)).

Within the protocol fusion process, proper alignment of
message members to bus word or frame boundaries has to be
considered. If even supported by the backend synthesis tool,
misaligned accesses to data in PE buffers, registers or mem-
ories can lead to significant hardware and latency overhead.
To combat inefficiencies, we implement an alignment algo-
rithm in the synthesis tool. However, aligning of transac-
tions can require padding of bus words and non-optimal uti-
lization of available bus bandwidth, i.e. increased bus traffic.
As an alternative, synthesis tools support tight packing, in
which basic data members may be partially split across two
bus transactions if there is leftover space in the current bus
word. This is a trade-off between bus utilization and data
alignment overhead. Typically, however, bandwidth losses
will be smaller than the cost for restoring alignment.

Fig. 7 shows an example of protocol code after flattening
and fusion, where chars and shorts are aligned and packed
into half-word units while the trailing integer is aligned to
the next full word boundary. In the optimized code, indi-
vidual message elements of basic data type are converted
into network byte format (e.g. using hton-type macros for
endianess conversion) until enough bytes are available to fill
the next bus word. Once a word is complete, it is sent or re-
ceived over the bus using a protocol-level transaction. This
process is repeated, possibly in a looped and hierarchical
fashion, over all basic data members in a message.

All protocol fusion algorithms are realized in the synthesis
tools based on PE- and bus-specific size and alignment infor-
mation. Corresponding tables with size and alignment for
each basic data type are stored in TLM and MAC databases.
By modifying these tables, the fusion process can be adapted
to different target architectures, system configurations and
backend HLS/memory technology combinations. To create
fused code, messages are recursively decomposed into basic
data types, which are individually converted, aligned and
assembled into bus words or frames. Calls to trigger bus
transactions are further inserted at appropriate points in
the code whenever a word/frame is complete. In the process,
code optimizations are applied to maximally utilize looping
structures and hence reduce overall code size.
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Figure 8: TLM coupling variants.

Protocol fusion significantly reduces physical storage re-
quirements and hence hardware overhead. Instead of buffer-
ing a complete message for conversion and packeting, the
optimized code only requires a single word-sized buffer. Fur-
thermore, interleaving across layers may lead to better op-
portunities for pipelining during high-level synthesis. Over-
all, protocol fusion is a process that can lead to significant
gains, but is tedious and error-prone to perform manually.

3.3 Interrupt Hoisting
Interrupt hoisting is aimed at minimizing synchronization

overhead. It is performed as a post-optimization to remove
side effects of protocol fusion, and to restore synchroniza-
tion points as defined after message merging. Protocol fu-
sion effectively removes the packeting layer, which results
in synchronizations being pushed down to a word or frame
level. During interrupt hoisting, synchronization points are
elevated up to as high a level as possible, without violat-
ing required system-wide synchronization semantics. As a
result, synchronization code is hoisted to the packet or mes-
sage level, and synchronization overhead is minimized.

3.4 Protocol Coupling
Protocol coupling optimizations support a tighter integra-

tion of application-specific high-level protocol stacks with
synthesis of custom low-level bus protocol implementations.
Link-level synchronization behaviors are either coupled with
the protocol implementation or synthesized as separate com-
putation blocks. As a result, one of two types of TLMs is
generated (Fig. 8). In both cases, the TLM is hierarchically
partitioned into a bus functional (BF) and a network layer.
During hardware synthesis, the BF layer will be replaced
with a custom IP that is generated as part of block-level
synthesis (see Section 4.4). The network layer will be con-
verted into synthesizable hardware modules that are passed
through the HLS tool. In the uncoupled case (Fig. 8(a)),
flag and polling behaviors are part of the network layer,
where they become separately synthesized hardware blocks.
By contrast, in a coupled TLM (Fig. 8(b)), synchronization
functionality is tightly integrated with the protocol layer
implementation, which is custom synthesized to provide a
minimal set of required flags and synchronization services.

Traditional library- or transducer-based communication
synthesis approaches follow an uncoupled approach in which
computation blocks are integrated with general bus proto-
col implementations through a generic protocol-level inter-
face. By contrast, a coupled implementation allows us to
support joint co-optimization and co-synthesis of custom-
generated protocol/synchronization state machines, as will
be described in the following sections.



DESIGN-UNIQUIFY (t):

1  visited[t] ← True

2  ENQUEUE (Q, t)

3  while u ← DEQUEUE(Q)

4      for each  i Є Instances[u]

5            v = FIND-TYPE(i)

6             if visited[v] = True

7                 then v = COPY(v)

8                         SET-TYPE(i, v)

9                 visited[v] = True

10               ENQUEUE(Q, v)   

(a) Isolation

UPDATE (t):

1 ENQUEUE (Q, t)

2  while u ← DEQUEUE(Q)

3      for each  i Є Instances[u]

4            v = FIND-TYPE(i)

5            ENQUEUE(Q, v)

6            for each p Є Ports[i]

7                 m ← GET-MAP(p)

8                 w = FIND-TYPE(m)

9                 SET-TYPE(p, m)
d

(b) Updating

Figure 9: Pseudo-code for inlining algorithm.

4. BLOCK-LEVEL SYNTHESIS
Block-level synthesis refines the TLM down to block-level

modules, protocol IPs, and a block-level netlist. Compu-
tation and synchronization behaviors in the network layer
of the TLM are divided into single-threaded modules that
are merged with communication adapters to become syn-
thesizable hardware blocks. In addition, adapters and be-
haviors in the BF layer are combined with and transformed
into custom-generated protocol IP components. Finally, pin-
level connections between synthesized blocks and protocol
IPs are translated into a corresponding HDL netlist.

4.1 Block Module Code Generation
A module code generator performs the necessary conver-

sion of the TLM network layer into C++ or SystemC code
that can be synthesized by a following HLS tool. In the
process, it subdivides the TLM into behavioral block-level
modules, inlines communication layers, and converts com-
munication calls at block boundaries into MAC ports.

Most HLS tools can synthesize multiple single-threaded
C++/SystemC modules with the capability to stitch blocks
together. However, they can not automatically partition
pre-existing code. Furthermore, multi-block synthesis is not
universally supported and syntax and semantics vary. In or-
der to provide a general approach that can be easily adapted
to different HLS backends, we partition the code into sepa-
rately synthesized modules that are integrated through our
own netlisting engine. In the process, each computation or
synchronization behavior in the TLM network layer is con-
verted into a separate, synthesizable hardware block.

After block partitioning, transactor protocol stacks are in-
lined into each accessing computation block. This is done
in such a way as to enable computation/communication co-
optimizations in the following high-level synthesis step, with
the scheduling freedom to overlap computation with commu-
nication and to perform general, joint optimizations, such as
resource sharing or parallelization.

In the TLM, computation behaviors connect to commu-
nication adapters via an interface mechanism. Interfaces
define a base signature of methods that a behavior can ac-
cess without having to know the method realizations, which
are provided by separate adapter channels. During block
synthesis, however, interface calls need to be resolved and
adapters inlined to establish the true caller-callee relation-
ship and allow for joint high-level synthesis. Since static
code analysis in most HLS tools cannot natively handle dy-
namic interface binding, we perform a preprocessing step to
resolve interfaces and any associated polymorphism.

sc_module(MacLink) {

public:

    sc_port<sc_signal_in<…> > listen;

    sc_port<sc_signal_out<…> > serve;

    …
    uint_t Listen(uint_t addr, bool read) {

           do { sc_bv<…> bus = listen.read();

           } while (!checkRW(bus,read) && !checkAddr(bus, addr));

           return getRdata(bus);

     }

     void Serve(uint_t data) { serve.write(data); }

     void slaveRead(uint_t addr, uint_t* data, uint_t len) {

           for( ; len; len--, data++) {

                *data = Listen(addr, false);

                Serve(0);

           }

     }

     void slaveWrite(uint_t addr, uint_t* data, uint_t len) {

            for( ; len; len--, data++) {

                Listen(addr, true); 

                Serve(*data);

           }

     } 

};

Figure 10: MAC database protocol wrapper.

The inlining algorithm in Fig. 9 traverses the module hi-
erarchy and replaces interfaces with direct, statically bound
calls to the connected adapter channel. Multiple instances
of the same module type that connect to different channels
are isolated into unique instance types, which include ap-
propriate target calls. Given a top module t, the algorithm
in Fig.9 (a)) visits all module classes in the TLM layer hi-
erarchy in a breadth-first manner. For each class type u, all
of its children are examined and the type v of each child in-
stance i is determined. If another instance of v has already
been encountered, i is replaced with an instance of a copy of
v (lines 7 and 8). After all child instances have been exam-
ined and isolated, their types are guaranteed to be unique.
In a second UPDATE algorithm, (Fig. 9 (b)) the class hier-
archy is traversed again to remove all interfaces and update
all port types to directly point to the connected channel in-
stead. For each child instance in each visited class, the list
of ports is traversed (line 6), the target m of the port’s map-
ping is determined (line 7) and the port type is set to the
class w of the connected instance m (lines 8-9).

4.2 MAC Layer Insertion
At the lowest level of the adapter hierarchy, behavioral

interface or variable ports between blocks and bus protocol
IPs have to be converted into wire-level register or FIFO
interfaces as supported by the underlying HLS engine. The
challenge is in providing an interfacing mechanism that is
general in supporting a wide range of pre-defined bus targets
while allowing for customization and co-optimization of low-
level protocol implementations based on application require-
ments. For this purpose, MAC implementations inserted
from a database provide the glue logic between application
and target specifics. MAC database implementations con-
vert functional into HLS-specific low-level interfaces. They
thereby replace MAC adapters in the TLM with code that
provides equivalent, canonical protocol-level TLM bus in-
terfaces while internally translating each transaction into
corresponding pin- and wire-level interactions with a target-
specific bus protocol IP component. For coupling-driven op-
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Figure 11: Block-level model.

timizations, the MAC database also contains adapters that
are inserted to replace synchronization behaviors in the BF
layer with equivalent interfaces to flag and polling function-
ality directly synthesized into the protocol IP.

Fig. 10 shows an example of MAC database code for a
slave protocol wrapper. The MAC adapter communicates
with the protocol IP through primitive ports, which will be
synthesized into a corresponding pin-level interface by the
HLS tool. At the other end, it provides a TLM-equivalent,
functional Read()/Write() interface to the calling module
in which it is inlined. Internally, the MAC adapter contains
functionality to translate between the two sides. In case of a
bus protocol MAC adapter as shown here, this includes slic-
ing of data packets into individual protocol transactions. To
enable interleaving of communication and computation, and
to expose corresponding parallelism to the HLS tool, proto-
col transactions are split into separate Listen() and Serve()
methods. Furthermore, part of the protocol layer address
decoding functionality is merged into the Listen() method.
Combined, this provides the HLS tool the scheduling free-
dom to overlap computation with communication and to
hide communication delays.

4.3 Protocol IP Generation
Each protocol adapter in the BF layer is synthesized into

a protocol IP. Based on parameters, such as the type and
number of adapters, a protocol generator creates a custom
IP block from SystemC and RTL templates stored in the
protocol database. The database templates are pre-written
to model and implement external bus protocol and interrupt
control logic. Their internal interface is designed to match
associated protocol wrappers in the MAC database, which,
when synthesized into other blocks, will realize appropriate
pin- and wire-level interactions with the generated IP.

In a coupled model, additional parameters, such as ad-
dress mapping and number and type of synchronization flags
are used to synthesize custom synchronization functionality
directly into the generated protocol IP. This allows for shar-
ing of address decoding logic between synchronization and
data transfers. Based on provided parameters, a protocol
IP generator creates the required template instantiations,
re-configures the address decoder, and provides necessary
internal MAC interfaces to computation blocks.

4.4 Bus-Functional Synthesis
Bus-functional synthesis transforms the BF layer of the

TLM into a final netlist to connect synthesized blocks and
protocol IPs. As shown in Fig. 11, the resulting BLM com-
bines modules to be synthesized by the HLS tool with custom-
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generated protocol-level IPs. As described above, applica-
tion and, in the uncoupled case, synchronization behaviors
are converted into synthesizable modules, where communi-
cation adapters are inlined and external interfaces are re-
placed with MAC implementations from the database. In
a coupled model (Fig. 11(b)), synchronization functionality
is realized directly in the generated protocol IP, and thin
MAC wrappers are inserted to replace original synchroniza-
tion behaviors with corresponding protocol IP interfaces.

Finally, the connectivity of all blocks, IPs and external
ports is converted into a block-level netlist. In the process,
variables and channels between modules are converted into
registers and logic connecting the pin-level FIFO ports of
synthesized blocks and protocol IPs. Fig. 12 shows the
resulting RTL model after high-level synthesis. Protocol
IPs realize state machines for driving and sampling of ex-
ternal bus and interrupt wires. The sampled external bus
signals are passed on to MAC implementations synthesized
into computation and synchronization blocks. A listen port
thereby broadcasts the contents of an IP-internal bus sam-
pling register. Synthesized MAC implementation in each
block decode the listen addresses and communicate input
data to the computation. The protocol IP in turn receives
acknowledgements and output data from the MAC layers
over a custom-generated number of serve ports. In a coupled
model (Fig. 12(b)), the generated protocol IP provides addi-
tional interfaces to access synchronization flags over match-



   Prototype Board

HW Synthesis

FPGA

Arch. Model

Linkn

ReadBMP

FPGA
Link1

Link2

MCU

ARM9

PIC
exe

Linux

B
ri
d

g
e

Interrupt

EIM BusAMBA AHB
Quantize

DCT

Single or Double Handshake
(Untimed)

HuffEncode

WriteJPG

DCT

Quantize

MCU

In
te

rf
a

c
e

SW Synthesis

Figure 13: JPEG Encoder mapping.

ing thin MAC wrappers synthesized into each computation
block. By contrast, in the uncoupled case (Fig. 12(a)),
each separately synthesized synchronization block includes
its own address decoders and tristate drivers that interface
with the internally shared bus IP on a generic protocol level.

5. EXPERIMENTS AND RESULTS
We have implemented communication and block-level syn-

thesis tools for our proposed approach and integrated them
into an overall flow that utilizes Calypto Catapult [4] as HLS
backend. Without loss of generality, we use the SpecC lan-
guage to describe TLMs throughout the flow, and C++ and
Verilog as input and output of the HLS tool, respectively. To
demonstrate the benefits of our approach, we have applied
the flow to synthesis of JPEG encoding and AC3 decoding
applications onto an ARM-based target platform consisting
of a Freescale i.MX21 applications processor (MCU) and a
Xilinx Spartan-3 FPGA communicating over Freescale’s pro-
prietary EIM bus. The MCU contains an ARM9 that runs a
Linux kernel and an EIM module that bridges between the
AMBA AHB and EIM busses. We prepared database com-
ponents for each tool in the flow, including TLMs of AHB
and EIM busses, models of MCU and FPGA PEs, and EIM
MAC layers and custom RTL bus protocol IPs.

We created architecture models for JPEG and AC3 exam-
ples with different mappings and communication semantics.
As shown in Fig. 13 for the JPEG design, selected compu-
tation processes are mapped onto the FPGA while the rest
of the application functionality executes on the ARM in the
MCU. In the JPEG case, DCT and Quantize (Q) blocks
are mapped into hardware. For the AC3, either the inverse
modified discrete cosine transform (IMDCT) or the man-
tissa unpacking (MANT) process is in the FPGA. In both
cases, the two PEs communicate through double-handshake
(DH) message and single-handshake (SH) event channels.
For every double-handshake channel, we configured asso-
ciated implementation parameters (bus addresses and syn-
chronization mechanism) to synthesize a polling, interrupt,
or interrupt-sharing scheme for synchronization. For single-
handshake channels, we applied polling for slave-to-master
and master-to-slave notifications. Input architecture model
configurations are summarized in Table 1.

Using our fully automated flow, we were able to synthe-
size input architecture models into correct RTL ready for

Table 1: Input architecture models.
Application FPGA process DH Chs. SH Chs.

Jpeg Encoder DCT-Q 4 2

AC3 Decoder
IMDCT 5 0
MANT 8 0

Table 2: Computation synthesis results.

Setup LUTs FFs Muls Memory Latency

DCT-Q 3298 2121 16 512 bytes 6.25ms
IMDCT 6661 3673 28 11,264 bytes 1.57ms
MANT 6853 4158 1 0 bytes 0.697s

further FPGA download within minutes, yielding substan-
tial productivity gains compared to a manual design pro-
cess. High-level synthesis was performed using Catapult’s
default optimization settings. Generated RTL was synthe-
sized down to an FPGA bit file using Mentor Precision and
Xilinx ISE. Designs were synthesized for target FPGA clock
frequency of 50MHz. Area and latency results of synthe-
sizing computation processes alone are summarized in Ta-
ble 2. On the MCU side, software was synthesized, combined
with manually written driver code, and cross-compiled into
a Linux executable. The same firmware code was used for
all designs. In all cases, we have successfully validated the
functionality on the board. We evaluated end-to-end hard-
ware latency by instrumenting the JPEG encoder and AC3
decoder software to record the average turnaround times
over 180 DCT-Q, 1740 IMDCT or 1740 MANT invocations,
including all communication and synchronization overhead.

We synthesized variants of each design mapping all double-
handshake message-passing channels into polling (POLL)
or interrupt (INTR) implementations. In all cases, we ap-
plied message merging (MM), protocol fusion (PF), protocol
coupling (PC), or all optimizations combined (ALL), and
we compared FPGA resource usage and hardware latency
against an unoptimized design (NOPT) and a manual im-
plementation (MAN). The unoptimized, non-coupled imple-
mentations replicate traditional library- or transducer-based
communication synthesis approaches, as realized by others
and discussed in the related work. For a fair comparison,
the manual design utilizes the same computation block syn-
thesized by Catapult and the same firmware code to access
hardware.

Table 3 compares designs in terms of their communica-
tion statistics and communication overhead as determined,
respectively, by the number of synchronization behaviors in
the TLM and by additional latency and FPGA resources of
communication interfaces. Transactor overhead was mea-
sured as area and latency on top of basic computation re-
quirements, i.e. by subtracting results in Table 2 from the
final area and latency of the complete FPGA hardware.

We can observe that in all cases, the latency of final, op-
timized transactors synthesized with our flow is always sig-
nificantly less than in a manual design. In contrast to a
manual design in which transactors and computation blocks
are designed separately to manage complexities, our ap-
proach is able to perform co-optimizations across compu-
tation and communication boundaries, e.g. to overlap and
hide communication latency behind computation delays. In
the DCT-Q case, data is processed strictly in the order it
is received and sent. This allows computation and com-



Table 3: Transactor synthesis results.

Setup Opt
TLM Communication overhead (% difference vs. unoptimized)

Intr Poll Send Recv LUTs FFs Logic score Mem [bytes] Latency

NOPT 2 2 1 1 2036 1076 3112 512 53.6ms
MM 2 2 1 1 2036 1076 3112 (0.0%) 512 (0.0%) 53.6ms (0.0%)

DCT-Q- PF 2 2 1 1 2091 1171 3262 (4.8%) 512 (0.0%) 53.6ms (0.0%)
INTR PC 2 2 1 1 827 287 1114 (-64.2%) 512 (0.0%) 53.3ms (-0.5%)

ALL 2 2 1 1 793 -75 718 (-76.9%) 512 (0.0%) 53.4ms (-0.4%)
MAN NA -14 61 47 (-98.5%) 512 (0.0%) 71.4ms (33.1%)

NOPT 0 4 1 1 2109 1181 3290 512 3.15ms
MM 0 4 1 1 2109 1181 3290 (0.0%) 512 (0.0%) 3.15ms (0.0%)

DCT-Q- PF 0 4 1 1 2093 1161 3254 (-1.1%) 512 (0.0%) 3.15ms (0.1%)
POLL PC 0 4 1 1 810 264 1074 (-67.4%) 512 (0.0%) 3.08ms (-2.2%)

ALL 0 4 1 1 835 220 1055 (-67.9%) 512 (0.0%) 3.50ms (11.2%)
MAN NA -17 58 41 (-98.8%) 512 (0.0%) 13.5ms(329.1%)

NOPT 3 2 0 0 5035 2445 7480 41984 6.59ms
MM 2 2 0 0 4239 1733 5972 (-20.2%) 41984 (0.0%) 6.50ms (-1.8%)

IMDCT- PF 3 2 0 0 3767 1536 5303 (-29.1%) 21504(-48.8%) 6.24ms (-5.2%)
INTR PC 3 2 0 0 3858 1342 5200 (-30.5%) 41984 (0.0%) 6.60ms (0.4%)

ALL 2 2 0 0 2574 699 3273 (-56.2%) 21504(-48.8%) 5.60ms(-14.8%)
MAN NA 522 322 844 (-88.7%) 25600(-39.0%) 6.27ms (-4.7%)

NOPT 0 5 0 0 4874 2181 7055 41984 5.76ms
MM 0 4 0 0 4239 1733 5972 (-15.4%) 41984 (0.0%) 5.74ms (-0.4%)

IMDCT- PF 0 5 0 0 3687 1485 5172 (-26.7%) 21504(-48.8%) 5.54ms (-3.8%)
POLL PC 0 5 0 0 3933 1452 5385 (-23.7%) 41984 (0.0%) 5.74ms (-0.4%)

ALL 0 4 0 0 2463 622 3085 (-56.3%) 21504(-48.8%) 5.61ms (-2.6%)
MAN NA 540 319 859 (-87.8%) 25600(-39.0%) 5.82ms (1.0%)

NOPT 6 2 0 0 9164 3232 12396 23552 5.54ms
MM 2 2 0 0 6032 4906 10938(-11.8%) 19456(-17.4%) 4.97ms(-10.2%)

MANT- PF 6 2 0 0 8912 2987 11899 (-4.0%) 7168 (-69.6%) 5.01ms (-9.5%)
INTR PC 6 2 0 0 7462 3000 10462(-15.6%) 23552 (0.0%) 5.20ms (-6.1%)

ALL 2 2 0 0 6911 3830 10741(-13.4%) 7168 (-69.6%) 4.36ms(-21.2%)
MAN NA 2254 2990 5244 (-57.7%) 13312(-43.5%) 4.62ms(-16.5%)

NOPT 0 8 0 0 9851 3622 13473 23552 4.41ms
MM 0 4 0 0 6743 2640 9383 (-30.4%) 19456(-17.4%) 4.00ms (-9.2%)

MANT- PF 0 8 0 0 7860 5543 13403 (-0.5%) 7168 (-69.6%) 3.89ms(-11.7%)
POLL PC 0 8 0 0 7184 3034 10218(-24.2%) 23552 (0.0%) 3.64ms(-17.4%)

ALL 0 4 0 0 5724 1438 7162 (-46.8%) 7168 (-69.6%) 3.66ms(-17.0%)
MAN NA 2280 2992 5272 (-60.9%) 13312(-43.5%) 3.88ms(-11.8%)

munication to be pipelined and scheduled in parallel. By
contrast, non-sequential data access patterns in the IMDCT
and MANT blocks result in less latency improvements than
in the DCT-Q. In both cases, computation/communication
co-optimizations are also only enabled after exposing them
to the following HLS tool through a protocol fusion step, as
will be described below. In all cases, however, a naive, un-
optimized realization of such computation/communication
co-design can lead to a large increase in logic complexity,
memory size and hence total area.

The proposed protocol stack optimizations prove to be ef-
ficient in reducing this area overhead as well as in further
improving latency. Message merging can improve both. In
the complex MANT design with a large number of messages,
message merging can achieve up to 30.4% logic and 9.2% la-
tency reduction by removing four out of eight interrupt or
polling synchronizations. In the IMDCT, only one channel
can be optimized away. As such, latency improvements are
small but up to 29.1% less logic is required. No improve-
ments can be seen for the simple DCT-Q design, in which
only one message is exchanged at a time.

As expected, protocol fusion eliminates the need for large
buffer memory between communication layers that a naive
computation/communication co-design approach requires. In-

stead of buffering complete messages and packets, the opti-
mized code only requires a single word-sized flip-flop. Addi-
tionally, protocol fusion can lead to latency improvements of
up to 11.7% due to better interleaving and pipelining across
layers during high-level synthesis. Note that in the simple
DCT-Q case, Catapult is able to perform loop merging by
itself. Hence, protocol fusion is not effective in optimizing
the code further. However, this is not the case for more com-
plex MANT and IMDCT designs, in which multiple levels
of loop hierarchy need to be exposed for merging.

Finally, protocol coupling paired with custom-generation
of protocol IP can significantly reduce resource utilization
and latency. In uncoupled implementations reminiscent of
traditional library- or transducer-based approaches, gener-
ality comes with high overhead and subsequent loss in opti-
mality. By contrast, resource sharing in the coupled design
results in up to 67.4% logic and 17.4% latency reduction.

Fig. 14 plots communication overhead in terms of area,
memory and latency, normalized to the unoptimized case.
After applying all protocol stack optimizations, logic, mem-
ory and latency overheads are reduced by up to 77%, 70%
and 21%, respectively. Overall quality of results is compa-
rable to a manual design, where on average a 21% improve-
ment in latency can be achieved. Note that in the manual
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Figure 14: Comparison of communication overheads.

case, logic complexity is decreased at the expense of a higher
memory requirement. This is due to less opportunities for
sharing of memory among different message members. In
summary, when including computation and communication,
the total latency, logic score and memory size of our com-
plete design is on average 16% faster, 20% larger and 19%
smaller, respectively, than a complete hardware processor
with a manually designed communication interface.

6. SUMMARY AND CONCLUSIONS
We have presented a systematic design approach to auto-

matically synthesize custom, application- and target-specific
bus-based hardware interfaces. Utilizing tools and databases
along with a HLS engine, we provide a seamless flow from
abstract specifications of desired communication functional-
ity and topology down to cycle-accurate RTL. The approach
supports various synchronization schemes and by replacing
databases, it can be easily adapted to different HLS back-
ends and synthesis targets. Experiments demonstrate that
significant productivity gains can be achieved. Moreover,
the quality of result is comparable to area and latency of
manual designs, where a set of novel protocol optimizations
can provide significant area and latency gains. In the future,
we plan to extend our work to synthesize a wider range of
communication primitives and styles (e.g. shared variables,
hardware queues, master interfaces and transducers), includ-
ing further optimizations of synthesized transactors. We also
intend to expand support for SystemC TLM-2.0 interfaces
and for utilizing other HLS backend tools.
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