
Specify-Explore-Refine (SER): From Specification To
Implementation

A. Gerstlauer, J. Peng,
D. Shin, D. Gajski
Center for Embedded
Computer Systems

University of California, Irvine
{gerstl,pengj}@cecs.uci.edu,

{dongwans,gajski}@cecs.uci.edu

A. Nakamura, D. Araki
InterDesign Technologies, Inc.

43-16, Shiba 3-chome,
Minato-Ku

Tokyo 105-0014, Japan
nakamura.atsushi@interdesigntech.co.jp,

araki.dai@interdesigntech.co.jp

Y. Nishihara
Japanese Aerospace
Exploration Agency

Tsukuba Space Center
Sengen 2-1-1, Tsukuba
Ibaraki 305-8505, Japan

nishihara.yuuji@jaxa.jp

ABSTRACT
Driven by increasing complexity and reliability demands, the
Japanese Aerospace Exploration Agency (JAXA) in 2004 commis-
sioned development of ELEGANT, a complete SpecC-based en-
vironment for electronic system-level (ESL) design of space and
satellite electronics. As integral part of ELEGANT, the Center for
Embedded Computer System (CECS) has developed and supplied
the SER tool set. Following a Specify-Explore-Refine methodol-
ogy, SER supports system-level design space exploration, inter-
active platform development and automatic model refinement and
model generation. The SER engine has been successfully inte-
grated into ELEGANT. With SER at its core, ELEGANT pro-
vides a seamless tool chain for modeling verification and synthe-
sis from top-level specification down to embedded HW/SW imple-
mentation. ELEGANT and SER have been succesfully delivered to
JAXA and its suppliers. Tools are currently being deployed in com-
panies like NEC Toshiba Space Systems. Evaluation results prove
the feasibility of the approach for design space exploratoin, rapid
virtual prototyping and system synthesis resulting in tremendous
productivity and reliability gains. In addition, ELEGANT has been
commercialized for general market availability. The SER compo-
nent has been licensed to InterDesign Technologies, Inc. (IDT) and
it is available from, sold and supported by IDT.

Categories and Subject Descriptors
C.3 [Special-Purpose and Application-Based Systems]: Real-
time and embedded systems; C.5 [Computer System Implemen-
tation]: Miscellaneous

General Terms
Design, Management, Reliability

Keywords
Electronic System-Level (ESL) Design

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
DAC 2008, June 8–13, 2008, Anaheim, California, USA.
Copyright 2008 ACM ACM 978-1-60558-115-6/08/0006 ...$5.00.

1. INTRODUCTION
The process of designing embedded computer systems is a

tremendous challenge. System complexities are growing exponen-
tially and the system design process is characterized by tight con-
straints and market pressures, not the least of which are cost and re-
liability. In many application areas such as space and satellite elec-
tronics, design problems can have serious and costly consequences,
and traditional ad-hoc design methods are becoming infeasible.

Faced with growing cost and reliability issues, the Japanese
Aerospace Exploration Agency (JAXA) in the early 2000s started
to investigate alternative solutions. Having commonly invested
large efforts into building several prototypes of satellites before
their launch, JAXA was interested in concepts and technologies
for early virtual prototyping. At the same time, design automa-
tion techniques for synthesis and verification should be applied in
order to achieve required productivity, cost and reliability gains,
following a correct-by-construction approach while ensuring that
constraints are satisfied.

As outlined by many semiconductor technology roadmaps [12],
a commonly accepted solution to increase productivity and handle
the complexity is to move the design process to higher levels of
abstraction, i.e. the so-called electronic system level (ESL). There
are many approaches claiming to provide ESL solutions such as
C-to-RTL tools implementing traditional high-level synthesis of a
single hardware unit [5]. However, true system-level design has to
encompass complete systems across hardware and software bound-
aries. Furthermore, while there are simulation-centric approaches
for manual assembly of virtual system prototypes [2, 17] based on
system-level design languages (SLDLs) such as SystemC [10], ap-
plication of design automation techniques requires well-defined in-
put, output and intermediate models to be captured on top of any
underlying language.

As a result of their investigations, JAXA decided to assemble a
complete ESL design solution supporting simulation, synthesis and
verification in order to establish it as a common design environment
for all of its electronic suppliers. In 2004, JAXA therefore commis-
sioned development of the so-called ELEGANT1 environment. As
a basis for combining several tools into a common environment,
ELEGANT was chosen to be built around SpecC technology [7,
8]. As a result, a common design environment and well-defined in-
terfaces and formats of design models greatly reduces communica-
tion overhead and facilitates easy and error-free exchange between
different suppliers.

1Electronic Design Guidance Tool for Space Use

586

32.3

Specification model
s imu lation

E x plor ation
and

R efinement
F or mal v er ification

T L M
C o-s imu lation

H ig h -lev el
s y nth es is

C y cle-accu r ate
C o-s imu lation

T L MT L M

Specification modelSpecification model

Softw ar e
s ou r ce code
Softw ar e
s ou r ce code H ar dw ar e R T LH ar dw ar e R T L

Softw ar e s y nth es is
A s s er tion/ P r oper ty

ch eck ing

SER
C E C S

C y b e r W o r k B e n c h
N E C

V e n u s
F u j its u

V i s u a l Sp e c
I nter D es ig n T ech nolog ies

P E / C E / B u s
datab as e

P E / C E / B u s
datab as e

Figure 1: The ELEGANT environment.

1.1 ELEGANT Environment
ELEGANT (Figure 1) provides an environment for true top-

down electronic system-level (ESL) design following a consistent
and powerful methodology and tool chain from a top-level spec-
ification model all the way down to RTL design. Under JAXA’s
guidance, ELEGANT is a world-wide joint R&D project involving
several partners, combining different point tools under a common
umbrella. All tools in ELEGANT operate on and exchange design
models in SpecC format as standardized by the SpecC Technology
Open Consortium (STOC) [3]. Tools have been specifically devel-
oped or adapted to accept SpecC input and generate SpecC output,
providing a seamless tool chain from top to bottom.

At the core of ELEGANT, the SER component provides system-
level design space exploration and model refinement. Starting from
an abstraction specification of the desired functionality written in
SpecC, SER allows interactive platform definition and specifica-
tion mapping. SER then automatically implements the specifica-
tion on the platform and generates various transaction-level models
(TLMs) of the design. The SER engine has been developed by the
Center for Embedded Computer Systems (CECS) at UC Irvine as
a derivate of CECS’ original SpecC-based System-On-Chip Envi-
ronment (SCE) [4], where SER has been adapted to JAXA require-
ments and databases have been filled with necessary components
for space and satellite applications.

For synthesis of hardware components, ELEGANT includes the
CyberWorkBench high-level, C-to-RTL synthesis tool originally
developed at NEC [14]. As part of the ELEGANT project, Cy-
ber has been adapted to accept SpecC input directly from the SER-
generated models. Furthermore, it was extended to generate cycle-
accurate (CA) SpecC models of the RTL output for co-simulation
of the synthesized hardware with the rest of the system.

All models in the ELEGANT design flow are executable for vali-
dation through simulation. In ELEGANT, models are captured and
simulated using VisualSpec, a SpecC modeling and simulation en-
vironment supplied by InterDesign Technologies [11]. VisualSpec
provides visualization and debugging support and optional integra-
tion of third-party instruction-set simulators (ISS) into the SpecC
simulation backplane. Furthermore, VisualSpec supports profiling
and estimation capabilities for model analysis and design quality
feedback, including software execution time estimation and timing
back-annotation of TLM software models using so-called FastVeri
technology.

Finally, ELEGANT contains a formal verification component,
Venus, developed by Fujitsu Labs of America (FLA) and Tokyo
University. Venus supports equivalence checking between different
models in the ELEGANT design flow to guarantee correctness and
model equivalence throughout the design process.

1.2 Specify-Explore-Refine (SER)
The SER component at the core of ELEGANT is based on SCE

technology originally developed at CECS for the definition and
synthesis of system platforms. As a derivative of SCE, SER sup-
ports and aids the manual, interactive design of system platforms
by automatically generating platform design models at varying lev-
els of abstraction. Using the tools inside SER, a system platform
can gradually be developed in a step-by-step manner.

SER accepts architecture-independent, algorithmic specification
models written in SpecC and it enables interactive and step-wise
system-level design space exploration with HW/SW partitioning,
network topology design, bus protocol selection and bus interface
synthesis. Given the application specification and design deci-
sions, SER automatically generates accurate transaction level plat-
form models (TLMs) which enable performance analysis and soft-
ware testing within the virtual platform simulator without the need
for slow instruction-set simulation. In addition, SER generates C
model descriptions of hardware components including all applica-
tion functionality, bus interfaces and pin- and timing-accurate bus
protocol state machines for backend behavioral synthesis of com-
plete hardware processors down to RTL and implementation.

On top of platform models generated through SER, application
functionality can be developed and/or refined. Using SER platform
models, applications can be developed and co-simulated with the
whole system even before the actual system hardware is available.
Moreover, since SER supports stepwise platform development, in-
termediate platform models at high levels of abstraction are avail-
able even before details of the complete system architecture are
available or decided. In addition, intermediate high-level models
provide fast simulation and feedback. Therefore, SER platform
models at various levels serve as system prototypes for rapid, early
application and platform co-development.

2. SER DESIGN FLOW
SER follows a Specify-Explore-Refine methodology [6]. It starts

the design from a model representing the design functionality
(Specify). At each following design step, SER users first make
certain design decisions by exploring the design space (Explore)
through scripting or a graphical user interface. SER then automati-
cally generates a new model at lower abstraction level by integrat-
ing the decisions into the previous model (Refine).

Figure 2 shows the SER design flow. Platform design in SER
starts with the specification model. With the specification model,
the user defines the desired application platform, framework and
requirements. SER then consists of of three platform design tasks:
Architecture Exploration, Network Exploration and Communica-
tion Synthesis. During architecture exploration, the processing plat-
form is defined and the computational aspects of the specification
are implemented on top of a set of processing elements (PEs), i.e.
software processors, custom hardware blocks and memories. Dur-
ing network exploration and communication synthesis, the com-
munication platform is defined and abstract system communication
requirements are implemented over the given network of buses and
communication elements (CEs), i.e. bridges and transducers.

Tasks generally operate on, read and generate models for the
platform design being developed. All models within SER are de-
scribed and captured using the syntax and semantics of the stan-
dard SpecC system-level design language. The five models for
these tasks are the Specification Model, the Architecture Model,
the Network Model, and the two communication model variants:
the Transaction Level Model (TLM) and the Pin-Accurate Model
(PAM). All models in the SER design flow are executable for vali-

587

Architecture ExplorationArchitecture Exploration

Network ExplorationNetwork Exploration

Communication SynthesisCommunication Synthesis

PE
Database

PE
Database

CE
Database

CE
Database

Bus
Database

Bus
Database

Library
Builder

Library
Builder Specification ModelSpecification Model

Architecture ModelArchitecture Model

Network ModelNetwork Model

CPUCPU

MemoryMemory

Custom
HW
Custom
HW

Bus protocol

Tr
an

sd
uc

er

Br
id

ge
B1 B2

HWCPU

B1 B2

CPU HWNetwork

B1 B2

CPU HW

B2B1
Transaction-Level ModelTransaction-Level Model

Pin-Accurate ModelPin-Accurate Model

Figure 2: Specify-Explore-Refine (SER) design flow.

dation through simulation. In general, design models generated and
read by SER tools can exported and imported in SpecC format for
co-simulation, visualization, capture or verification by other tools.

Definition and development of platforms within SER is based on
system components stored in the SER databases. For this purpose,
SER maintains three component databases for PEs, CEs and buses.
With the help of the separate Library Builder tool that is part of
SER, databases can be maintained by adding, removing or modify-
ing components through a graphical user interface.

2.1 Specification
The specification defines the desired application framework in

terms of its computation and communication functional require-
ments. Computational requirements are specified through the hier-
archy of SpecC behaviors that encapsulate the various computation
tasks available in the application. Leaf behaviors at the bottom
of the hierarchy contain application task algorithms in the form of
ANSI C code. Behaviors can then be composed hierarchically in
arbitrary serial-parallel fashion. At each level, a sequential, par-
allel or state machine composition of sub-behaviors is supported.
SER will then later generate an implementation that ensures that
the tasks run in the specified order in the final system platform.

Communication requirements between tasks in the application
framework are specified in the form of variables or channels con-
necting the behaviors. Behaviors can use shared variables for ex-
change of data. In addition, especially in the case of synchro-
nization between concurrent behaviors, typed or untyped channels
out of the standard SpecC channel library (semaphores, queues, or
single and double handshake channels for synchronous or asyn-
chronous message-passing) can be used for communication be-
tween tasks. SER will then later generate an implementation of
all inter-task communication over the given communication archi-
tecture and bus network.

With the specification model, the application developer is pro-
vided with an abstract, parallel model for programming the plat-
form. The specification defines the services that have to be made
available by the platform being developed. It is guaranteed that the
same exact services are available in any platform model at any ab-
straction level created with SER. As such, SER in the end generates
and provides a semantically equivalent implementation of all spec-
ified computation and communication functionality on top of the
platform developed within SER.

2.2 Architecture Exploration
Architecture exploration (AE) starts with the specification model

captured by the designer. It then allows the designers to specify

the processing architecture by selecting system components (soft-
ware and hardware processors, memories) from a database of pro-
cessing elements (PEs). Following this, the designer can perform
hardware-software co-design and process and storage partitioning
by mapping the behaviors and variables in the specification to se-
lected (hardware or software) PEs and memories. Architecture ex-
ploration then generates and exports the new architecture model
that implements the specification computation on the PE architec-
ture according to the selected mapping.

As part of behavior partitioning, architecture exploration will
automatically generate all necessary synchronization to preserve
the original execution semantics. For example, if two sequential
blocks are mapped onto concurrent processors, additional event
channels and synchronization calls will be inserted into the archi-
tecture model to ensure that the second task will only start once the
first task has finished.

During architecture exploration, all variables shared between
PEs have to be mapped into physical storage for implementation.
In general, variables can be mapped to PE-local or global, shared
memories. For all shared variables mapped into a synthesizable
hardware PEs, external memory interfaces are generated in the
hardware PE and variable accesses by other components are refined
into memory-mapped I/O between PEs. If variables are not mapped
to specific memories, distributed, local copies of the variable are
generated in each PE, and additional message-passing channels and
calls are inserted to automatically exchange updated data values at
synchronization points.

The specification model at the input of architecture explo-
ration may contain complex communication channels such as
semaphores, queues or mutexes. During architecture exploration,
complex channels are converted into an implementation following
a client-server model. For each complex channel, a server task will
be generated in a PE as determined by the user-defined channel
mapping. Complex channels can be mapped by the designer to a
newly allocated, dedicated PE or to any existing hardware or soft-
ware processor next to other behaviors and variables. Architecture
exploration will then refine all complex channel communication
into message passing between clients and server using a remote
procedure call (RPC) type mechanism. As a result, all communi-
cation in the architecture model at the output of architecture ex-
ploration occurs exclusively through memory interfaces, events or
synchronous and asynchronous message-passing channels.

2.3 Network Exploration
Network exploration (NE) starts from the architecture model and

allows designers to define the network topology by allocating buses
and CEs and by defining the connectivity of PE and CE ports to
system buses. Given the topology and connectivity, the designer
then defines the routing of architecture channels via stations and
links between neighboring PEs and CEs. As a result of network
exploration, SER inserts transducers, merges and refines channels
from the architecture model and generates and exports the refined
network model implementing the upper communication layers for
realization of end-to-end channels over point-to-point logical com-
munication links between PEs and CEs.

In general, networks are segmented and CEs are introduced dur-
ing network exploration to implement communication between two
or more bus protocols. CEs in the database are distinguished be-
tween bridges, which are IPs that transparently connect two timing-
compatible buses directly at the protocol level2, and transducers,
which are synthesized to connect any two incompatible buses based
2Examples of bridges are memory controllers or typical bus bridges
that connect high-speed processor and low-speed peripheral buses.

588

on a store-and-forward principle3. In order to reduce buffer require-
ments in intermediate transducers, network exploration supports
the packeting of large messages into a stream of smaller packets
if a transducers is in the path between two PEs.

In the architecture model, PEs and memories communicate via
abstract, typed end-to-end message-passing channels and memory
interfaces. The architecture model may contain multiple channels
between two components. As part of the network model, such
channels will be merged if possible, i.e. if they are accessed mu-
tually exclusive in time and if their transactions are guaranteed to
never overlap. Inside each PE and CE of the network model, the
network explorer inserts the necessary protocol stacks for imple-
mentation of channel routing, packeting and channel merging. In
addition, network protocol stacks handle the conversion of abstract
application data types into untyped byte streams supported by the
network. This includes conversion between incompatible byte lay-
outs and endianess in different PEs and memories. As part of data
type conversion, memories and memory interfaces are refined down
to the individual word level according to the memory’s data layout.

2.4 Communication Synthesis
Communication synthesis (CS) takes in the network model, and

it allows designers to define implementation of point-to-point logi-
cal links for each bus segment in the system. Designers define link
and bus parameters like addressing, interrupt and arbitration as-
signments for each system bus. Communication synthesis then in-
serts protocols and bus-functional component descriptions from the
databases, and it generates the refined communication model which
implements the communication links in each segment over the ac-
tual, shared bus protocols and bus wires. In addition to the pin-
accurate communication model (PAM), the communication synthe-
sizer can generate a timing-accurate transaction-level model (TLM)
which abstracts away the pin-level details of individual bus trans-
actions in order to achieve faster simulation speeds.

The generated communication models are composed out of bus-
functional models for each component that include the necessary
lower layers of communication stacks for implementation of syn-
chronization, addressing, data slicing, arbitration and bus protocol
timing. If available, such bus-functional component models are
taken from the PE and CE databases. In all other cases, bus inter-
face and bus driver implementations are synthesized on top of bus
protocol models taken from the bus database. For this purpose, the
bus database contains multi-level bus models that provide a canon-
ical abstraction of all bus accesses from individual bus transactions
up to generic transfers of raw blocks of bytes. As such, the bus
concept in SER is generic in the sense that any communication me-
dia that can provide reliable, error-free byte block transfers can be
captured and stored in the bus database4.

Unless synchronization is built into the bus protocols themselves,
buses generally require communication partners to be synchronized
before the start of each actual bus transfer. During communication
synthesis, SER insert any such necessary synchronization between
masters and slaves (or senders and receivers) into all participating
system components. Communication synthesis supports synchro-
nization via dedicated or shared interrupts and through polling. In
case of interrupt-based synchronization, components are connected
to interrupt wires and interrupt generation and detection logic is in-
serted. In case of polling or shared interrupts, driver code to query
bus-mapped flags on the slave side is inserted into the components.
3Examples of transducers are UARTs or other serial bus con-
trollers.
4Examples can range from typical master/slave buses up to node-
based buses such as RS232 or other network protocols.

SER

MB (MicroBlaze)

MainBus (OPB)

Ar
bi

te
r

MP3_IN PCM_OUT

Decoder

Stimulus

stream_in pcm_out

M
on

ito
r

Er
ro

r

MB (MicroBlaze)

MainBus (OPB)

Ar
bi

te
r

MP3_IN PCM_OUT

Decoder

Stimulus

stream_in pcm_out

M
on

ito
r

Er
ro

r

MB (MicroBlaze)

MainBus (OPB)Ar
bi

te
r

MP3_IN PCM_OUT IMDCT (HW)

DCT (HW)

Decoder

Stimulus

stream_in pcm_out

M
on

ito
r

Er
ro

r

LDct32

RImdct

RDct32

LImdct

INTC

MB (MicroBlaze)

MainBus (OPB)Ar
bi

te
r

MP3_IN PCM_OUT IMDCT (HW)

DCT (HW)

Decoder

Stimulus

stream_in pcm_out

M
on

ito
r

Er
ro

r

LDct32

RImdct

RDct32

LImdct

INTC

MB (MicroBlaze)

MainBus (OPB)Ar
bi

te
r

MP3_IN PCM_OUT

DCT (HW)

Decoder

Stimulus

stream_in pcm_out

M
on

ito
r

Er
ro

r

LDct32
RDct32

INTC

MB (MicroBlaze)

MainBus (OPB)Ar
bi

te
r

MP3_IN PCM_OUT

DCT (HW)

Decoder

Stimulus

stream_in pcm_out

M
on

ito
r

Er
ro

r

LDct32
RDct32

INTC

Figure 3: MP3 decoder explorations.

In general, all links within a segment require unique ad-
dress/interrupt assignments, and each communication link in the
network model is assigned a separate interrupt and a separate bus
address (or an address range in case of polling or interrupt sharing).
Communication synthesis then generates any necessary bus proto-
col stacks for implementation of synchronization and bus address-
ing on top of the raw data streams provided by the bus interfaces in
the database.

Note that in case of software processors, bus-functional models
taken out of the PE database consist of a hardware abstraction layer
(HAL), a model of the processor hardware including the proces-
sor’s interrupt handling behavior and models for any interrupt con-
trollers. Communication synthesis then generates all bus drivers
and interrupt handlers inside the processor as necessary. As a re-
sult, TLM and PAM contain high-level models of programmable
processors that, together with back-annotated estimated execution
times, provide fast and accurate software prototyping compared to
traditional, slow instruction-set simulators (ISS).

3. EVALUATIONS AND RESULTS
The first phase of development of SER tools and the ELEGANT

environment was successfully completed in 2006. Next to contin-
uation of the development process, JAXA initiated several evalua-
tion projects in order to investigate and demonstrate the feasibility
and benefits of the approach. Tools were deployed and applied to
various design examples in several of JAXA’s suppliers and other
independent investigators with positive results. In addition, feed-
back from the evaluation process is used to drive further continued
development and extension of the SER and ELEGANT tool sets.

3.1 MP3 Decoder Design Example
As a test case and design example for demonstration of SER ca-

pabilities, SER tools were applied to the design of an MP3 decod-
ing application previously developed at CECS [9]5. The SpecC
specification model of the MP3 decoder was originally developed
based on an open-source C reference implementation we obtained
5The SpecC code of the MP3 decoder specification model is freely
available under the GPL on the CECS web pages [1].

589

from the internet [16]. Due to the fact that SpecC is an extension
of ANSI C, the C reference code could be directly used as a ba-
sis for conversion into a SpecC specification. The resulting SpecC
specification model of the MP3 decoder has 14,045 lines of code
distributed over 44 behaviors (out of which 29 are leaf behaviors).

Using SER’s exploration and platform development capabilities,
the MP3 decoding application was mapped and implemented on
several different candidate architectures, ranging from a pure soft-
ware implementation up to various levels of hardware acceleration
(Figure 3). For demonstrational purposes, a Xilinx-based imple-
mentation target (MicroBlaze CPU with OPB system bus) was as-
sumed for all MP3 explorations.

At the top level, the MP3 specification consists of the actual de-
coder running concurrently with I/O behaviors for MP3 frame input
(Stimulus), audio output (Monitor) and Error detection. I/O behav-
iors communicate with the decoder through a set of FIFO queue
channels. In all target architectures, I/O behaviors and associated
queue implementations have been mapped to dedicate hardware I/O
units for MP3 input and PCM output where the CPU accesses I/O
units through memory-mapped hardware registers and polling.

In a pure software implementation (upper right), the complete
Decoder behavior hierarchy is mapped onto a single software CPU.
Considering that a software implementation of the MP3 algorithm
will not meet necessary frame deadlines, increasing levels of hard-
ware acceleration were additionally explored. In a first candidate
(lower right), discrete cosine transform (DCT) blocks from the
PCM synthesis stage of the decoding algorithm were moved into
a dedicated, custom synthesized hardware co-processor. In a sec-
ond stage (lower left), inverse modified DCT (IMDCT) blocks in
the MP3 frame decoding stage were moved into a second custom
hardware unit for acceleration. In both cases, hardware units con-
tain two concurrent instances of DCT and IMDCT blocks in order
to exploit available parallelism between left and right channel de-
coding. Hardware co-processors communicate with the CPU over
the main system bus and synchronization is implemented via in-
terrupts. As such, accelerated target architectures contain an addi-
tional interrupt controller (INTC).

Using SER, transaction-level and pin-accurate models at varying
levels of abstraction were automatically generated for each of the
design alternatives. All models were simulated to validate function-
ality and performance. Using SCE tools, models for each target im-
plementations were generated in less than a minute. Furthermore,
including time needed for validation and simulation of models, the
complete design space exploration process was completed and an
optimal architecture was generated in less than an hour.

In all cases, final pin-accurate models are ready for further hard-
ware and software synthesis. DCT and IMDCT hardware co-
processors are currently being synthesized down to RTL imple-
mentations using the CyberWorkBench high-level synthesis pro-
cess, targeting an FPGA-based prototyping of the complete MP3
platform.

3.2 SpaceWire Evaluation
SpaceWire (SpW) is a standard for high-speed and high-reliable

interconnection networks in space and satellite applications, sup-
porting data communication between high-performance on-board
data handling systems and ground stations. SpaceWire is a packet-
based network. It supports asynchronous communication with
speeds between 2 Mbps and 400 Mbps, fault tolerance to rapidly
recover from link failures and arbitrary topologies such as bus, star,
ring or tree. Equipment implemented according to the SpaceWire
standard is compatible at both component and sub-system levels,
reducing cost of development and development timescales.

SpW
Spe c i f i c a t i o n M o d e l

SpW
Spe c i f i c a t i o n M o d e l

ELEGANT

SpW i m pl e m e n t e d
i n H W a n d SW

SpW i m pl e m e n t e d
i n H W a n d SWSpW i m pl e m e n t e d i n

H W
SpW i m pl e m e n t e d i n

H W

Sp W

SpW M i c r o c o m pu t e r
Spa c e C u b e

Sh a r e / r e u s e SpW d e s i g n w i t h
h i g h -l e v e l d e s c r i pt i o n s
Sh a r e / r e u s e SpW d e s i g n w i t h
h i g h -l e v e l d e s c r i pt i o n s

H W/ SW pa r t i t i o n i n g
a n d s y n t h e s i s
H W/ SW pa r t i t i o n i n g
a n d s y n t h e s i s

E v a l u a t e H W/ SW t r a d e o f f s
b e f o r e i m pl e m e n t a t i o n
E v a l u a t e H W/ SW t r a d e o f f s
b e f o r e i m pl e m e n t a t i o n

Figure 4: SpaceWire (SpW) evaluation.

Together with its electronic suppliers at NEC Toshiba Space Sys-
tems and others, JAXA initiated a project to evaluate a scenario for
automated SpaceWire design using the ELEGANT tool set. As
shown in Figure 4, starting from a top-level specification model,
the SpaceWire protocol is automatically implemented on various
targets. Using SER tools, hardware/software partitioning and ex-
ploration of the target architectures was performed. In the pro-
cess, exploration was supported and driven by quantitative estima-
tion (using VisualSpec estimation and profiling capabilities) to help
select an appropriate implementation.

Using ELEGANT, a single SpW specification was realized as
both a pure hardware implementation on the sensor side as well as a
mixed hardware/software design for the on-board electronics. Both
design variants were successfully implemented and synthesized us-
ing ELEGANT, SER and Cyber tools. For prototyping of the mixed
HW/SW solution, it was implemented on JAXA’s SpaceCube plat-
form consisting of a MIPS-based proprietary CPU, several FPGAs,
peripherals and external interfaces. As a result, a demonstrator run-
ning an application on the SpaceCube that reads out sensor values
over the synthesized SpaceWire implementations on both sides was
successfully built and showcased at various trade shows such as
DAC’07.

3.3 MPEG4 Evaluation
In addition to the SpaceWire evaluation by its suppliers, JAXA

initiated a project for evaluation of ELEGANT by independent
consulting and design service company Applistar, Inc. using an
MPEG4 application supplied by Japan’s Semiconductor Technol-
ogy Academic Research Center (STARC) [15]. Using ELEGANT,
a single, top-level SpecC specification of the MPEG4 decoder al-
gorithm was implemented on JAXA’s proprietary HR5000 plat-
form. HR5000 is built by High-Reliability Components Corpora-
tion (HIREC) of Japan around a 64-bit MIPS 5kf core [13] specifi-
cally for space applications. Several architectural alternatives were
explored by varying the amount of FPGA-based hardware acceler-
ators attached to the CPU via its banked and configurable memory
bus interface.

Table 1 shows the results of the various MPEG4 decoder explo-
rations. In all cases, the main body of the MPEG4 algorithm is ex-
ecuted in software on the MIPS core. In addition to a pure software
solution, architectures were realized in which the inverse discrete
cosine transform (IDCT) and/or parts of the motion compensation
(MC) blocks are implemented in hardware. In all cases, the CPU,
the buses and the FPGA are assumed to run at 25 MHz clock speed.

For all alternatives, transaction-level and pin-accurate models of
the design were generated using SER. Models of the software be-
haviors running on the MIPS core were back-annotated with esti-
mated timing data obtained using VisualSpec’s FastVeri technol-
ogy. Using CyberWorkBench, FPGA hardware units were synthe-
sized into RTL implementations and cycle-accurate SpecC models

590

Design Dec. delay Sim. time
CPU 4.176 ms 2.000 s
CPU+FPGA(MC) 3.823 ms 1.827 s
CPU+FPGA(IDCT) 3.119 ms 3.020 s
CPU+2xFPGA(MC,IDCT) 2.761 ms 2.917 s

Table 1: MPEG4 evaluation results.

directly from the SER-generated pin-accurate SpecC code. Result-
ing cycle-approximate CPU and cycle-accurate hardware models
were then co-simulated in VisualSpec’s SpecC simulation environ-
ment using the same testbench for all designs.

Simulation results (Table 1) confirm the effect of hardware ac-
celeration for performance gains: moving functionality into hard-
ware generally increases performance and reduces MPEG4 decod-
ing delays. A design with hardware implementation of both MC
and IDCT blocks has by far the best performance and can be con-
sidered optimal.

4. SUMMARY AND CONCLUSIONS
ELEGANT is an ESL design solution originally commissioned

by the Japanese Aerospace Exploration Agency (JAXA). It com-
bines several design tools under a common, SpecC-based frame-
work. ELEGANT provides a seamless tool chain from top-level
specification model down to embedded HW/SW system implemen-
tation, and it forms a complete ESL tool set for modeling, synthesis
and verification. Model generation and high-level synthesis achieve
high productivity and flexibility for exploration of system architec-
ture and hardware/software implementation. Simulation and verifi-
cation support rapid prototyping, performance evaluation and func-
tional validation of system design specification and architecture.

At the core of ELEGANT, the SER component provided true
system-level design, exploration and synthesis. Given an abstract,
high-level specification of the desired system functionality, SER al-
lows interactive architecture partitioning, network topology defini-
tion and bus communication synthesis. SER then automatically im-
plements the given specification on the user-defined platform and
generates transaction-level and pin-accurate models of the design
at varying levels of abstraction. As such, SER automates tedious
and error-prone tasks such as model rewriting while leveraging the
human expertise and insight for high-level decision making, system
architecture definition and design space exploration.

SER supports applications with arbitrary task graphs hierarchi-
cally composed in a sequential, parallel or state machine fashion.
Tasks can communication via a rich set of communication primi-
tives such as shared variables, events, semaphores, queues or syn-
chronous and asynchronous message passing. SER will automat-
ically implement an application on a user-defined target architec-
ture. Computation consisting of behaviors and variables is mapped
down to hardware and software processors and memories. Com-
munication channels, on the other hand, are implemented over the
buses, bridges and transducers forming the system communication
architecture. In summary, SER supports automatic implementation
of an abstract, high-level platform programming model on a wide
variety of target architectures with multiple CPUs, custom hard-
ware blocks and memories connected by a network of buses, bus
bridges and transducers.

Using ELEGANT and SER, accurate platform models for virtual
prototyping of all design can be generated within minutes. Com-
pared to traditional ISS-based prototypes, generated models sim-
ulate extremely fast, enabling rapid and early design space explo-
ration. As such, generated models provide a feasible alternative to

traditional ISS-based virtual prototyping and validation. Further-
more, the complete RTL code for all hardware units covering the
whole range from application functionality down to pin-accurate
bus interfaces and bus protocol state machines is automatically syn-
thesized from high-level models, ready for download into FPGAs
or futher hardware logic and physical design.

Several phases of ELEGANT development have been success-
fully completed and tools are currently being introduced and de-
ployed for first production use in JAXA suppliers such as NEC
Toshiba Space Systems. Initial evaluation results have proven
the feasibility of the approach for design space exploration, rapid
virtual prototyping and system synthesis resulting in tremendous
(1000x) productivity and reliability gains. The ELEGANT system
has also been been commercialized and is being introduced into
the general market. Specifically, the SER component has been li-
censed to InterDesign Technologies, Inc. (IDT) and it is available
from, sold and supported by IDT.

5. REFERENCES
[1] Center for Embedded Computer Systems. SpecC home page.

http://www.cecs.uci.edu/~specc.
[2] CoWare. Virtual Platform Designer.

http://www.coware.com.
[3] R. Dömer, A. Gerstlauer, and D. Gajski. SpecC Language

Reference Manual, Version 2.0. SpecC Technology Open
Consortium, http://www.specc.org, December 2002.

[4] R. Dömer, A. Gerstlauer, J. Peng, D. Shin, L. Cai, H. Yu,
S. Abdi, and D. Gajski. System-on-Chip Environment: A
SpecC-based Framework for Heterogeneous MPSoC Design.
EURASIP Journal on Embedded Systems, 2008.

[5] Forte Design Systems. Cynthesizer.
http://www.forteds.com.

[6] D. D. Gajski, F. Vahid, S. Narayan, and J. Gong.
Specification and Design of Embedded Systems. Prentice
Hall, 1994.

[7] D. D. Gajski, J. Zhu, R. Dömer, A. Gerstlauer, and S. Zhao.
SpecC: Specification Language and Design Methodology.
Kluwer Academic Publishers, 2000.

[8] A. Gerstlauer, R. Dömer, J. Peng, and D. D. Gajski. System
Design: A Practical Guide with SpecC. Kluwer Academic
Publishers, 2001.

[9] A. Gerstlauer, D. Shin, S. Abdi, P. Chandraiah, and D. D.
Gajski. Design of a MP3 decoder using the System-On-Chip
Environment (SCE). Technical Report CECS-TR-07-05,
Center for Embedded Computer Systems, November 2007.

[10] T. Grötker, S. Liao, G. Martin, and S. Swan. System Design
with SystemC. Kluwer Academic Publishers, 2002.

[11] InterDesign Technologies, Inc. VisualSpec.
http://www.interdesigntech.co.jp.

[12] International technology roadmap for semiconductors.
http://public.itrs.net, 2007.

[13] MIPS Technologies, Inc. MIPS64 5Kf Processor Core
Datasheet, 2001.

[14] NEC System Technologis, Ltd. CyberWorkBench.
http://www.necst.co.jp/product/cwb.

[15] Semiconductor Technology Academic Research Center.
http://www.starc.jp.

[16] Underbit Technologies Inc. MAD: MPEG audio decoder.
http://www.underbit.com/products/mad.

[17] VaST Systems. VaST tools and models for embedded system
design. http://www.vastsystems.com.

591

