Accurate Phase-Level Cross-Platform Power and
Performance Estimation

Xinnian Zheng, Lizy K. John, Andreas Gerstlauer
The University of Texas at Austin, Austin, TX, USA

xzheng1@utexas.edu, {ljohn, gerstl}@ece.utexas.edu

ABSTRACT

Fast and accurate performance and power prediction is
a key challenge in co-development of hardware and soft-
ware. Traditional analytical or simulation-based approaches
are often too inaccurate or slow. In this work, we propose
LACross, a novel learning-based, analytical cross-platform
prediction framework that provides fast and accurate es-
timation of time-varying software performance and power
consumption on a target hardware platform. We employ a
fine-grained phase-based approach, where the learning algo-
rithm synthesizes analytical proxy models that predict the
performance and power of the workload in each program
phase from performance statistics obtained through hard-
ware counter measurements on the host. Our learning ap-
proach relies on a one-time training phase using a target
reference model or real hardware. We applied our approach
to 35 benchmarks from SPEC 2006, SD-VBS and MiBench.
Results show on average over 97% prediction accuracy for
predicting both fine-grain performance and power traces at
speeds of over 500 MIPS.

1 Introduction

One of the core challenges in system designs is the neces-
sity for fast and accurate prediction of both performance and
power consumption of real world applications and bench-
marks. Applications often exhibit significant power and per-
formance variations, where estimation of time-varying per-
formance and power traces can provide useful information
for optimization of both hardware and software.

Traditionally, hardware models are presented to software
developers in the form of cycle-accurate or functional vir-
tual platforms and instruction set simulators (ISSs) [3,15].
Even though such models can very accurately estimate the
software performance, simulation speeds are typically very
slow, which severely limits the amount of exploration that
software or hardware developers can perform. By contrast,
analytical models of processors are fast, but typically not
as accurate. Moreover, performance or power models con-
structed via analytical techniques are often exclusively tar-
geted at design space exploration for existing hardware and
a given set of benchmarks. Such models require execution
traces or statistics obtained by running the actual workload

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full cita-
tion on the first page. Copyrights for components of this work owned by others than
ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or re-
publish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions @acm.org.

DAC 16, June 05-09, 2016, Austin, TX, USA
© 2016 ACM. ISBN 978-1-4503-4236-0/16/06. .. $15.00
DOL http://dx.doi.org/10.1145/2897937.2897977

in question either on a partial ISS model [14] or on a physi-
cal realization of a close micro-architecture variant [13]. By
contrast, applications can run significantly faster on real ma-
chines. Intuitively, there exists a latent relationship between
execution time of a program on different machines. An in-
teresting question is thus whether a few example runs on
the slow, detailed simulator and the corresponding runs on
some other real hardware can give insight into the correla-
tion between the two [22].

In this paper, we propose a novel learning-based, analyti-
cal framework for such cross-platform prediction, LACross,
that is capable of fast and accurate estimation of both per-
formance and power at fine temporal granularities. It is
known that programs tend to exhibit more homogeneous be-
havior at the individual phase level [20]. This motivates us
to pursue an approach that performs performance and power
prediction at the granularity of program phases. With a
proper choice of phases, temporal variations in large scale
program behavior can be accurately captured. This can
provide hardware and software developers with fine-grain
information about the location of performance and power
hotspots of the program as it would execute on a target sys-
tem. Hardware developers can use such architecture proxies
trained on small micro-benchmarks to evaluate time-varying
behavior of large, real-world applications not otherwise pos-
sible when only slow pre-silicon models are available in early
development stages. Similarly, learning models trained on
real implementations or other reference models can be given
to external software developers without requiring access to
target hardware or exposing architecture internals.

The rest of the paper is organized as follows: after an
overview of our approach in Section 2, Section 3 surveys
related work. Section 4 describes the formulation of our
performance and power prediction problem. Section 5 then
discusses the experimental setup, and Section 6 presents re-
sults of our prediction framework. Finally, Section 7 con-
cludes with a summary of the key contributions and results.

2 Overview

An overview of the proposed LACross approach is shown
in Figure 1. The learning-based formulation of the perfor-
mance and power prediction problem consists of two stages:
a training stage and a prediction stage. During the training
stage, a set of sample programs (“training set”) are executed
both on the host machine (“host”) and a reference target
model (“target”). The reference model could be either a
simulator or real physical hardware, such as a development
board. The target and the host do not necessarily have to
be of similar architectures. In fact, as our results will show,
it is possible to achieve accurate prediction between targets
and hosts that are of vastly different micro-architectures and
instruction set architectures (ISA).

App. 1

| :’ W 0! App. i .
A |Target Modell ™!y 0! {0 Ape. N

|

|

| Tl TR0l |

M Q1 gy i 01 |
il |

|

| -
App.i 1 I lH 0

: Nq T Iyl Q1
| App. N

Phase Level Performance Phase Level
Feature Vectors Performance/Power

~.Prediction. - - >~ _ ___ [_ _ _ _ _ _ ___
o Predictive
App. I : | ‘ Model

|
|
o - I
|

Figure 1: LACross overview.

For each workload we obtain, at phase level, various hard-
ware performance features from the host as well as reference
performance and power from the target. Our goal is to ex-
tract the latent relationship between the host and target.
We formulate this problem into a statistical learning set-
ting, and derive prediction models for both performance and
power on the target. During the prediction stage, a new ap-
plication is executed only on the host. A set of performance
features is obtained at phase level and used as inputs to
the prediction model in order to produce an estimate of the
performance and power on the target.

3 Related Work

Traditional simulation-based approaches estimate perfor-
mance of a program by executing it on cycle-accurate or
cycle-approximate ISSs [3,7,15]. The main drawback is
speed, as throughput of most ISS is on the order of several
hundred KIPS to several MIPS. Hardware-assisted accelera-
tion [8] and source-level, host-compiled and transaction level
modeling (TLM) techniques [5] have recently been proposed
for improving simulation speed while trying to maintain ac-
curacy close to an ISS. Throughput of these higher-level ap-
proaches is often 200-500 MIPS when including cache sim-
ulation, while accuracy is often above 90%. However, they
typically involve static or dynamic back-annotation of source
code or hardware models with simulated target performance
estimates. With the effect of compiler optimization and out-
of-order hardware execution, back-annotation becomes dif-
ficult to track, which inherently limits its accuracy.

Early analytical models [19,21] focused on the evaluation
and study of microarchitectural variations on pipeline and
instruction-level parallelism. More recently, statistical and
regression-based methodologies have emerged. Bircher et
al. introduced techniques using linear regression for pre-
dicting power consumption from performance counters [4].
McCullough et al. [16] survey counter based power modeling
techniques and show their limitations in modeling complex
systems. Lee and Brooks proposed a predictive modeling
and spatial sampling method [13] for efficient microarchitec-
ture design space exploration. Joseph et al. [11] also utilized
regression-based approaches to construct processor perfor-
mance models. Similar ideas were also introduced by Ipek
et al. [10] using artificial neural networks instead of regres-
sion. However, all of these approaches try to obtain sta-
tistical performance models for some target architecture of
interest from measurements performed on the same base ar-
chitecture. By contrast, we aim to provide performance and

power prediction by establishing analytical models that cor-
relate two distinct architectures. Our previous work [22] had
similar goals. However, prior work was limited to predicting
performance of whole programs only, where errors of more
than 40% were shown for small embedded benchmarks on
simple in-order targets. By contrast, the approach in this
paper supports estimation of both power and performance
at fine temporal granularities with more than 95% accuracy
when targeting complex benchmarks and architectures.

4 Problem Formulation

Many possible granularities for defining program phases
have been proposed [9,20]. In our approach, we define the
program phases in units of dynamic basic blocks, and we
study the effect of different granularities on prediction.

We apply a variant of a LASSO linear regression to our
performance and power prediction problem with two key dif-
ferences. We impose extra constraints on the model parame-
ters and we perform linear regression on a phase-specific ba-
sis. We formulate this as a phase-level simplex-constrained
quadratic programming (SCQP) problem. For each work-
load, we obtain feature vectors consisting of selected hard-
ware performance counter measurements for every program
phase. We make the assumption that the model in each
phase follows a linear relationship with its features. We then
apply SCQP to obtain a linear predictive model specific for
each program phase by correlating the host performance fea-
tures with target performance and power.

Formally, let m be the total number of program phases
in the training set. Define X = (a:l, e ,xm) ,and Y =
(yl, e ,ym), where z; € R? denotes the performance fea-
ture vector obtained from the host for program phase j and
y; € R its corresponding cycles or power from the refer-
ence simulator or hardware. Similarly, for a given test pro-
gram with n program phases, let V = (1)1, e ,vn) and © =
(01, e ,Qn) denote the sets of performance feature vectors
v; € R at phase ¢ and unknowns §; € R? corresponding
to parameters of the linear hyperplane at each v; that need
to be determined. The predicted performance or power at
phase i is then computed as v76;. The overall prediction for
the entire program can be computed as tr(V7').

In each phase i, SCQP determines the corresponding 6;
by solving the following optimization problem,

R 17 2
— | X7 0; = Y| Do,
minimize QnH 1D (v (41)
subject to ||6;]|1 < T and 6; > 0,

where T is a tuning parameter and ||p||a denotes the matrix
induced norm of vector p by matrix A (i.e ||p]la = v/pT Ap).
D(v;) € R™*™ is a scaling matrix with diagonal entries
D(vi)j; = {||]z; — vill2 < €} and 1{} being the standard
indicator function, where € is a tuning parameter.
Intuitively, the quadratic objective function in (4.1) aims
to minimize the prediction error in each program phase by
considering only the feature vectors in the training set that
are close to v; as determined by a l2-distance threshold of
€. Since feature vectors that are close to each other are
more likely to exhibit similar performance patterns across
different architectures, we impose the distance constraint
such that only relevant feature vectors in the training set
are considered when forming the prediction model for each
phase. The l;-norm constraint on the hyperplane parameter

Table 1: Performance counters profiled on the host.

L1 Total Cache Misses L1 Total Cache Accesses
L2 Total Cache Misses L2 Total Cache Accesses
L3 Total Cache Misses L3 Total Cache Accesses
TLB Loads Cycle Stalled
Unconditional Branches Conditional Branches
Branch Misses Floating Point Operations
Instructions Cycles

0; restricts solutions to be small in order to avoid overfitting,
and the positivity constraint states that all the performance
features on the host should contribute positively to the per-
formance or power on the target. These type of constraints
are commonly known as simplex constraints.

The SCQP problem (4.1) does not have an analytical so-
lution. In fact, it can be transformed to a particular type of
convex optimization problem for which the objective func-
tion is a quadratic plus a convex but non-smooth function
(the l1-norm constraint). The solution can be computed ef-
ficiently by first-order iterative algorithms, such as proximal
gradient methods [18].

Notice that in the SCQP, we need to choose two tuning
parameters € and T. We employ a standard technique known
as cross-validation [12] to determine their values. In particu-
lar, we randomly choose a subset of the original training data
set and divide it into a training subset and a test subset. We
train using only data from the training subset, and we use
data from the test subset to compute an average prediction
error percentage. We iteratively repeat this process applying
different values for T and e until the cross-validation error
is less than 5%.

During prediction, the constructed models for all unique
per-phase feature vectors 6; are cached, such that (4.1) does
not need to be solved repeatedly for the same weight ma-
trix D(v;). Two feature vectors v; and v are defined to be
unique iff ||v; — vi||le > L, where the threshold L is em-
pirically chosen to be 200. A threshold of 200 is found to
be enough for filtering out the inherent noise in processor
performance counter based phase measurements.

5 Prediction Infrastructure

In the following section, we describe the implementation
of our training, measurement and prediction framework.

5.1 Training Set

We use a similar training setup as in [22] for explicit com-
parison of prediction accuracy. Our training set consists
of 157 diverse and representative sample programs from the
ACM-ICPC (International Collegiate Programming Contest)
database. We use original programs and inputs. In prior
work, the size of the training set was artificially increased
to improve coverage by creating 100 random inputs for each
program. This is not necessary in our case. Profiling pro-
grams at phase granularity provides sufficient amount of
training data, and no addition of artificial and possibly un-
representative data is necessary. With our new phase-based
approach, a small training set with low training overhead is
sufficient to achieve high accuracies.

5.2 Profiling and Measurement Setup

We perform profiling of the training set on a host plat-
form with an Intel Core i7-920 processor and 24GB of mem-
ory. To demonstrate the effectiveness of our approach on
state-of-the-art mobile and embedded target platforms, we
employ physical hardware references as targets for training

Instrumentation

App. Source (IR) Instrumented
App. Source (IR)
LLVM Frontend T

o
App. Source profiling API Calls (R) &/ $\&
R R R T LI IO g e --.o.c-%-oc

Executes o
Features €———— HostBinary . Target Binary
L] .

e & esees Se o o o .
| Execute

Execute

* Predicted Power/ Prediction\y
Performance P

*« Prediction >+ eeeeeeor ’ * Training e eeeoeer ’

Figure 2: Prediction framework.

and prediction. We use the ODROID-U3 [1] (U3) develop-
ment board to obtain reference performance measurements
(cycle counts). The U3 board uses the Samsung Exynos
4412 SoC as its hardware platform. The Exynos 4412 SoC
contains a homogeneous quad-core ARM Cortex-A9 proces-
sor with 32 KB L1 instruction and data cache. For reference
power measurements, we use the ODROID-XU3 [2] (XU3)
development board. It uses the Samsung Exynos 5422 SoC
as the hardware platform. The Exynos 5422 SoC consists
of a heterogeneous big. LITTLE CPU arrangement, which
combines a Cortex-A15 (A15) and a Cortex-A7 (A7) pro-
cessor cluster. The XU3 development board integrates an
on-chip TT INA231 current sensor for power measurements
of all eight cores, but the CPU hardware is restricted to not
allow any performance counter measurements. Thus, two
different boards serve as performance and power references
due to hardware limitations associated with each board.

For our study, we are mainly interested in predicting per-
formance and power for single-core workloads. Thus, all
programs are restricted to run on one core till completion,
which minimizes measurement noise due to core migration.
On the XU3 board, we restrict the workloads to run solely
on one of the A15 processors with DVFS disabled.

We use the PAPI toolset [17] for collecting a total of 14
hardware performance counters, shown in Table 1, on the
Intel host. For power measurement on the target, we devel-
oped a custom API that interacts directly with the onboard
TT INA231 power sensor.

5.3 Prediction Framework

Figure 2 shows the tool flow used in our LACross frame-
work for fine-grain phase-level profiling and prediction. We
utilize the LLVM compiler infrastructure to instrument pro-
filing APT calls at IR basic block level of each program dur-
ing compilation. The application sources are first compiled
into LLVM IR and then instrumented and linked against
the profiling API. The instrumented LLVM IR tracks the
number of dynamic basic blocks executed by the program in
order to log various counter and power measurements at the
end of each program phase. Instrumentation at the IR level
thereby guarantees that features and reference performance
and power obtained for each phase correspond to the same
execution on both the host and the target.

During training, the instrumented IR is cross-compiled
into host and target binaries. During prediction, we ob-
tain the performance features on the host for each program
phase, and we use previously collected training data to solve
Eq. (4.1) and predict per-phase performance and power. We
use MATLAB 2013a as the main computation environment.

50000 10.0%

‘l? 20000 T L— L— T L— T L— T L— — 10.0% —_ T T T T T T T T T T T T T T T
g M Predicted Cycles Based on Intel Core i7 . 2 Il Predicted Cycles Based on Intel Core i7
= 15000 I Total Cycles Measured from Hardware 8.0% 8 0 40000 I Total Cycles Measured from Hardware |[18.0% §
] - — -
£ B Prediction Error ., W E B Prediction Error 5
< 6.0% = E 30000 16.0% &
@ 10000 g <
g 4.0% 2 ' 20000 4.0% O
Y so00 L, 0 QO T
= 2.0% = — -
E o % 10000 20% o
° e
F N uUC VDX x> O EEEQEN X @ 07 F 0 0.0%
v oY= Som e] [- e .0%
S HIEIHHIE §eoeSterssEEsELe 8
22 C0TOQ EWEL® g®BETC g © 0 tEa "5 ogE2VsnEE 8
t > was 83 £ BE 3 z §° &2 5% @
5 -] -3 K]
g g ° g 5 bl - 4
(a) 19 SPEC CPU programs. (b) 16 Mibench and SD-VBS programs.
Figure 3: Predicted target cycles and prediction accuracy of 35 benchmarks (phase granularity = 5,000 blocks).
5.0W —————————————————————20.0% 5.0W ——————— 1 20.0%
- Il Predicted Power Based on Intel Core i7 ‘5 I Predicted Power Based on Intel Core i7 N
g 4.o0w EEE Average Power Measured from Hardware [{15.0% & § %W EER Average Power Measured from Hardware ||,5 oo, ©
& 30w B Prediction Error ': E 30w B8 Prediction Error o
a > c
o 100%.2 110.0% .2
220w Yt o a1
4 2 2w <
£ Low 50% 9 ¢ s0% 8
< o q 10w Ok
0.0W 0.0%
CNUWUDNXY=X>»5:LOF%w£c0 =m i
”“5U=EEE”;”=EQ.§“-E*§ & COW—\0—0 6 = 6 ¢ ® r - H S E 0D o 00%
ENOEEGS S ELSES 2L RES © EEECLEEZ=5E¢E 5 - &
-] COTOR ENE® 2 g9 =] Lo GE B nw 3SwxE 2 35S "
2 H c 0 5 = ESgEg"Eh = ©
2 o 08 g N ac 9 x 5T o 3]
5 g_ £ E nE g = © g = w] 9
o r [© 2 5 & q
(a) 19 SPEC CPU programs. (b) 16 Mibench and SD-VBS programs.
Figure 4: Predicted target power and prediction accuracy of 35 benchmarks (phase granularity = 20,000 blocks).
bl

M Profiling Time (5k blocks)

25000 F [Prediction Time (5k blocks)
— 20000 - B Profiling Time (20k blocks)
) [Prediction Time (20k blocks)
2 15000 1
E
¥ 10000}

5

& 5000

0 SNYSUTXEX2LEDESER LMY o

g2 EEEETYE2SS2SE2EE 9
o N s 0as ELEg=Tgns g ©
a CoToo EwEw® c®BLU ¢
=2 o wa s Sa cc 5
= Sc E wog 3
[o © -
2 2 g

(a) 19 SPEC CPU programs.

60 [Prediction Time (5k blocks)
I Profiling Time (20k blocks)
7 %0 =1 Prediction Time (20k blocks)
o 40
E 30
c
22

I Profiling Time (5k blocks)

SLEEStIz=sSESELD &

L 228 wWET §u3zaep 3 ©

¥ £& ®gEE ®"LE 5

= o o = ?® [

T o] - E
k<] -

(b) 16 Mibench and SD-VBS programs.

Figure 5: Runtime of 35 benchmarks.

6 Experiments and Results

To show the effectiveness of the proposed LACross frame-
work, we test it with 35 selected benchmark programs from
three standard benchmark suites that are not encountered
in the training set. For comparison with [22], we use the
same seven programs (aes, crc, dijkstra, fft, patricia,
gsort, sha) from the MiBench suite and nine programs
(disparity, localization, mser, multi ncut, sift, stitch,
svm, texture_synthesis, tracking) from the San Diego
Vision Benchmark Suite (SD-BVS). Furthermore, we apply
our approach to the prediction of 19 programs (perlbench,
bzip2, gcc, mcf, milc, namd, gobmk, dealll, soplex,
povray, hmmer, sjeng, libquantum, h264ref, lbm,
omnetpp, astar, sphinx3, xalancbmk) from SPEC CPU
2006. We chose the 19 programs from SPEC implemented in
C/C++ as we use the C/C++ interface provided in PAPI
to instrument counter profiling calls. We use the “large”,
“fullhd” and “ref” input sets for programs from MiBench,
SD-VBS and SPEC CPU 2006, respectively.

These 35 programs are first profiled on the Intel host to ob-
tain hardware performance feature vectors at program phase

level using the PAPI toolset. We then conduct performance
and power predictions using previously trained models for
the U3 and XU3 boards, respectively. In order to study the
effect of phase granularity on the prediction accuracy and
speed, we perform our experiments at different phase sizes.
Note that for power prediction, due to the hardware con-
straint on the sampling period of the TT INA 231 current
sensor on the XU3 development board, we found a phase
granularity of approximately 20,000 basic blocks to be the
fastest the sensor hardware could support.

6.1 Opverall Prediction Accuracy and Speed

Figure 3 shows the accuracy of predicting whole program
performance for the 35 test programs at a phase granularity
of 5,000 basic blocks. Predicted cycles are very close to the
actual cycle measurements obtained on physical hardware.
The worst case prediction error is around 2%, with average
errors less than 1%. Note that the accuracy we refer to
here is the percentage prediction accuracy of whole program
performance. By comparison, an average error of more than
5% and errors as large as 40% are reported in [22] for SD-

350

— Predicted Cycles Based on Intel Core i7

120000

n
5 300 ~— Cycles Measured from Hardware
= 250 1 : g 3 ‘
E 200 b , A | % " (Y :
3 150{Jan/t! I T, | | [| ‘
_; [I ; | \
fe) 100
500 20000 40000 60000 80000 100000
Basic Blocks (millions)
Figure 6: Fine-grained performance behavior of dealll on U3 target. (Prediction vs. Actual)
3.5wW
| \ . 4, | Predicted Power Based on Intel Core i7
; B 5.0 ' ® LI : o Ml . Power Measured from Hardware
3.0V Toek % ! . | .o 1 il il AL b =
AR A |] (s 5 ‘) | | i gt . 0L T iz " "E
8 [RrRE i ‘ Bi M | h" T il i e 11
Tl {71 |
32.5W ;
o
m | “ R ‘.v : " i .‘:‘ "
2.0m | i
1.5Wg 20000 40000 60000 80000 100000

120000

Basic Blocks (millions)

Figure 7: Fine-grained power behavior of dealll on XU3 target. (Prediction vs. Actual)

VBS and MiBench benchmarks under a larger training set.

Figure 4 similarly shows the overall program-wise power
prediction accuracy of the 35 programs from the test set,
profiled at a phase granularity of 20,000 basic blocks. The
average error for predicting average power over whole pro-
grams is about 2.5%, while the worst-case prediction error
is less than 10%.

The total runtime of each test program, as shown in Fig-
ure 5, consists of the profiling time and the prediction time.
The profiling time is the time it takes to collect various coun-
ters on the host. Hardware limitations on the simultaneous
usage of counters necessiate 5 separate runs of the program
on the Intel host to obtain the 14 features. The prediction
time measures the total duration of solving the optimiza-
tion problem (4.1) for each phase of the program. Solving
time is governed by the dimension of data matrix X and
of the neighborhood defined by distance threshold € in the
problem formulation (4.1). For the same phase granularity,
comparing runtimes of the SPEC programs (Fig. 5b) with
the MiBench and SD-VBS programs (Fig. 5a), we see that
as programs execute longer, the number of dynamic phases
grows proportionally, which results in more time spent in
solving the optimization problem (4.1). As phase granular-
ity increases from 5,000 blocks to 20,000 blocks, the average
total runtime generally decreases due to a decrease in both
the profiling and prediction time. As the sampling granular-
ity of program phases becomes larger, the total number of
dynamic phases decreases accordingly, and thus fewer vari-
ables 6 need to be solved for each program. Note that predic-
tion complexities vary across applications due to differences
in the convergence speed of solving (4.1) numerically. At the
same time, the sampling of the performance counters via the
PAPI toolset also incurs performance overheads [6]. Hence,
as the number of dynamic phases decreases, the overhead of
profiling also becomes smaller.

We demonstrate an example of fine-grained dynamic power
and performance tracing. Figure 6 and 7, show the dynamic
behavior of executing the dealll benchmark on the pre-
dicted and real targets. Here, we use a phase granularity
of 20,000 basic blocks. Results show that the prediction
tracks accurately against performance and power measure-
ments obtained from the hardware.

6.2 Phase Granularity Tradeoffs

As indicated above, the choice of phase granularity will in-
fluence prediction accuracy and speed. A finer phase granu-
larity can potentially increase training set coverage and thus
improve accuracy. Finer phase granularity, however, also re-
quires more frequent profiling and prediction. We further
study the accuracy-speed tradeoff with respect to different
choices of phase granularity.

To measure simulation speed, we use the total number of
dynamic instructions in a target program divided by the to-
tal time it takes to obtain the prediction on the host (i.e,
profiling of the performance feature vectors plus the time
spent on solving the SCQP (4.1) for all phases of the pro-
gram). To measure accuracy, we use the mean absolute per-
centage error (MAPE) between the prediction and the actual
measurement across all phases and programs.

As shown in Figure 8, the overall accuracy and speed for
predicting workload performance varies significantly with re-
spect to the choice of phase granularity. At a granularity of
5,000 basic blocks, per-phase prediction accuracy for per-
formance is about 92%. Note that due to averaging effects,
when aggregating all the phases to obtain the overall per-
formance of an entire program, as shown in Section 6.1 and
Figures 3 and 4, accuracy is considerably higher.

At a granularity of 500 blocks, phase-level predictions are
about 95% accurate as compared to real hardware measure-
ments. As the phase granularity gradually increases from
500 to 20,000 basic blocks, the prediction accuracy only ex-
periences a minor decreasing trend. The diminishing returns
at finer and finer granularities are likely due to the insta-
bility of performance counter measurements at very small
sampling periods. Such noisy measurements can deviate the
SCQP from the nominal target function. When the phase
granularity grows beyond 50,000 basic blocks, however, the
accuracy drops drastically due to the lack of coverage in
the training data. This is consistent with prior work [22],
where large errors are seen when performing prediction at
the whole program level despite using a much larger training
set. At the same time, the simulation speed improves pro-
portionally with a decrease in phase granularity. As such,
there is an optimal tradeoff between speed and accuracy at
medium granularities.

100.0%

1000 100.0% T

90.0% 90.0%

800

80.0% 80.0%

600

70.0% 70.0% o

60.0% 60.0%

400

50.0%

. /’ B8 Prediction accuracy |{200
40.0% o ® @ Simulation speed

50.0%

Speed [MIPS]

Mean abs. accuracy
Mean abs. accuracy

30.0%

10.0% Bl Prediction accuracy |{200
e e -® Simulation speed
s 0

T T 1000

n
o
n
2
m e 0 _ 530
4 8 2sf
600 T T
£ E20F
- S
400 3 ‘s 151
2 1
S 10f
oz
g 05t
So .
z

30.0% PR v — 0
0
50 ;o0°-,_o0050020002002800&000“
Phase granularity (number of basic blocks)

Figure 8: Speed and accuracy
tradeoff (performance prediction).

For power prediction (Figure 9), a similar tradeoff is ob-
served. Our method, however, is still accurate (over 90%
phase-wise accuracy compared to real hardware measure-
ments) and fast (over 500 MIPS). Again, due to error can-
cellation effects, at the same phase granularity, accuracy of
predicting average power for a whole program is better than
the average absolute per-phase prediction accuracy.

6.3 Program Phase Homogeneity

Prediction accuracy correlates closely with training set
coverage. However, it is not clear whether better training
set coverage at finer granularities is a result of the homo-
geneous nature of performance patterns in smaller program
phases or alternatively simply from having more training
data when sampling more frequently. To help clarify this
question, we show in Figure 10 the total number of unique
dynamic program phases across all training set programs as
a function of the phase granularity. As the phase granularity
increases, the total number of unique phases increases. This
indicates that more diverse performance patterns emerge as
increasingly larger chunks of a program are encapsulated in
one phase. Conversely, as program phases become more fine-
grained, even though the total number of phases increases,
the total number of unique phases decreases. This indicates
that the improvement in the coverage of the training set at
smaller granularities is due to an increase in homogeneity in
the performance patterns as phases becomes smaller.

Note that as granularity continues to increase, the total
number of unique phases would also be expected to continue
to increase. However, since all programs complete their ex-
ecution in a finite amount of time, the number of dynamic
phases is finite. Thus, the total number of unique phases
eventually decreases when the phase granularity becomes
too large. This agrees with the downward trend observed in
Figure 10 for phase granularities greater than 20,000.

7 Summary and Conclusions

This paper proposes LACross, a unified learning-based
framework for fast and accurate phase-level cross-platform
prediction of performance and power of a workload running
on a target machine. The key idea is the simple observation
that performance and power consumption of an application
running on two different platforms are correlated, even if the
two platforms are of vastly different architectures. We fur-
ther show that constructing prediction models at program
phase level helps to resolve training set coverage issues and
thus increases accuracy. With proper choice of phase gran-
ularity, the prediction achieves over 97% accuracy at speeds
over 500 MIPS for both performance and power. This is
orders of magnitude faster than traditional cycle-accurate
simulation, with the drawback that it requires application

2000 g00° Xooo“o 5000““

Phase granularity (number of basic blocks)

Figure 9: Speed and accuracy
tradeoff (power prediction).

500 10“0100050001000800%%0 gggo°°

Phase granularity (number of basic blocks)

Figure 10: Normalized total number
of unique phases.

source code to be available. Predictions based on an x86
host can thereby run at almost the same speeds as executions
on physical ARM hardware. With better hardware counter
support in the hosts, prediction speeds could be even higher.

Acknowledgments

This work is supported by SRC grant 2012-HJ-2317. We
would also like to thank the anonymous reviewers for their
helpful suggestions to improve the paper.

8 References

[1] ODROID U3 Development Board. http://www.hardkernel.com/
main/products/prdt_info.php?g_code=g138745696275.

[2] ODROID XU3 Development Board. http://www.hardkernel.
com/main/products/prdt_info.php?g_code=g140448267127.

[3] N. Binkert et al. The gem5 simulator. SIGARCH Computer
Architecture News, 39(2):1-7, 2011.

[4] W. Bircher et al. Runtime identification of microprocessor
energy saving opportunities. In ISLPED, 2005.

[5] O. Bringmann et al. The next generation of virtual
prototyping: Ultra-fast yet accurate simulation of HW/SW
systems. In DATE, 2015.

[6] S. Browne et al. A portable programming interface for
performance evaluation on modern processors. Int. J. High
Perform. Comput. Appl., 14(3):189-204, 2000.

[7] T. E. Carlson et al. Sniper: Exploring the level of abstraction
for scalable and accurate parallel multi-core simulation. In SC,
2011.

[8] D. Chiou et al. FPGA-accelerated simulation technologies
(FAST): Fast, full-system, cycle-accurate simulators. In
MICRO, 2007.

[9] M. Huang et al. A framework for dynamic energy efficiency and
temperature management. In MICRO, 2000.

[10] E. Ipek and S. A. Mckee. Efficiently exploring architectural
design spaces via predictive modeling. In ASPLOS, 2006.

[11] P. J. Joseph. A predictive performance model for superscalar
processors. In MICRO, 2006.

[12] R. Kohavi. A study of cross-validation and bootstrap for
accuracy estimation and model selection. In IJCAI, 1995.

[13] B. C. Lee et al. CPR: Composable performance regression for
scalable multiprocessor models, 2008.

[14] S. Li et al. McPAT: An integrated power, area, and timing
modeling framework for multicore and manycore architectures.
In MICRO, 2009.

[15] P. S. Magnusson et al. Simics: A full system simulation
platform. IEEE Computer, 35(2):50-58, 2002.

[16] J. C. McCullough et al. Evaluating the effectiveness of
model-based power characterization. In USENIX, 2011.

[17] P. J. Mucci et al. PAPI: A portable interface to hardware
performance counters. In DoD HPCMP, 1999.

[18] Y. Nesterov. Smooth minimization of non-smooth functions.
Mathematical Programming, 103:127-152, 2005.

[19] D. B. Noonburg and J. P. Shen. Theoretical modeling of
superscalar processor performance. In MICRO, 1994.

[20] T. Sherwood, E. Perelman, and B. Calder. Basic block
distribution analysis to find periodic behavior and simulation
points in applications. In PACT, 2001.

[21] D. J. Sorin et al. Analytic evaluation of shared-memory systems
with ILP processors. In ISCA, 1998.

[22] X. Zheng et al. Learning-based analytical cross-platform
performance prediction. In SAMOS, 2015.

