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ABSTRACT
Recent research studies have shown that modern GPU perfor-

mance is often limited by the memory system performance. Op-
timizing memory hierarchy performance requires GPU designers
to draw design insights based on the cache & memory behavior of
end-user applications. Unfortunately, it is often difficult to get ac-
cess to end-user workloads due to the confidential or proprietary
nature of the software/data. Furthermore, the efficiency of early
design space exploration of cache & memory systems is often lim-
ited due to either the slow speed of detailed simulation techniques
or limited scope of state-of-the-art cache analytical models.

To enable efficient GPU memory system exploration, we present
a novel methodology and framework that statistically models the
GPU memory access stream locality. The proposed G-MAP (GPU
Memory Access Proxy) framework models the regularity in code-
localized memory access patterns of GPGPU applications and the
parallelism in GPU’s execution model to create miniaturized mem-
ory proxies. We evaluate G-MAP using 18 GPGPU benchmarks
and show that G-MAP proxies can replicate cache/memory perfor-
mance of original applications with over 90% accuracy across over
5000 different L1/L2 cache, prefetcher and memory configurations.

1 Introduction
In the past decade, graphics processing units (GPUs) have emerged

as a popular computation platform for applications beyond graph-
ics. Programmers exploit these massively parallel architectures in
diverse domains (e.g., linear algebra, bioinformatics etc.). GPUs
leverage large amounts of parallel hardware combined with light-
weight context switching among thousands of threads to hide the
impact of long memory latencies and improve performance. How-
ever, many recent studies [8, 13] have shown that the long off-chip
memory latencies still limit GPU performance. Hence, on-chip
caches have been adopted in mainstream GPUs [1] to reduce the
latency impact and off-chip memory traffic. However, GPU cache
performance is often sub-optimal due to limited per-thread cache
capacity, MSHRs etc. Thus, optimizing performance of GPGPU
applications requires evaluating new memory hierarchy designs.

Early design space exploration of GPUs is traditionally done by
computer architects and researchers using detailed cycle-accurate
simulators [4, 19]. Although accurate, simulators are often very
slow, which severely limits the efficiency of extensive design-space
exploration [22]. Recently, few researchers have proposed analyti-
cal models [15, 21] to estimate GPU cache performance. Although
such models are fast, their scope is often limited (model limited
degree of parallelism [21], applicable for L1 caches [15, 21]). Fur-
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thermore, effective modeling techniques require access to either the
application source code or memory traces. Unfortunately, source
code or exact memory traces of end-user workloads are often in-
accessible due to their proprietary nature [10]. A few examples of
proprietary workloads include programs used by the department of
energy, national labs, financial applications etc. Therefore, GPU
memory system designers need insights into the end-user work-
loads, but end users can not divulge any proprietary information.

CPU memory system designers have also faced similar prob-
lems, and as a solution, they have used a miniaturized representa-
tion of the end-user workloads, called a “proxy” or “clone”, which
mimics the end-user workload performance [3, 10, 18]. However,
no such suitable solutions exist for cloning GPU memory access
patterns. Most prior GPU performance cloning studies have fo-
cused on modeling instruction- or thread-level parallelism [22, 6].

In this paper, we propose G-MAP, a novel methodology and
framework to statistically model the inherent memory access local-
ity and parallelism of GPGPU applications to create miniaturized
GPU memory access proxies. These proxies closely mimic the per-
formance of the original applications and facilitate evaluation of fu-
turistic GPU memory hierarchies. G-MAP exploits three key obser-
vations of the GPU execution model to create the memory proxies.
First, although GPUs typically run several thousands of threads,
the dynamic execution paths taken by most threads can be summa-
rized using a small set of dominant paths. G-MAP leverages this
observation to capture a set of dominant dynamic memory execu-
tion profiles, which represent the sequence of memory instructions
executed by all threads. Doing so also helps G-MAP to later ac-
celerate memory performance modeling by skipping computation
instruction processing. Second, individual threads in most GPGPU
kernels typically access memory based on a linear (regular) trans-
formation of the thread index. G-MAP exploits this synergy and
regularity in GPU memory access patterns to generate proxy mem-
ory accesses for each thread, ordered based on the thread’s dy-
namic memory execution profile. Finally, accurate modeling of
the cache & memory performance of GPGPU applications requires
accounting for GPU’s parallel execution model. G-MAP models
appropriate thread-level parallelism by leveraging a fine-grained,
coordinated scheduling policy to create ordered per-core memory
traces from the ordered per-thread access sequences, which can be
simulated on detailed multi-core, multi-level cache/memory perfor-
mance simulators to perform extensive design trade-off analysis.

The combination of statistical profiles captured by G-MAP can
accurately mimic GPGPU application memory behavior. Apart
from enabling to hide the original memory accesses, G-MAP can
scale down the original benchmarks by generating fewer number of
accesses in the proxies leading to reduced simulation time and stor-
age requirements. G-MAP may also scale up the original bench-
marks to model futuristic workloads with larger footprints, larger
number of threads, cores, etc. Other benefits of G-MAP include
proxy portability (same statistical profiles collected for CUDA or
OpenCL programs). The key contributions made in this paper are:

• We propose G-MAP, a novel methodology and framework to
statistically model the memory access behavior of GPGPU ap-
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plications to create miniature memory access proxies.

• We identify a set of key statistics needed to capture the memory
access patterns of GPGPU applications.

• We propose a memory proxy generation and performance mod-
eling technique accounting for GPU’s parallel execution model.

• We evaluate G-MAP using 18 benchmarks from Rodinia [5],
CUDA SDK [2] and Ispass09 [4] benchmark suites and show
that the G-MAP’s performance cloning methodology mimics the
performance of the original workloads with over 90% accuracy
across over 5000 L1/L2-cache/prefetcher/memory configurations.

Without loss of generality, we will refer to GPGPU as GPU in
the rest of this paper.

2 Background
This section provides a brief background about the baseline GPU

architecture and the GPU application execution model.
2.1 GPU baseline architecture

GPUs consist of a collection of data-parallel SIMD cores (stream-
ing multiprocessors (SMs) in NVIDIA GPUs or compute units (CUs)
in AMD GPUs) as shown in Figure 1a. Each SM fetches, decodes
a group of threads (warps in NVIDIA GPUs or wavefronts in AMD
GPUs) and executes them in lockstep, following the single instruc-
tion multiple thread (SIMT) model. GPUs support multiple types
of on-chip caches to improve memory bandwidth utilization. Each
SM is associated with a private L1 data cache, texture cache, con-
stant cache and shared memory. The global memory is partitioned
and all SMs are connected to the memory modules by an intercon-
nection network. Each memory controller consists of a slice of the
shared L2 cache and the DRAM partition.
2.2 CUDA/OPENCL execution model

The GPU software execution model is shown in Figure 1b. A
GPU application is composed of several kernels. Each kernel is
comprised of a grid of scalar threads and each thread has a unique
identifier which is used to divide up work among the threads. Within
a grid, threads are split into groups of threads called threadblocks
(TB) or concurrent thread arrays (CTA). Threads are distributed to
SMs at the granularity of entire threadblocks and multiple thread-
blocks can be assigned to a single SM (if resources permit). Threads
in a threadblock are further sub-grouped into warps (where, a warp
is the smallest execution unit sharing the same program counter).
In our baseline system, each warp contains 32 threads. For mem-
ory instructions, a memory request can be generated by each thread
and up to 32 requests are merged if these requests are for the cache-
line(s). Therefore, only one or two memory requests are generated
per warp if requests in the warp are highly coalesced.

3 Related Work
Early design space exploration of GPU memory hierarchy de-

signs is traditionally done using detailed, cycle-accurate simulators
[4, 19]. Although accurate, simulator speeds are often very slow
which limits efficiency of extensive design space exploration. Few
researchers have also proposed analytical models to estimate GPU
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Figure 2: G-MAP framework
cache performance. To model L1 cache miss rate, Tang et al. [21]
applied reuse distance theory on a single TB on a single core by
arguing that there is limited reuse across different TBs. Nugteren
et al. [15] proposed another GPU L1 cache model. They collected
per-warp memory traces and emulated inter-warp parallelism using
round-robin scheduling policy before applying an extended reuse
distance model (considering cache latencies, MSHRs etc.). Al-
though such models are fast, their scope is limited to L1 cache
performance modeling. In contrast, G-MAP’s performance cloning
framework can allow extensive exploration of different levels of the
GPU memory hierarchy. Other GPU analytical modeling proposals
[8, 20] focus on core performance, while using simple abstractions
to model memory performance.

Yu et al. [22] proposed a GPU application cloning technique by
replicating the instruction mix, control-flow, divergence behavior
etc. Deniz et al. [6] proposed another GPU benchmark synthe-
sis framework by replicating the instruction throughput, compute
resource utilization etc. of GPGPU applications. Both the stud-
ies focus primarily to mimic instruction-level characteristics and
model memory access patterns using abstract/simple models. In
contrast, G-MAP models the memory behavior in detail, while ab-
stracting out the core performance. Application cloning techniques
have been extensively studied in CPU applications [3, 10, 18, 7],
but they are not directly applicable to GPUs [22].

4 G-MAP’s Methdology
Figure 2 shows an overview of G-MAP’s proxy generation frame-

work. During the profiling phase 1©, G-MAP characterizes the
GPU application’s inherent locality and parallelism patterns (e.g.,
thread hierarchy, spatial & temporal locality etc.) to create a workload-
specific statistical profile 2©. We will discuss details of the different
profiles captured by G-MAP later in this section. During the clone
generation and modeling phase 3©, G-MAP adopts a systematic
methodology to create a locality- and parallelism-aware clone of
the application based on the workload-specific profile, which can
be used to drive GPU cache & memory performance exploration.

G-MAP exploits three key features of GPU execution to model
memory access behavior using a set of statistical profiles. First,
although GPU’s execution model supports running thousands of
threads, we observed that the dynamic memory execution paths
executed by most threads can be summarized using a small set of
dominant profiles. Second, most GPGPU memory operations ac-
cess memory locations by exploiting a linear transformation based
on the index (tid) of the thread accessing memory. This leads to
high degree of regularity in how consecutive threads access differ-
ent memory locations (inter-thread locality) for the same instruc-
tion and how individual threads access memory locations during
successive iterations of the same instructions (intra-thread local-
ity). G-MAP exploits this predictability in both inter- and intra-
thread locality to create a memory access trace per thread, ordered
based on the thread’s dynamic memory execution profile. Third,
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synthesizing ordered per-thread memory traces alone (without ac-
counting for GPU’s parallel execution model) is not sufficient to
replicate the cache/memory performance. To account for the paral-
lelism, G-MAP leverages per-core warp queues and a coordinated
scheduling policy to generate ordered per-core memory access se-
quences from the set of ordered per-thread accesses.

G-MAP maintains the same grid and TB dimensions as the orig-
inal application. It follows Fermi’s [1] execution model to group
threads into threadblocks & warps based on section G.1 of CUDA
programming guide [16]. G-MAP also implements a memory coa-
lescing model to combine memory requests based on section G.4.2
of CUDA programming guide [16]. Coalescing is modeled before
applying the memory locality analysis, as it significantly reduces
the computational and memory complexity of the G-MAP model.
In the following sections, we will first discuss the profiles collected
by G-MAP, followed by the performance cloning algorithm.

4.1 Dynamic memory execution profile
A GPU kernel typically executes thousands of threads. Ow-

ing to the CUDA/OpenCL execution model, every thread within
a kernel executes the same sequence of instructions (computation
& memory) in the absence of control path divergence. G-MAP
leverages this observation to capture a single dynamic memory in-
struction profile (denoted as the π profile) for a base thread, as
a representation of the sequence of dynamic memory instructions
executed by all threads. For example, in figure 3a, all 4 threads
follow the same path leading to a single dominant π profile. Of
course, this assumption is valid only in the absence of control-flow
related divergence effects, which can cause individual threads to
execute different paths. We will discuss how G-MAP accounts for
such effects in Section 4.4. Nevertheless, the CUDA programming
guide recommends writing programs with minimal control-flow di-
vergence as divergence negatively impacts warp occupancies and
performance. The π profile is used for synthesizing an “ordered”
per-thread proxy memory address sequence. G-MAP also exploits
code-localization (for every static instruction in the π profile) to
capture memory access patterns, as we will discuss next.

4.2 Inter-thread memory access locality
As work distribution in a kernel is primarily done using the tid in

most GPU applications, GPU memory operations are often a linear
function of the tid of the thread accessing memory. Since adjacent
threads differ by an index of 1, offset between addresses accessed
by adjacent threads is often fixed. For example, Figure 4 shows
such a kernel with two warps adding two arrays (a,b) under the
SIMT model. Here, each warp is composed of 8 threads. We can
observe how the consecutive threads access different elements of
the two arrays in a regular manner with an inter-thread stride of 1.

Table 1 shows the dominant memory instructions, their frequency,
the most dominant PC-localized inter-warp stride (after coalesc-
ing requests from threads within each warp) and stride frequency
(columns 2-5) across 10 GPGPU applications (benchmark details
are provided later). We can observe that across most applications,
there exists significant inter-thread memory access regularity for
the dominant instructions. G-MAP captures this synergy in mem-
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Figure 4: Example showing intra-thread and inter-thread strides
with two warps adding elements of two arrays

ory access patterns across threads in the form of a per-static in-
struction, inter-thread stride distribution. Later, during proxy gen-
eration, G-MAP exploits this information to generate the base ad-
dresses of every static instruction executed by each thread, starting
from an initial estimate of the base addresses accessed by the base
thread. Choice of the initial base addresses can help to create ob-
fuscated proxy memory access sequences for proprietariness.
4.3 Intra-thread memory access locality

Most GPU applications also exhibit regularity in how individual
threads access different memory locations during successive iter-
ations of the same instructions (e.g., in a loop). Considering the
same example in Figure 4, using its unique tid, each thread accesses
some elements of the two arrays (e.g., t0 accesses the 0th, 16th etc.
array elements, and other threads follow a similar trend). In all, a
thread with tid m accesses m+( j ∗Total_Threads) elements of an
array (where j represents the currently processed section of data)
with an intra-thread stride of 16.

G-MAP exploits this regularity in intra-thread memory access
patterns to clone the dynamic memory trace of each thread (mem-
ory access ordering is based on the π profile). G-MAP specifically
leverages two key intra-thread locality metrics: (a) PC-localized
stride distribution and (b) reuse distance. G-MAP captures the dis-
tribution of dominant intra-thread strides per PC. Reuse distance is
an effective model of temporal locality [14, 15, 21]. It is defined as
the number of distinct data elements accessed between the current
and the previous access to the same data element. G-MAP tracks
intra-thread reuse in the form of LRU stack distance distribution
[14] (see Figure 5 for a reuse distance computation example). Ta-
ble 1 shows the most dominant PC-localized intra-thread stride (af-
ter coalescing) and reuse frequency (low, medium, and high reuse
implies <30%, 30 - 70% and >70% reuse respectively) across a set
of GPU applications (columns 6-7). To synthesize the per-thread
proxy sequence, G-MAP generates a memory address for each dy-
namic memory instruction by first trying to satisfy any dominant
intra-thread reuse distance (sampled from the reuse histogram) us-
ing an appropriate intra-thread stride value (if possible), followed
by sampling a stride value from the intra-thread stride histogram.
4.4 Control-flow divergence

So far, we have assumed that all threads within a kernel execute
the same sequence of memory operations, which is represented as
the π profile. Even in the presence of control flow divergence, we
observed that for most applications, the dynamic memory execu-
tion profiles of individual threads can still be summarized using a
small set of dominant profiles and their corresponding frequencies
(see Figure 3b for an example kernel with two unique π profiles).
To do so, G-MAP clusters the dynamic memory instruction profiles
based upon their inherent similarity. For a given pair of memory in-
struction profiles πi and π j, their similarity is defined as the total
number of identical entries in sequence. Two profiles belong to the
same cluster if their similarity is above a certain threshold, T h (T h
is empirically chosen as 0.9 in our experiments).
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Table 1: Application memory patterns

Application Mem PC %Mem Freq Inter-warp Intra-Warp
Dom. Stride %Stride Dom. Stride Reuse

Heartwall
0x900 81% 128 51.9% 64

High0x4a0 5% 128 51.9% -128
0x4a8 3.8% 128 51.9% 1024

BP
0x3F8 19.4% 128 75% 128

Med0x408 19.4% 128 64.1% -128
0x478 19.4% 128 67.1% 128

kmeans 0xe8 ∼100% 4352 78.2% -128 High

SRAD
0x250 31.2% 16384 78% -8192

Low0x230 31.2% 16384 75% -8192
0x350 31.2% 16384 80% -8192

SP 0xd8 48% 128 88% 4096 Low0xe0 48% 128 88% 4096

CP
0x208 25% 2048 78.2% -1024

Med0x218 25% 2048 78.2% -1024
0x220 25% 2048 78.2% -1024

BLK
0xF0 20% 128 77.6% 245760

Low0xF8 20% 128 77.6% 245760
0x100 20% 128 77.6% 245760

LUL
0x1c85 4% 352 26% -128

Low0x1ca8 4% 352 26% -128
0x1cc8 4% 352 26% -128

LIB
0x1c68 46% 128 57% 19200

High0x1ce0 46% 128 57% 19200
0x1b40 4% 128 57% 19200

FWT
0x458 12% 128 88.6% –

Med0x460 12% 128 88.6% 19200
0x478 12% 128 88.6% 19200

4.5 Scheduling policy
Prior research has shown that the order of execution of threads

(a.k.a scheduling policy) affects memory hierarchy performance.
G-MAP follows Fermi’s execution model to determine how threads
execute together on a single core. G-MAP assigns threadblocks to
cores in a round-robin (RR) fashion until they are full, new TBs get
scheduled when the running TBs finish execution. Threads within
each TB are sub-grouped into warps and threads within a warp are
scheduled simultaneously. To account for GPU’s parallel execu-
tion model, G-MAP leverages the idea of a per-core warp queue.
Initially, the queue is filled with all active warps (from one or more
TBs) ordered by the warp identifier (tid / warp size). In the simplest
form, so long as the queue is not empty, a warp is selected based
on RR policy and a single memory request is processed per thread.
As a warp finishes a memory request, it is delayed in proportion to
the request’s latency. This is equivalent to the popular loose round
robin (LRR) warp scheduling policy adopted in GPUs. Since G-
MAP does not model the detailed GPU core, it captures the effect of
other scheduling policies using a simple metric, SchedPsel f , which
is defined as the probability of scheduling the same warp consec-
utively. Although approximate, we will show later that it can es-
timate cache & memory performance across different scheduling
policies. G-MAP models TB-level synchronization by capturing
synchronization information in the π profiles and uses it to control
the scheduling policy (if needed).

4.6 Proxy generation and modeling
In this section, we will discuss how G-MAP leverages the mea-

sured statistical features to generate memory clones for evaluating
GPU memory hierarchy performance. Formally, our features can
be characterized by a 5-tuple (Π,Q,B,PS,PR). Π= {π1,π2, . . . ,πM}
denotes the set of M dominant dynamic memory instruction pro-
files. Q is a probability measure on Π. B = {b(1),b(2), . . . ,b(N)}
denotes the base addresses of all N static instructions correspond-
ing to the π profiles.

PS = {(P
(1)
E ,P(1)

A ), . . . ,(P(N)
E ,P(N)

A )}

contains a set of distributions (P(i)
E ,P(i)

A ) for each unique static in-

struction i. Here P(i)
E , P(i)

A denotes the distribution of inter-thread
stride, intra-thread stride histograms respectively. Finally, PR =

{P(1)
R , . . . ,P(M)

R } denotes the collection of reuse distance distribu-
tion for each dominant memory instruction profile π .

Algorithm 2 describes G-MAP’s proxy generation steps. First,

Algorithm 1 Trace Generation for Thread t

1: Input: πi,B,PS,P
(i)
R ;

2: Output: Tt []: Memory access for each instruction in πi
3: Initialize: B’ = B;
4: for jth instruction in πi do
5: k = πi[ j];
6: if instruction k is being generated for the first time then
7: Sample offset from inter-thread stride distribution P(k)

E ;
8: Tt [ j] = b(k) + offset;
9: b(k) = b′(k) = Tt [ j];

10: else
11: Sample reuse from reuse distance distribution P(i)

R ;

12: if Tt [ j−1− reuse]−Tt [ j−1] ∈ supp(P(k)
A ) then

13: Tt [ j] = Tt [ j−1− reuse];
14: else
15: Sample stride from intra-thread stride distribution P(k)

A ;
16: Tt [ j] = b′(k)+ stride;
17: b′(k) = Tt [ j];
18: end if
19: end if
20: end for
21: return Tt []

Algorithm 2 Proxy Generation using G-MAP Framework

1: Input: Π,Q,B,P, Total number of memory request J;
2: Output: T [][]: Memory access sequence
3: Determine the number of threads K based on the original application.
4: for each thread t = 1, . . . ,K do
5: Sample πi from Π with respect to Q.
6: Generate Trace Tt using πi, B, PS and P(i)

R . [Algorithm 1]
7: end for
8: For each thread t assign its corresponding warp w and core c
9: Perform memory coalescing for all threads in each warp.

10: Let Tw denote the warp-level trace after coalescing for warp w.
11: For each core c, we maintain warp queue WQc containing correspond-

ing active warps.
12: while j < J do
13: for c = 1, . . . ,MAX_CORE do
14: Choose a warp w from WQc based upon scheduling policy.
15: T [c][ j] = Tw.get_next_access(); j = j+1
16: end for
17: end while
18: return T[][]

G-MAP assigns a π profile to each executing thread (line 5). Next,
G-MAP generates a trace for each executing thread, which is or-
dered based on the memory execution sequence provided in the π

profile (Algorithm 1). To generate the per-thread memory trace,
G-MAP uses the inter-thread stride distribution to assign base ad-
dresses for the first execution instances of every memory instruc-
tion executed by the thread (lines 6-10, Algorithm 1). For suc-
cessive dynamic executions of the memory instructions, G-MAP
assigns memory addresses using the intra-thread stride and reuse
locality information as discussed before (lines 11-18, Algorithm 1).
Then, G-MAP groups individual threads into TBs and warps based
on Fermi’s execution model. G-MAP coalesces memory requests
of threads within a warp (lines 9-10) to create coalesced warp-level
traces. To model the parallel execution model of GPUs, G-MAP
exploits per-core warp queues. The queue is initially filled with
all active warps ordered by the warp identifier (line 11). To create
a unified per-core memory access trace from the ordered per-warp
traces (lines 12-17), G-MAP schedules a ready warp from the warp
queue and generates an access to the memory hierarchy simulation
model for the selected warp’s next address (line 15). Finally, the
warp queue is updated based on the warp queue maintenance pol-
icy discussed in Section 4.5. Miniaturization is performed by scal-
ing down the number of proxy accesses (J), intra-thread statistics
followed by the inter-thread statistics by the target scaling factor.
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Figure 6: Evaluating cache, prefetcher and scheduling policy configurations using G-MAP proxies: error in miss rates

5 Experiments and Results
For profiling and validation, we use CUDA-sim (heavily modi-

fied for profiling) and GPGPUsim V3.2.2 [4], which is a widely-
used cycle-level simulator for GPU architecture research. In order
to evaluate a wide variety of real-world GPU applications, we eval-
uate 18 benchmarks from popular GPGPU benchmark suites like
Rodinia [5], NVIDIA SDK [2] and GPGPU-sim ISPASS-2009 [4].
We profile execution of each application until completion or for 1
billion instructions, whichever comes first. It is to note that profil-
ing is a one-time cost and G-MAP receives only a statistical profile
as input (independent of the execution length). We choose 1 bil-
lion instructions only to keep the evaluation runs manageable. The
system configuration used for collecting G-MAP profiles is shown
in Table 2. G-MAP proxies are generated with a scaling factor of
∼4-5. For proxy cache and memory performance modeling, we use
a validated SIMT-aware multi-core, multi-level cache and memory
simulator. The cache simulator is based on CMP$im [9]. Memory
system performance is modeled using Ramulator [11], a detailed
memory system simulator. We evaluate G-MAP to model perfor-
mance of L1 data cache, L2 cache and the global memory system.
We do not evaluate the performance of shared memory or texture
caches, however, G-MAP’s methodology is generic enough to cap-
ture and replicate patterns in accesses to these caches as well.

We evaluate G-MAP’s accuracy in predicting various metrics,
including the L1/L2 cache miss rates, prefetcher effectiveness and
DRAM performance metrics across ∼290 different configurations
per benchmark (over 5000 validation points in all). We use two
metrics for validation: the percentage error between original and
proxy performance metrics and Pearson’s correlation coefficient.
Pearson’s correlation coefficient indicates how well the proxies track
the performance trends of the original applications (1 = perfect cor-
relation, 0 = no correlation). For design space exploration, com-
puter architects care about relative performance ranking, i.e. com-
pare two configurations to see which one performs better. These

Table 2: Profiled system configuration
Component Configuration
Core Config 15 SMs, 1400MHz, Max. 1024 Threads, 32684 Registers
L1 Cache 16KB 4-way, 128B line size, 1-cycle hit latency
L2 Cache 1MB, 8 banks, 128B line size, 8-way
Features Memory coalescing enabled, 64 MSHRs/core, LRR sched.
DRAM GDDR3, 8 Channels, 1 Rank/Channel, 8 Banks/Rank, 924 MHz,

tRCD-tCAS-tRP-tRAS: 11-11-11-28, FR-FCFS sched. policy

two metrics together yield how closely the proxies perform with
respect to the original workloads across a range of configurations.

L1 cache configurations - First, we compare the effectiveness of
G-MAP proxies in replicating L1 cache performance of the origi-
nal applications. We evaluate 30 different L1 configurations per
benchmark (varying cache size from 8 - 128KB, associativity from
1 - 16 and line-size from 32 - 128B, while keeping the L2 fixed
at 1 MB, 8-way), resulting in over 540 validation points across all
benchmarks. The results are shown in Figure 6a. We can observe
that the average error between the proxy and original applications is
5.1%. Overall, G-MAP’s methodology of capturing both inter- and
intra-thread memory access locality leads to high accuracy across
most benchmarks. For applications, such as Kmeans and heart-
wall, which have significant reuse locality, G-MAP’s methodology
of capturing and replaying reuse distance patterns leads to >97%
accuracy in mimicking L1 miss rates. Hotspot experiences the
highest error because it does not have significantly dominant intra-
/inter-thread stride patterns or reuse locality. Overall, the average
correlation between the proxies and original applications is 0.91.

L2 cache configurations - Next, we compare the effectiveness
of G-MAP’s methodology in matching the L2 cache performance
of the original applications (see Figure 6b). Here, we evaluate 30
different L2 cache configurations per benchmark (varying the cache
size from 128KB - 4MB, associativity from 1 - 16 and line-size
between 64 - 128B, while keeping the L1 configuration fixed at
16KB, 4-way), resulting in over 540 validation points across all
benchmarks. Overall, the average error in replicating L2 cache miss
rate error is 7.1% and average correlation is 0.91.

L1 cache and prefetcher configurations - Regular access pat-
terns enable prediction of future addresses, making prefetching a
viable option [12, 17]. In this section, we evaluate accuracy of the
memory proxies in estimating the impact of adding a state-of-the-
art L1 prefetcher [12]. We evaluate 72 configurations per bench-
mark (varying the prefetch degree, prefetcher configurations and
L1 cache configurations), resulting in over 1296 validation points.
The evaluation results are shown in Figure 6c, sorted according to
the original application cache miss rates. Overall, the average er-
ror in replicating L1 prefetcher performance is 6.3% and average
correlation is 0.9. We observed that scalarProd, srad applications
have regular access patterns, still they are largely insensitive to L1
cache prefetching due to larger footprints and lower temporal local-
ity. Hotspot application is also insensitive to prefetching because



0

50

100

0

0.4

0.8

1.2

Er
ro

r 
%

R
o

w
 b

u
ff

er
 

lo
ca

lit
y 

(n
o

rm
) ORIG G-MAP Error

0

50

100

0

0.4

0.8

1.2

Er
ro

r 
%

Q
u

e
u

e
 le

n
gt

h
 

(n
o

rm
)

0

50

100

0

1

2

3

4

Er
ro

r 
%

A
vg

. R
/W

 la
te

n
cy

 
(n

o
rm

)

Figure 7: DRAM performance evaluation using G-MAP traces
of non-dominant access patterns and low temporal locality. In con-
trast, kmeans and nw applications benefit from prefetching.

L2 cache and prefetcher configurations - Next, we compare
the effectiveness of the generated proxies in evaluating L2 prefetcher
effectiveness. We add a stream prefetcher to the L2 cache and
evaluate ∼96 configurations per benchmark (varying the stream
window between 8/16/32, prefetch degree between 1/2/4/8 and L2
cache configurations), resulting in 1728 validation points in all.
Overall, the average error in replicating L2 cache miss rate error
across different cache and prefetcher configurations is 8.9% and
average correlation is 0.88 (see Figure 6d).

DRAM performance - Next, we evaluate effectiveness of the
memory proxies to enable design-space exploration of the mem-
ory system in lieu of the original applications. We use Ramula-
tor [11], a detailed memory system simulator to evaluate 11 differ-
ent GDDR5 configurations (changing the bus width, channel paral-
lelism, DRAM addressing scheme - RoBaRaCoCh or ChRaBaRoCo)
per benchmark (total 198 configurations). We compare three key
metrics affecting memory performance: DRAM row buffer local-
ity (RBL), average memory controller queue length and average
read/write latency. Figure 7 shows the original versus clone perfor-
mance values (each value is normalized with original AES’s perfor-
mance metrics) across the 18 benchmarks. Overall the average er-
ror in RBL, average queue length and average read-write latency is
9.95%, 8.64% and 12.6% respectively (average correlation = 0.85).

Scheduling policy impact - We also test the effectiveness of
G-MAP’s methodology in replicating cache and memory perfor-
mance across two scheduling policies, Greedy-then-oldest (GTO)
and LRR (see Figure 6e). As discussed before, G-MAP does not
model the GPU cores and it adopts an approximate policy to sched-
ule threads. Nevertheless, the average error in replicating L1 cache
miss rate is 8% (5.1% for LRR and 10.9% for GTO policy).

Impact of trace miniaturization - Since G-MAP relies on sta-
tistical convergence to replicate memory access patterns, it is im-
portant to have sufficient number of samples in the original appli-
cation to replicate the different probability values due to the law of
large numbers. Figure 8 shows the impact of higher degree of trace
miniaturization on the performance cloning accuracy (left axis) and
speedup of memory simulation using the reduced clone over the
full trace (right-axis). We can see that as the trace size is reduced,
simulation speed increases almost linearly, while the performance
cloning accuracy starts dropping after a certain point. At 8X trace
size reduction, the accuracy drops to ∼90%, while the simulation
speed improves by ∼8X. The degree of miniaturization on real-
world applications can be higher since the number of samples in
the real-world application memory traces is often very large.
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Figure 8: Impact of trace miniaturization
6 Conclusion

In this paper, we proposed G-MAP, a novel methodology that
statistically models the memory access behavior of GPU applica-
tions by exploiting the synergy in code-localized access patterns
(within and across threads). G-MAP also accounts for GPU’s paral-
lel execution model by adopting a fine-grained, coordinated schedul-
ing policy to ensure appropriate parallelism at the thread-level and
cache/memory-level. We evaluate G-MAP’s effectiveness in repli-
cating the memory performance of 18 GPGPU benchmarks and
show that G-MAP proxies can replicate the performance of the
original applications with over 90% accuracy across more than 5000
different cache, memory and prefetcher configurations, while sig-
nificantly reducing the simulation time/storage requirements.
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