
Controlled Timing-Error Acceptance for Low
Energy IDCT Design

Ku He, Andreas Gerstlauer and Michael Orshansky
University of Texas at Austin, Austin, TX-78712, USA.

Email:kuhe@mail.utexas.edu, gerstl@ece.utexas.edu, orshansky@mail.utexas.edu

Abstract— In embedded digital signal processing (DSP) sys-
tems, quality is set by a signal-to-noise ratio (SNR) floor. Con-
ventional digital design strategies guarantee timing correctness
of all operations, which leaves large quality margins in practical
systems and sacrifices energy efficiency. This paper presents
techniques to significantly improve energy efficiency by shaping
the quality-energy tradeoff achievable via VDD scaling. In an
unoptimized design, such scaling leads to rapid loss of quality
due to the onset of timing errors. We introduce techniques that
modify the behavior of the early and worst timing error offenders
to allow for larger VDD reduction.

We demonstrate the effectiveness of the proposed techniques
on a 2D-IDCT design. The design was synthesized using a
45nm standard cell library. The experiments show that up to
45% energy savings can be achieved at a cost of 10dB peak
signal-to-noise ratio (PSNR). The resulting PSNR remains above
30dB, which is a commonly accepted value for lossy image and
video compression. Achieving such energy savings by direct VDD

scaling without the proposed transformations results in a 35dB
PSNR loss. The overhead for the needed control logic is less than
3% of the original design.

I. INTRODUCTION

The fast-growing market of portable systems with limited

battery life requires continued advances in ultra low-energy

design. In this paper, we propose techniques that exploit

special properties of digital signal processing (DSP) systems

to reduce their energy consumption. In conventional DSP

designs, as in other digital design flows, timing correctness of

all operations is guaranteed by construction. In static timing

analysis-driven design methodologies, every path regardless

of its likelihood of excitation, must meet timing. Conversely,

any timing violations lead to errors. Since in many DSP

applications the best signal quality is not required, it is possible

to tolerate some timing errors induced by lower VDD. If

aggressive voltage scaling can be made possible with only a

small, bounded quality loss, it can lead to significantly reduced

energy consumption.

Several efforts in the past have explored the possibility of

trading quality in DSP systems for lower energy. In [1], [2],

energy is reduced by discarding algorithm steps or iterations

that contribute less to the final quality. In [3], adaptive preci-

sion of the arithmetic unit output is used to save energy. In

[4], [5], energy reduction is enabled by using lower voltage

on a main computing block and employing a simpler error-

correcting block that runs at a higher voltage and is thus,

This work is supported by NSF grant CCF-1018075

error-free, to improve the results impacted by timing errors of

the main block. The most similar approach to ours is described

in [6], [7], [8]. In this work, implementation of combinatorial

logic blocks is restructured to enable utilization of intermediate

results, which are arranged such that the more important ones,

from the quality point of view, are obtained first.

An important distinction between prior work and our strat-

egy is that in other work the results produced by blocks subject

to timing errors are not directly accepted. From the point

of view of gate-level design, such techniques still guarantee

timing correctness of all digital operations. In [4], [5], an

estimated value of the result is used in downstream com-

putation in case of timing errors. In [6], [7], computation is

terminated early and intermediate results impacted by timing

errors are ignored entirely. In contrast, our strategy allows

using the erroneous results directly, providing, of course, that

the magnitude of error is carefully controlled. Experimental

results suggest that our approach may require smaller control

and compensation overhead. As a result, we are able to achieve

larger energy savings in the low range of quality loss.

We also anticipate that our strategy is extendable to a larger

class of algorithms. Our approach does not require changing

the algorithm itself, e.g. to allow for early termination. Instead,

we directly re-design the implementation to tolerate timing

errors. Since we only rely on modifying the implementation

at the level of core atomic RTL operations, we expect our

strategy to have utility in a wider class of DSP algorithms,

with the potentially of being automated. Another difference

with [6], [7] is that their approach only allows a discrete set

of quality-energy points. By contrast, our technique enables a

range of trade-offs along a continuous quality-energy profile.

The proposed strategy for timing-error acceptance is based

on a statistical treatment of timing errors: while we give up

on guaranteeing the worst-case timing, we have to satisfy

timing requirements on average to keep signal quality from

severe degradation. We advance architecture-level techniques

that significantly reduce algorithm quality loss under VDD

scaling, compared to direct VDD reduction. This leads to a

superior quality-energy tradeoff profile. Fundamentally, this

is enabled by (i) reducing the occurrence of early timing

errors with large impact on quality, and (ii) using control and

data flow analysis to disallow errors that are spread and get

amplified as they propagate through the algorithm.

To address the first goal, we specifically focus on the

behavior of timing errors in addition as a fundamental building978-3-9810801-7-9/DATE11/ c© 2011 EDAA

block of most signal processing algorithms. Simple analysis

shows that the magnitude of timing errors depends on the

values of operands. A specific important class of operands

leading to early and large-magnitude timing errors is the

addition of small numbers with opposing signs. We develop

two distinct techniques at two levels of granularity - one at the

operation and one at the block level - to reduce such errors.

Note that depending on knowledge about data statistics, both

techniques can be applied at design or at run time. For the

design chosen in this paper, however, we limit discussions to

static operation-level and dynamic block-level optimizations.

Combined across both goals, we present three quality-

energy (Q-E) optimizations at the operation, block and algo-

rithm levels. Techniques are introduced and demonstrated on

the design of an Inverse Discrete Cosine Transform (IDCT) as

a widely used image and video processing kernel. Specifically,

the key contributions for architecture Q-E profile shaping are:

1) Controlling large-magnitude timing errors in operations

by exploiting the knowledge of statistics of operands. In many

cases, we have knowledge of data distributions that can be

exploited at design or at run time. Specifically, in the IDCT

algorithm, high-frequency coefficients tend to have small mag-

nitude values, often of opposite sign. Our technique is based on

the realization that an adder with reduced bitwidth can be used

to process such operands. Some operands, of course, require

a full-width adder. In the IDCT algorithm, the classification

can be done at design time, with higher-frequency components

being processed in reduced-width adders while the rest of the

matrix components are processed on the regular-width adder.

2) Controlling the frequency of error-generating additions

by dynamically re-arranging the sequence of operations, e.g. in

accumulation. Similar to the previous technique, this strategy

aims at reducing the quality loss in addition stemming from

processing of small-valued opposite-sign numbers, but at a

level higher than that for a single addition. Specifically, it is

targeted at reducing the cumulative quality loss resulting from

multiple additions. Such multi-operand addition occurs, for

example, in accumulation, which is a key component of many

DSP algorithms, and, specifically, of IDCT.

3) Preventing occurrence of errors which can spread and

get amplified throughout the algorithm. An important aspect

of a design methodology that allows some timing errors

is controlling the impact of these errors on output quality

from the perspective of the entire algorithm. Specifically, a

result impacted by timing errors early in the algorithm can

have a dramatic impact on the overall quality by affecting

downstream computations through repeated reuse of incorrect

data. Therefore, we can not afford to allow errors in certain

critical steps, and we propose a technique to avoid such errors

based on rescheduling of the algorithm.

The rest of the paper is organized as follows, Section II

discusses the principle of timing error management, followed

by an introduction of the techniques to control such errors;

Section III shows the experiment results, and finally, Sec-

tion IV concludes the paper with a summary and outlook.

II. TIMING ERROR MANAGEMENT

The 2D-IDCT computation can be represented by I = CT ·
A ·C, where C is the orthogonal type-II DCT matrix and A is

the spectrum coefficient matrix. It is customary to implement

the 2D-IDCT as a sequence of two 1D-IDCTs. For each 1D-

IDCT, the core algorithm is a matrix-vector dot product:

T (k) =
c(k)
2

·
N−1∑

k=0

x(n)cos[
(2n + 1)k

2N
π]

N = 8, c(0) = 1/2, c(k) = 1, 0 ≤ k ≤ N − 1
where x(n) is the data being processed.

A. Error control through knowledge of operand statistics

When VDD is scaled down, large magnitude timing errors

happen first for additions of small numbers with opposing sign.

Such additions lead to long carry chains and are the timing-

critical paths in the adder. The worst case for carry propagation

occurs in the addition of -1 and 1. In 2’s complement represen-

tation, this operation triggers the longest possible carry chain

and, thus, experiences timing errors first. Crucially, when a

timing error occurs, the apparent result will also have a very

large possible numerical error due to carry propagation into

the MSBs leading to a large magnitude mismatch compared

to the error-free result. For example, in an 8-bit computation,

the error magnitude can be up to 64.

In the 2D-IDCT algorithm, the additions that involve small-

valued, opposite-sign operands occur in the processing of

high-frequency components. This is because the first 20 low-

frequency components contain about 85% or more of the im-

age energy [8]. Hence, the magnitude of high-frequency com-

ponents tends to be small, and coefficients follow a Laplace

distribution with high probability densities concentrated in a

narrow range [9]. Furthermore, the Laplace distributions are

zero-centered, which implies that high frequency components

also tend to have opposing signs. As such, a significant amount

of quality loss at scaled VDD can be attributed to additions

involving such components. The first specific technique we

employ is based on the realization that an adder with a bitwidth

smaller than required by other considerations can be used to

process such operands. Two objectives are achieved by using

such adders: the magnitude of quality loss is reduced and its

onset is delayed. Large-valued operands, of course, require a

regular-width adder. Note that in an actual implementation it

is possible to utilize a single adder with variable bitwidth.

In the IDCT algorithm, the classification of matrix elements

Fig. 1. Partitioning of input matrix.

can be done at design time.

This raises the question of

(a) how to best perform

this classification; and (b)

how to identify the opti-

mal bitwidth of the reduced-

width adder. In the follow-

ing, we develop a model to

enable such a design opti-

mization. We define Adder

1 as the regular-width adder

4 5 6 7 8 9
-5

0

5

10

15

20

25

30

35

40

Timing Budget (ns)

Q
ua

lit
y

Lo
ss

 D
ue

 to
 A

dd
er

 1
 (d

B
)

x increases

x increases

0

2

4

6

8

10

12

14

E
nergy in A

dder 1 (μμ μμ J)

(a) Energy and quality loss in Adder 1

0 2 4 6 8 10 12 14 16 18 20 22 24
-2
0
2
4
6
8

10
12
14
16
18
20
22
24

Width

Q
ua

lit
y

Lo
ss

 D
ue

 to
 A

dd
er

 2
 (d

B
) x increases

x increases

0

20

40

60

80

100

120

140

Energy in A
dder 2 (μμ μμ J)

(b) Energy and quality loss in Adder 2

0 1 2 3 4 5 6 7

0

5

10

15

20

25

30

Q
ua

lit
y

Lo
ss

 (d
B

)

X

 QL in Adder 1
 QL in Adder 2
 QL total

T2 increases

T1 increases

T increases

(c) Quality loss vs. component classification

Fig. 2. Quality-energy tradeoffs in Adder 1 and Adder 2.

and Adder 2 as the reduced-width adder. In classifying the

components, we seek to find the boundary, within the data ma-

trix, between the upper-left low-frequency components and the

lower-right high-frequency components. We therefore define

the following parameters of our model: x: boundary between

high-/low-frequency coefficients, where x = 0 classifies all

inputs as low-frequency processed on Adder 1 (Figure 1); D1:

Worst-case delay of Adder 1; D2: Worst-case delay of Adder

2; T1: Timing budget of Adder 1; T2: Timing budget of Adder

2.
We assume throughout this discussion that T2 = D2,

i.e. that no timing errors are allowed to occur in Adder 2.

Furthermore, we assume that T1 = T2, which implies that both

adders are affected by VDD scaling in an identical manner.

This assumption is relaxed in Figure 3.
Based on this notation, we can study the Q-E characteristics

of the two adders under scaled VDD. By exploring adder

characteristics, we are able to identify the optimal partitioning

strategy from the point of view of achieving a globally optimal

Q-E result. For simplicity, we substitute in this analysis the

equivalent notion of timing budget for the value of VDD.
We first study the Q-E relation for the regular width adder,

shown in Figure 2(a). The right axis shows the energy value at

different timing budgets T1. As expected, allotting a smaller

timing budget, which entails an equivalent lowering of VDD,

results in a reduction of energy. Increasing the number of

matrix components processed in the reduced-width adder, i.e.

increasing x, results in fewer additions performed by Adder 1,

and thus a lower energy at the same timing budget. The quality

loss (shown on the left axis) is initially low when the allotted

timing budget is high and few computations experience error.

As T1 is reduced, however, we begin to observe that the quality

loss is smaller for larger x. This corresponds to the scenario

in which fewer operations are performed by Adder 1, and thus

there is less opportunity for timing errors to occur.
The Q-E behavior of the reduced-width adder is shown in

Figure 2(b). We are specifically interested in finding the Q-

E behavior as a function of the bitwidth. Note that because

no timing errors are allowed in Adder 2, an exploration with

respect to timing budget, as shown for Adder 1 above, would

have no purpose. We see that for large bitwidths of Adder

2, there is no quality loss. A significant reduction in quality

occurs with the onset of overflow errors when the magnitude of

data being processed is larger than the available adder width.

0 5 10 15 20 25 30 35

40

60

80

100

120

140

160

E
ne

rg
y

 (μμ μμ
J)

Quality Loss (dB)

Adder 2 width=17
x = 6

Adder 2 width = 15
x = 4

Adder 2 width = 14
x = 3

Fig. 3. Energy vs. quality loss Pareto front.

The analysis of the system Q-E behavior combines the

behavior of Adder 1 and Adder 2. This enables exploration of

the x, D2, W2, and T1 design space in order to find an optimal

Q-E solution. The primary trade-off involves the choice of x.

From Figure 2(c), we can see that the total quality loss reaches

a minimum when x is around 4. For larger values, the quality

loss due to Adder 2 becomes excessive. For smaller values, the

quality loss is dominated by errors from Adder 1. However,

the optimal choice of x also depends on both the total timing

budget available as well as the bit-width of Adder 2. The set of

optimal design decisions is best represented as a Pareto curve

in the energy-quality space as shown in Figure 3. The figure

shows the Pareto points, i.e. min(Q|E), that are generated by

different choices of x and W2 at different T1.

In the implementation, the reduced-width addition is real-

ized using the truncated result of a regular-width adder sharing

the same core logic. The combined adder architecture is shown

in Figure 4. The indexes of the frequency coefficients are

used by the control logic to determine whether to feed them

into a full-width or reduced-width addition. The control logic

compares the index of the matrix component currently being

processed with the predetermined classification constant x.

The output of this comparison is used to activate a truncation

logic. The truncation logic takes a reduced number of LSBs

from the full-width adder output according to the predesigned

Adder 2 width, and sign extends them back to the full width

and feeds the result back into the destination accumulator.

B. Error control by dynamic reordering of accumulations

The technique introduced in Section II-A is able to delay

the onset of large-magnitude errors in individual two-operand

additions. The second technique presented in this section is

based on reduction of the cumulative quality loss resulting

(a) Technique abstraction (b) Implementation

Fig. 4. Reduced width adder.

from multiple additions, such as accumulations of IDCT. The

key observation is that if positive and negative operands are

accumulated separately, the number of error-producing opera-

tions is reduced to one last addition that involves operands with

opposite sign. At the same time, the operands involved in this

last addition are guaranteed to be larger in absolute value than

any individual opposite-sign operands involved in the original

sequence. This guarantees that the reordered accumulation will

result in a smaller quality loss under scaled timing.

The difference between optimized and un-optimized se-

quences is significant. As an example, consider four numbers

(-1, 1, -1, 1) being accumulated. There are three possible

sequences of accumulation:

Case 1: 11111111+00000001+11111111+00000001

Case 2: 11111111+11111111+00000001+00000001

Case 3: (11111111+11111111)+(00000001+00000001)

For Case 1, the 1st and the 3rd additions have large delay,

each with a carry chain length of 8. For Case 2, the 3rd

addition has large delay with a carry chain of 8. For Case 3,

only the addition outside the brackets has large delay with a

carry length of 7. The total timing budget in Case 3 is roughly

half of that of Case 1. Thus, we observe that the order of

accumulation can significantly affect the frequency of worst-

case delay as well as the length of the longest carry chain.

We now show how the sequence of additions can be changed

to reduce overall error. As described above, we first group

operands with the same sign. Then, the operands in each

group are accumulated and finally the results of two group-

accumulations are added. This is akin to the strategy that

Case 3 illustrates. Because the best grouping of operands

cannot be known at design time, this technique is dynamic

and is based on execution-time observation of operand values.

The proposed implementation uses the sign bits in the

MSB to separate the positive and negative operands when

loading data. The implementation is shown in Figure 5. The

control logic checks the sign bits and accumulates positive and

negative numbers in separate accumulation registers. Then, in

a final step, the results are added together. This final addition

can in turn be protected against timing errors using either one

of the techniques presented in Section II-A or II-C.

Compared to the original implementation, the reordered ac-

cumulation carries extra overhead for the reordering logic and

duplicate accumulation registers. Nevertheless, experiments

show (Section III) that the technique can significantly improve

the quality-energy profile under scaled timing.

(a) Technique abstraction (b) Implementation

Fig. 5. Accumulation reordering architecture.

C. Preventing error spread and amplification

In previous sections, we presented techniques for targeting

individual error sources at the operation- and block level.

With knowledge of the application, we now further focus

on control of sources of errors that have the potential to be

spread and amplified at the algorithm level. More specifically,

we propose a technique using algorithm-level retiming to

explicitly prevent errors in critical steps that may have a large

impact on downstream results and hence overall quality.

For the 2D-IDCT algorithm, analysis of control and data

flow is relatively simple because it consists of two nearly-

identical steps: (1) T = CT ·A and (2) I = T ·C. We address

the problem of a timing error in Step 1. Such an error can

generate multiple output errors in I because each element of T
is used in multiple computations of Step 2. We can model this

behavior by introducing an error matrix E, which is added to T
such that the two algorithm steps become: (1) T

′
= T +E and

(2) I = T ·C+E
′
. Here, E

′
=E·C is the final error. Although E

may have only one non-zero entry, the matrix product results

in up to size(A) errors vertically or horizontally in E
′
. As a

result, the noise in the decoded image of an unmodified IDCT

has a stripe pattern (see Figure 9 in Section III).

Thus, to avoid such wide-spread quality loss, we need to en-

sure that no errors occur in Step 1. We assume an architecture

in which supply voltage can only be scaled uniformly. If timing

budgets are allocated to steps based on worst-case analysis,

any reduction in VDD would lead to a reduced timing slack in

Step 1 and hence un-allowable levels of errors being generated

there. We therefore propose a strategy to allocate extra timing

margins to critical steps, such as Step 1. Importantly, given

overall latency constraints for the design, as is the case for

many real-time image or video coding applications, end-to-end

algorithm timing must remain constant and performance must

not be degraded. Thus, an important element of protecting

the early algorithm steps is a re-allocation strategy that shifts

timing budgets between steps. Maintaining a constant total

time, we show how to borrow computing time from non-

critical algorithm steps in order to increase timing margins

in critical ones, all while reducing overall quality loss.

To implement such a strategy, we make the timing budget

in each step adjustable. The original minimum error-free

timing budget for each step is Tstep1 = N1 × Tclk and

Tstep2 = N2×Tclk, where Tclk is the clock period, and N1 and

(a) Technique abstraction (b) Implementation

Fig. 6. Rescheduling of algorithm steps.

N2 are the number of cycles in each step. In the original 2D-

IDCT implementation, steps are identical and N1 = N2 = N .

To adjust the budget, we need to divide it into multiple parts.

A division factor M is used to make Tstep1 = NM×Tclk/M ,

and Tstep2 = N ×Tclk/M . VDD is then scaled down, increas-

ing the propagation delays. Consequently, Tclk is scaled to T
′
clk

such that 2N×Tclk is equal to NM×T
′
clk/M +N×T

′
clk/M ,

i.e. T
′
clk = 2Tclk/(1+1/M). Hence, the new clock frequency

is f
′
clk = T

′
clk/M = 2/((M + 1)Tclk). Since the total

budget is fixed, we disproportionally shift timing budgets

under scaled VDD from Step 2 to Step 1. Note, however,

that the factor M cannot become too large. Otherwise, the

clock frequency would be too high and timing errors would

not remain restricted to the adder in Step 2.

The implementation includes logic to allocate different

timing budgets to each step (Figure 6). We empirically choose

M to be 2 and increase clock frequency accordingly. The

control logic includes a 1-bit counter to keep track of the cycle

counts for each step. In Step 1, each operation is assigned 2

cycles, while each operation in Step 2 is assigned 1 cycle.

III. EXPERIMENTAL RESULTS

The architecture of our final 2D-IDCT implementation is

a folded one [10], where each 1D-IDCT shares the same

pipelined arithmetic unit containing an adder and a multiplier.

The IDCT data and coefficient matrices A and C have 16-bit

and 8-bit resolution, respectively. The multiplier is pipelined

and has a width of 8 × 16 bits. The adder is a ripple-carry

adder with a width of 24 bits. Such design restricts entirely

the timing errors to adder for acceptable quality loss. Only the

Y signal of a Y:Cb:Cr format image is used.

The 2D-IDCT is implemented in Verilog-HDL and syn-

thesized using Design Complier with the OSU 45nm PDK.

To enable our experiments, we construct an explicit model of

the critical path delays at different VDD values. Since Design

Compiler and the PDK only report power at a single VDD

value, we are not able to run synthesis at different voltage

levels. Instead, we use HSPICE to re-characterize each gate in

the cell library and generate the power data of the synthesized

design for other VDD values. Design Compiler reports the

critical path for VDD = 1.1V. We obtain the delay difference

between the nominal case at VDD = 1.1V and delays at

different VDD values via the HSPICE simulations. Then, the

critical path delay at an arbitrary VDD can be computed as:

Dcritical =
n∑

i=1

hi(ΔVDD) + D(VDD = 1.1V),

TABLE I
ENERGY SAVING AND AREA

VDD Energy Saving Area μm2

Original 1.0 0% 149948.39

Adder 0.81 35.3% 150482.45
Reorder 0.81 34.6% 154611.35
Step1&2 0.80 35.1% 150073.69

All three 0.75 45.2% 155175.45

40 60 80 100 120 140 160 180 200 220 240
5

10

15

20

25

30

35

40

45

P
S

N
R

 (
d

B
)

Energy (μμμμJ)

 Unoptimized
 Combined80 μμμμJ

22 dB

Fig. 8. Combined PSNR vs. energy profile.

where hi(ΔVDD) is a fitted delay model of a single gate:

h(ΔVDD) = c2 · ΔV 2
DD + c1 · ΔVDD.

We also derive a model to estimate power at different

voltage levels. Design Complier reports dynamic power and

leakage power at VDD = 1.1V. The dynamic power at other

VDD can be estimated as follows:

Pdyn =
m∑

i=1

Wi · Ni · fi(ΔVDD) + Pdyn(VDD = 1.1V),

where Ni is the number of min-sized gates of type i, Wi is the

total size for a gate of type i, and fi(ΔVDD) is the quadratic

fitted model for the dynamic power component. Similarly, the

leakage power can be computed at arbitrary VDD as follows:

Pleak =
m∑

i=1

Wi · Ni · gi(ΔVDD) + Pleak(VDD = 1.1V),

where Ni is the number of min-sized gates of type i, Wi is

the total size for a gate of type i, and gi(ΔVDD) is the fitted

model of the leakage power component. Power values under

different VDD are estimated based on the fitted models above,

and the corresponding energy values are computed as period

times power, where the period is 11ms in our case.

Table I shows the energy savings for each technique and

their combination. Energy savings are computed at PSNR

= 30dB with the processing rate being a constant 11ms per

256 × 256 frame. The resulting PSNR vs. energy profiles for

each technique are shown in Figure 7.

Individual techniques can be combined to achieve maximum

energy savings. However, since the described techniques all

have varying impact on the different frequency components,

their optimal combination is not obvious. Using the technique

of Section II-C, a larger timing budget is given to the earlier

algorithm step. This change impacts all frequency components.

On the other hand, the technique of Section II-A impacts

TABLE II
ENERGY UNDER DIFFERENT COMBINATIONS.

Component 0 1 2 3 4 5
Eng(μJ) 159 123 92 96 99 102

60 80 100 120 140 160 180 200 220 240 260
5

10

15

20

25

30

35

40

45

P
S

N
R

 (d
B

)

Energy (μμμμJ)

 Unoptimized
 Remapping

20 dB

55 μμμμJ

(a) Reduced-width adder

40 60 80 100 120 140 160 180 200 220 240
5

10

15

20

25

30

35

40

45

P
S

N
R

 (
d

B
)

Energy (μμμμJ)

 Unoptimized
 Reordering

22 dB

50 μμμμJ

(b) Accumulation reordering

50 100 150 200 250 300 350 400 450
5

10

15

20

25

30

35

40

45

P
S

N
R

 (
d

B
)

Energy (μμμμJ)

 Unoptimized
 Rescheduling

17 dB

55 μμμμJ

(c) Re-budgeting of two cycles to step 1

Fig. 7. Individual PSNR vs. energy profiles.

mainly the high-frequency components (since they are the

components that involve small-valued operands). Finally, the

technique of Section II-B impacts operands with opposing

sign, no matter if they are low- or high-frequency components.

Based on these observations, we devised the following strat-

egy for selectively applying techniques to different algorithm

steps and frequency components: (1) In Step 1, we allocate

more cycles only to the low-frequency components while using

dynamic reordering and a reduced-width adder to process the

high-frequency components; (2) In Step 2, timing errors are

not propagated into later steps, so only the reduced-width

adder and dynamic reordering are applied. In this combination,

the total number of clock cycles needed in Step 1 is smaller

than what the technique introduced in Section II-C would

require to achieve the same quality level. Hence, under a fixed

total time, the adjusted clock period T
′
clk is larger and there

exists more timing slack for energy savings.

The key problem is to determine which low-frequency

components in Step 1 require more cycles for their processing

after applying techniques from Sections II-A and II-B. Since

the size of the frequency coefficient matrix in a 2D-IDCT is

small, we can do a brute-force exploration to determine the

best assignment. Table II shows the results of such simulations.

Results indicate that the smallest energy is obtained when

allocating more time (two cycles in our implementation) to

the computation of the first two low-frequency components.

The PSNR vs. energy curve for the combination of tech-

niques is shown in Figure 8. A significantly improved trade-off

curve is generated by a non-trivial combination of individual

techniques. Finally, a set of sample images under scaled

VDD is shown in Figure 9. Note that achieving a similar

energy reduction by conventional VDD scaling would result

in unacceptable degradation of image quality (Figure 9(b)).

IV. CONCLUSIONS

This paper presented techniques that enable architecture-

level shaping of the quality-energy tradeoff under aggressively

scaled VDD through controlled timing error acceptance. We

demonstrated the implementation of these techniques on a de-

sign of a 2D-IDCT architecture. Results show that significant

energy savings can be achieved while maintaining a constant

performance and good image PSNR. To further improve the

visual quality, error limiting technique can be implemented to

reduce image artifacts.

(a) Original: Energy=168μJ
PSNR=44.6dB

(b) Original: Energy=94μJ
PSNR=11.2dB

(c) Proposed: Energy=104μJ
PSNR=38.8dB

(d) Proposed: Energy=92μJ
PSNR=32.3dB

Fig. 9. Image quality under different energy budgets.

REFERENCES

[1] S. H. Nawab, A. V. Oppenheim, A. P. Chandrakasan, J. M. Winograd,
and J. T. Ludwig, “Approximate signal processing,” VLSI Signal Pro-
cessing, vol. 15, pp. 177–200, 1997.

[2] J. T. Ludwig, S. H. Nawab, and A. P. Chandrakasan, “Low-power digital
filtering using approximate processing,” JSSC, pp. 395–400, 1996.

[3] A. Sinha and A. P. Chandraksan, “Energy efficient filtering using
adaptive precision and variable voltage,” ASIC SOC Conference, pp.
327–331, 1999.

[4] R. Hedge and N. R. Shanbhag, “Soft digital signal processing,” TVLSIS,
pp. 379–391, 2000.

[5] L. Wang and N. R. Shanbhag, “Low-power filtering via adaptive error-
cancellation,” IEEE Transactions on Acoustics, Speech, and Signal
Processing, vol. 51, no. 2, pp. 575–583, 2003.

[6] J. Park, S. Kwon, and K. Roy, “Low power reconfigurable dct design
based on sharing multiplication,” ICASSP, pp. III–3116–III–3119, 2002.

[7] G. Karakonstantis, D. Mohapatra, and K. Roy, “System level dsp syn-
thesis using voltage overscaling, unequal error protection and adaptive
quality tuning,” SIPS, 2009.

[8] N. Banerjee, G. Karakonstantis, and K. Roy, “Process variation tolerant
low power dct artchitecture,” DATE, pp. 1–6, 2007.

[9] E. Y. Lam and J. W. Goodman, “A mathematical analysis of the
dct coefficient distribution for images,” IEEE transaction on image
processing, vol. 9, no. 10, pp. 1661–1666, 2000.

[10] S. Uramoto, Y. Inoue, A. Takabatake, J. Takeda, and Y. Yamashita, “A
100-mhz 2-d discrete cosine transform core processor,” JSSC, vol. 27,
pp. 492–499, 1992.

