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Abstract—Virtual Prototypes (VPs) have been now widely adopted by
industry as platforms for early SW development, HW/SW co-verification,
performance analysis and architecture exploration. Yet, rising design
complexity, the need to test an increasing amount of software functionality
as well as the verification of timing properties pose a growing challenge
in the application of VPs. New approaches overcome the accuracy-
speed bottleneck of today’s virtual prototyping methods. These next-
generation VPs are centered around ultra-fast host-compiled software
models. Accuracy is obtained by advanced methods, which reconstruct
the execution times of the software and model the timing behavior
of the operating system, target processor and memory system. It is
shown that simulation speed can further be increased by abstract
TLM-based communication models and efficient hardware peripheral
models. Additionally, an industrial flow for efficient model development
is outlined. This support of ultra-fast and accurate HW/SW co-simulation
will be a key enabler for successfully developing tomorrow’s multi-
processor system-on-chip (MPSoC) platforms.

I. INTRODUCTION

Due to increased complexity of modern embedded and integrated
systems, more and more design companies are adapting virtual
prototyping methods. Next to obtaining correct hardware with less
iterations, virtual prototypes (VPs) support early SW development,
performance analysis, HW/SW co-verification and architecture explo-
ration. Modern multi-processor system-on-chip (MPSoC) platforms
feature multiple hardware and software processors, where processors
can each have multiple cores, all communicating over an intercon-
nection network, such as a hierarchy of busses. The large amount of
functionality and timing properties that need to be validated for com-
plex MPSoCs brings traditional VP approaches to their limits. New
VPs are required, which raise the abstraction to significantly increase
simulation speed. This is a challenging task, because high abstraction
leads to a loss of timing information, penalizing simulation accuracy.

This gives rise to next-generation VPs, which are centered around
host-compiled software models. Abstraction is applied at all layers of
the system stack starting from the software level, including operating
system and processor models, down to abstract communication and
peripheral models. Intelligent methods are applied to preserve sim-
ulation accuracy at ulta-high simulation speeds. These methods are
independent of the used System-level Design Language (SLDL). Yet,
SystemC [1] has nowadays emerged as a quasi-standard for system-
level modeling. Therefore, SystemC is used as the main SLDL to
illustrate the modeling concepts throughout this paper.

In this paper, we present an overview of state-of-the-art approaches
for ultra-fast yet highly-accurate next-generation VPs. The paper
is structured as follows: Basic concepts of virtual prototyping for
HW/SW systems are discussed in Sec. II and the major differences
between traditional and next-gerneration VPs are outlined. Source-
level software simulation methods are discussed in Sec. III. OS and
processor models are presented in Sec. IV. Communication models
are shown in Sec. V and peripheral models in Sec. VI. Finally, an
industrial model development flow is shown in Sec. VII. Sec. VIII
concludes.

II. VIRTUAL PROTOTYPES (VPS)

In a HW/SW system, tasks of an application are executed on one
or more target processors, e.g., ARM cores. Tasks usually run on
top of an operating system (OS). The tasks can communicate and
access memory and peripherals via communication fabrics, e.g., on-
chip buses. In the context of this work, a VP is a computer model
of such a HW/SW system.

A. Traditional VP Simulation

The VP is simulated via a SLDL simulation kernel. The PC, which
runs the simulation, is referred to as the simulation host. Naturally, it
can have a different Instruction Set Architecture (ISA) from the target
processors. In discrete-event simulation, the simulation kernel on the
host advances the logical simulation time. To simulate concurrent
behavior, simulation processes are sequentially executed based on
scheduling events and the simulation time. Scheduling events suspend
or resume simulation thread processes (threads) or activate method
processes. This requires context switches, which can produce signif-
icant simulation overhead. This overhead reduces simulation speed,
which measures how fast the simulation is performed in terms of the
physical time.

Communication is usually modeled using abstract Transaction
Level Models (TLMs). TLMs center around memory-mapped com-
munication but omit the simulation of the bus protocol. In TLM, the
bus interface is modeled by a TLM socket. A transaction is invoked
by an initiator (master) module when calling a pre-defined transport
function on its socket. The function is implemented at the target
(slave) module. During simulation the initiator socket is bound to the
target socket and the respective transport function is called.

While TLMs have been successfully applied to model communi-
cation aspects, today’s VPs usually model the computational part by
emulating the software on instruction set simulators (ISSs). which
are either inaccurate or slow. As such, the amount of functionality
and timing properties that can be checked by traditional VPs remains
limited by their simulation speed. The low speed results from the high
number of scheduling events created by the traditional computation
and communication model.

B. Next-Generation VPs

Simulation speed can be increased by reducing the number of
scheduling events. One possibility is to raise the layer of abstraction.
Less detailed simulation usually leads to less scheduling events. This
includes methods for so-called Temporal Decoupling (TD). TD lets
simulation processes run ahead of the logical simulation time to
increase the simulated timing granularity and decrease the number
of scheduling events. The logical simulation time of the kernel is
referred to as global simulation time. In contrast, the components
can keep track of their time using a local simulation time, which is
usually defined as an offset to the global simulation time. TD and
other abstractions can increases simulation speed significantly, but



may decrease accuracy due to loss of timing information or missing
synchronization events.

Next generation VPs are aimed at overcoming these challenges
by using intelligent modeling approaches to preserve simulation
accuracy. The abstraction is raised by source-level simulation of
software as an advanced method for software performance analysis.
Instead of emulating the software program with an ISS of the target
processor at the binary level, the source code of the software is
directly annotated with timing or other information. This information
is obtained by establishing an accurate relation between the source
code of a program and its machine code. By comparing the structure
of both program representations, timing information of the software
can be extracted at the machine level and included in the source code
for performance analysis. The annotated source code can be directly
compiled and executed on the simulation host machine, which leads
to a huge gain in simulation speed compared to ISS simulation.

Pure source-level simulation approaches focus on emulating stan-
dalone application behavior only. However, interferences among
multiple tasks running on a processor as well as hardware/software
interactions through interrupt handling chains and memory and cache
hierarchies can have a large influence on overall software behavior.
As such, OS and processor-level effects can contribute significantly
to overall model accuracy, while also carrying a large simulation
overhead in traditional solutions. So-called host-compiled simulation
approaches therefore extend pure source-level models to encapsu-
late back-annotated application code with abstract, high-level and
lightweight models of OSs and processors. This is aimed at providing
a complete, fast and accurate simulation of source-level software
running in its emulated execution environment.

Additionally, embedded and integrated systems are compromised
of many communicating components as we move towards embedded
multi-core processors. The simulation of communication events can
quickly become the bottleneck in system simulation. Next-generation
VPs tackle this challenge by providing abstract communication
models. Special care must be taken in such abstract models to
capture the effect of conflicts due to concurrent accesses on shared
resources. Different methods are addressed, which can model the
effect of arbitration, e.g., by retro-active correction of the timing
behavior. This correction is performed by a central timing manager,
a so-called resource model. Finally, peripherals with cycle-dependent
behavior such as timers or analog digital converters (ADCs) need to
be simulated efficiently. This requires a design methodology which
enables designers to achieve cycle-accuracy without any significant
loss in simulation speed. A Centralized Clock Control Mechanism is
presented, which is employed for Infineon’s peripheral models. Fi-
nally, for deployment of these next-generation VPs, fast development
and reuse needs to be enabled. To provide a proper development
cycle, code generation and verification methodology is needed for
providing the maximum benefit to industry. An example of such a
modeling flow is given based on Infineon’s internal meta-modeling
framework.

III. ULTRA-FAST SOURCE-LEVEL TIMING SIMULATION HIGH
ACCURACY NEEDS EXACT CODE MATCHING

This section discusses a solution to overcome the limitations of
timing simulation based on direct source-level timing annotations.
The approach exploits an automated mapping between the source
level and binary level control flow. Based on the resulting structural
matching, low-level timing properties obtained through a static analy-
sis of the target machine code are annotated to the source code of the
program. The binary-level control flow is reconstructed, allowing a
dynamic selection of timing annotations. This is achieved by adding
markers to the source code of the instrumented program which
interacts with special path simulation code generated from the binary-
level control flow graph of the machine code. The path simulation

Fig. 1. Proposed Timing Instrumentation Work Flow

code represents the structure of the binary program and allows the
dynamic correction of structural differences between the source code
and the target machine instructions as well as the incorporation of
context-sensitive timing annotations.

The dynamic simulation of binary-level control flow during host-
compiled execution provides an efficient technique for timing sim-
ulation which accurately covers compiler optimizations. Dynamic
path selection helps to include path-dependent timing estimates for
sequences of basic blocks with respct to the cache and pipeline
behavior. This is also very useful for simulating loops, e.g. to
correct the number of simulated iterations in order to compensate for
unrolling performed by the compiler. Furthermore, it allows handling
other compiler optimization like function inlining more elegantly.

The complete work flow is depicted in Figure 1. After a program
has been cross-compiled for the target architecture using a standard
compiler (Figure 1, step 1), the compiler-generated debug information
is used to relate the source code and the binary code (Figure 1,
step 2). Instead of using this information to relate source-level
and binary-level basic blocks for a direct annotation of low-level
properties, the proposed method only uses this information for a
tentative estimation of which source code portions correspond to
the binary-level basic blocks. For every binary-level basic block, an
equivalent source code position is determined from this data. During
instrumentation (Figure 1, step 3), markers for the binary-level basic
blocks are added to the source code at this position.

The execution time of the basic blocks in the binary code is
obtained using a low-level timing analysis which models pipeline
effects and static branch penalties of the target processor (Figure 1,



Fig. 2. Matching Between Source- and Binary-Level Control Flow

step 4). The result of this analysis is a timing-annotated control
flow graph of the binary executable. The edges in this graph,
which describe the transition between basic blocks during an actual
execution of the program, are labeled with the execution time required
by the respective sequence of machine instructions. Based on the
binary-level CFG, the program control flow on the target architecture
is analyzed to create path simulation code which models the target-
specific behavior of the program (Figure 1, step 5). The generation of
timing simulation code (Figure 1, step 6) is based on a path-dependent
timing estimation to cover different execution times of a basic block
including the transition to the following basic block with respect to
the architectural state determined by the previously executed program
path.

Compiling the instrumented source code and the path simulation
code for the simulation host yields a model of the program which de-
termines its execution time on the target processor. Using the markers
that were added to the original source code during instrumentation,
the path simulation code can approximate the path taken through the
binary executable. This reconstruction of binary-level control flow is
executed in parallel to the functionality of the original source code
during simulation on the simulation host and allows the dynamic
selection of timing annotations.

A. Matching Source-Level to Binary-Level Control Flow

The proposed method for relating source code and optimized
binary code tries to solve the matching based on the so-called
dominance relation between basic blocks. A basic block a in a control
flow graph dominates another basic block b, if every path from the
entry node of the graph to b goes through a. The dominance relation
is applied to the source-level and binary-level CFG and helps to find
the best mapping between source-level and binary-level basic blocks.
The actual matching algorithm proceeds in the following steps [2]:

• Create the source-level and binary-level CFG and use it to
calculate the dominator relation. Details about this step will be
omitted.

• Read the compiler-generated line information and determine the
set of potential references for every binary-level basic block.
Additionally, the compiler-generated debug information can also
be moved and interpolated between basic blocks to improve the
quality of the line information.

• To select a source-level reference for every binary-level basic
block, a matching is constructed using the set of potential
references and the dominance relation.

On the example from Figure 1 the algorithm constructs the
matching from Figure 2. As the presented method relies on compiler-
generated debug information to relate source-level basic blocks and
binary-level basic blocks, this relation is crucial for its accuracy. If
optimizations are used, the debug information provided by standard
compilers is often not accurate enough for this purpose. Therefore the
mapping between source code and binary code provided by the debug

information is subject to further analysis steps. Debug information
often contains several references to source code lines for one basic
block. Each of these entries describes a potential relation between a
binary-level basic block and a source-level basic block. From these
potential relations, an accurate mapping between binary-level and
source-level basic blocks is determined by selecting at most one
source-level equivalent for every binary-level basic block. This is
done in such a way that the order of execution between basic blocks
in the source-level and binary-level control flow graph is preserved.
Hence if one binary-level basic block is always executed before a
second one, the same relation holds for their respective source-level
entries in the mapping. A more detailed description of this technique
can be found in [3].

B. Source-Level Simulation of the Timed Binary Control Flow

The reconstruction of binary control flow is performed based on
markers which are added to the source code during instrumentation.
These markers describe the potential binary-level equivalents of a
source-level basic block. The instrumentation code of a marker is a
simple function call which gets the unique identifier of the respective
binary-level basic block as parameter (cf. Figure 1). The arguments of
these function calls are determined using compiler-generated debug
information. The marker function bb contains the path simulation
code and is responsible for performing the path reconstruction. In
effect, the path simulation code determines which binary-level basic
blocks would be executed during an actual execution of the program
on the target processor. It also maintains information about the
execution context of the simulation, meaning which basic blocks have
already been executed (cf. Figure 1).

As the path reconstruction is based on the binary-level CFG,
only feasible paths through the binary program are simulated. For
instance in the example from Figure 1, the path reconstruction code
would decide to simulate the basic block at 0x8010 for the first
iteration of the loop, but not for further loop iterations. The transitions
between markers correspond to paths between basic blocks in the
binary-level CFG. According to the reconstructed path, the correct
timing estimates for the respective execution of target binary code
is determined. By simulating the transition between basic blocks,
the path simulation can also consider structural differences between
source code and binary code. So not every marker in the source code
always results in the simulation of the respective binary-level basic
blocks. Instead, the path simulation code can accumulate markers, for
instance to model loop unrolling, or completely skip them if they do
not match an actual path through the binary-level control flow graph.
The latter case can occur if a marker was incorrectly added to the
source code as a result of incorrect debug information generated by
the compiler [4].

As can be seen in Figure 1, the delay function, which calculates
the time consumed by a basic block transition, can consider arbitrary
architectural details to derive precise timing estimates. Since the
transition between basic blocks is modeled accurately, the effects
of pipelining and static branch prediction in the target processor
can be easily considered when determining the execution time of
a basic block. This also holds for the effects of caches and dynamic
branch prediction, but to consider these effects, additional dynamic
cache and branch prediction models have to be integrated into
the simulation. However, once the simulation executes blocks in
an order not considered during analysis the situation is far more
complex. For example, interrupts are not considered during analysis,
as this would essentially require edges between every block and
the start and return nodes of interrupt handlers thereby significantly
increasing analysis complexity. Consequentially, once the execution
of an interrupt handler is simulated, no appropriate edge is contained
in the analysis results. Furthermore, the CFG is reconstructed starting
from a specific function and only changes in control flow to known
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Fig. 3. Host-compiled simulation model.

targets of branch instructions reachable from this starting point are
considered. Thus, the code for an interrupt handler will typically not
be contained in the analysis results unless it is used as starting point,
in which case other functions are likely not included. This limitation
can be eliminated by picking a suitable one when no predetermined
choice is available, thereby enabling a context-sensitive simulation
including asynchronous events such as interrupts [5].

IV. HOST-COMPILED OS AND PROCESSOR MODELING

As described previously, host-compiled simulators extend pure
source-level approaches with fast yet accurate models of the complete
software execution environment. Fig. 3 shows a typical layered
organization of a host-compiled simulation model [6], [7], [8].
Individual source-level application models that are annotated with
timing and other metrics as described in Section III are converted
into task running on top of an abstract, canonical OS API. Tasks are
grouped and encapsulated according to a given partitioning to model
the multi-threaded application mix running on each processor of an
overall MPSoC. Within each processor, an OS model then provides
an implementation of the OS API to manage tasks and replicate a
specific single- or multi-core scheduling strategy. The OS model itself
sits on top of models of the firmware and drivers forming a hardware
abstraction layer (HAL). An underlying hardware (HW) layer in
turn provides interfaces to external TLMs of the communication
infrastructure (Section V) and peripherals (Section VI). Finally, the
complete processor model is integrated and co-simulated with other
system components on top of an SLDL. The SLDL simulation kernel
thereby provides the basic concurrency and synchronization services
for OS, processor and system modeling.

A. OS Modeling

An OS model generally emulates scheduling and interleaving of
multiple tasks on one or more cores [9], [10], [11], [12], [13], [14],
[15]. It maintains and manages tasks in a set of internal queues similar
to real operating systems. Tasks are modeled as parallel simulation
threads on top of the underlying SLDL kernel. The OS model
then provides a thin wrapper around basic SLDL event handling
and time management primitives, where SLDL calls for advancing
simulation time, event notification and wakeup in the application
model are replaced with calls to corresponding OS API methods.
This allows the OS model to suspend, dispatch and release tasks as
necessary on every possible scheduling event, i.e. whenever there is
a potential change in task states. An OS model will typically also
provide a library of higher-level channels built around basic OS and
SLDL primitives to emulate standard application-level inter-process
communication (IPC) mechanisms.
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Fig. 4 shows an example trace of two tasks T0 and T1 running
on top of an OS model emulating a time-slice based round-robin
scheduling policy on a single core [6]. Source-level execution times
of tasks are modeled as calls to wait-for-time methods in the OS API.
On each such call, the OS model will advance the simulated time in
the underlying SLDL kernel, but will also check whether the time
slice is expired and switch tasks if this is the case. In order to simulate
such a context switch, the OS model suspends and releases tasks on
events associated with each task thread at the SLDL level. Overall, the
OS model ensures that at any simulated time, only one task is active in
the simulation. Note that this is different from scheduling performed
in the SLDL kernel itself. Depending on available host resources, the
SLDL kernel may serialize simulation threads in physical time. By
contrast, the OS model serializes tasks in the simulated world, i.e. in
logical time.

Within an isolated set of tasks on a core, this approach allows OS
models to accurately replicate software timing behavior for arbitrary
scheduling policies. However, the discrete nature of such models
introduces inherent inaccuracies in the presence of asynchronous
scheduling events, such as task releases triggered by external inter-
rupts or by events originating on other cores. Since the OS model
advances (simulated) time only in discrete steps, it will not be able
to react to such events immediately. Fig. 5 shows an example of a
low-priority task τlow being preempted by a high-priority task τhigh
triggered externally. In reality, the high-priority task is released at
time rh,2. In the simulation, however, the OS model is not able to
perform the corresponding task switch until the next simulation step
is reached at time tn. This results in a corresponding preemption and
response time error for both tasks (with τlow potentially finishing too
early).

As shown in the example of Fig. 5, the preemption error is
generally upper bounded by the maximum timing granularity. By
contrast, it can be shown that response time errors can potentially
become much larger than the time steps themselves [16]. This is, for
example, the case if τlow in Fig. 5 finishes too early but should have
been preempted and delayed by a very long running τhigh. This can
be a serious problem for evaluation of real-time system guarantees.
Adjusting the timing granularity does not generally help to improve
the maximum simulation error. Nevertheless, decreasing the granu-



larity will reduce the likelihood of such large errors occurring, i.e.
will improve average simulation accuracy.

At the same time, the timing granularity also influences simulation
speed. A fine granularity allows the model to react quickly, but
increases the number of time steps, context switches and hence
overhead in the simulator. Several approaches have been proposed
to overcome this general tradeoff and provide a fast coarse-grain
simulation while maintaining high accuracy. Existing approaches can
be broadly categorized as either optimistic [17] or conservative [18].
In optimistic solutions, a lower-priority task is speculatively simulated
at maximum granularity assuming no preemption will occur. If a
preemption occurs while the task is running, the higher-priority task
is released concurrently at its correct time. In parallel, all disturbing
influences are recorded and later used to correct the finish time of the
low-priority task(s). Such an approach has also been used to model
preemptive behavior in other contexts, such as in TLMs of buses with
priority-based arbitration [19] (see also Section V-B).

By contrast, in conservative approaches, at any scheduling event,
the closest possible preemption point is predicted to select a maxi-
mum granularity not larger than that. If no prediction is possible, the
model falls back onto a fine default granularity or a kernel mechanism
that allows for coarse time advances with asynchronous interruptions
by known external events. Note that unless a full rollback is possible
in the simulator, optimistic approaches can not guarantee an accurate
order of task events and interactions, such as shared variable accesses.
As the name suggests, conservative approaches, by their nature,
always maintain the correct task order. In both approaches, the OS
model will automatically, dynamically and optimally accumulate or
divide application-defined task delays to match the desired granular-
ity. This allows the model to internally define a granularity that is
independent from the granularity of the source-level timing annota-
tions. Furthermore, both types of approaches are able to completely
avoid preemption errors and associated issues with providing worst-
case guarantees.

Overall, any coarse-grain, discrete-event modeling of asynchronous
interactions among concurrent cores, processors or other system
components will always come with a fundamental speed and accuracy
tradeoff. A coarse simulation of a component decreases accuracy
not only due to incoming events being captured too late, but also
in terms of outgoing events being produced too early. Approaches
mentioned above are aimed at improving or avoiding the speed-
accuracy tradeoff in reactions to incoming events. Outgoing events
can be reproduced accurately by simply advancing simulation time to
its correct point before producing each external event. However, this
reduces granularity and increases overhead. By contrast, maintaining
a coarse granularity temporally decouples simulation processes and
lets individual components run ahead of the global simulation time.
This can in turn result in a wrong ordering of events being observed
among components, e.g. in terms of accesses to shared resources
such as caches. Various approaches for improving speed and accuracy
tradeoffs under such scenarios will be discussed in later sections.

B. Processor Modeling

Host-compiled processor models extend OS models with accurate
representations of drivers, interrupt handling chains and integrated
hardware components, such as caches and TLM bus interfaces [8],
[20], [21], [22]. Specifically, accurate models of interrupt handling
effects can contribute significantly to overall timing behavior and
hence accuracy [7].

The software side of interrupt handling chains is typically mod-
eled as special, high-priority interrupt handler tasks within the OS
model [10]. On the hardware side, models of external generic inter-
rupt controllers (GICs) interact with interrupt logic in the processor
model’s hardware layer. The OS model is notified to suspend the
currently running task and switch to a handler whenever an interrupt

GIC GIC
IntrB IntrH1

IRQ1 
IF

OS Layer
HAL Layer

HWA

HW Layer

IRQ0

t1

t3

t5

t6

t0

t2

t4

ThIntrA Tm Tl ThTmTlIntrH0

IRQ0 
IF

Core0 Core1

Fallback 
mode

Predictive 
mode

Blocked by 
an event

INTA

INTB

HWB

IRQ0

Fig. 6. Host-compiled simulation trace.

for a specific core is detected. At that point, the handler becomes a
regular OS task, which can in turn notify and release other interrupt
or user tasks. By back-annotating interrupt handlers and tasks with
appropriate timing estimates, an accurate model of interrupt handling
delays and their performance impact can be constructed.

An example trace for a complete host-compiled simulation of
two task sets with three task each running on a dual-core platform
is shown in Fig. 6 [6]. Task sets are mapped to run on separate
cores and the highest priority tasks are modeled as periodic. All
interrupts are assigned to Core0. The trace shows a conservative OS
model using dynamic prediction of preemptions. The model is in
a fine-grain fallback mode whenever there is a higher-priority task
or handler waiting for an unpredictable external event. In all other
cases, the model switches to a predictive mode using accumulation
of delays. Note that high-priority interrupt handlers and tasks are
only considered for determining the mode if any schedulable tasks is
waiting for the interrupt. This allows the model to remain in predictive
mode for the majority of time. Handlers and tasks themselves can
experience large errors during those times. However, under the
assumption that they are generally short and given that no regular
task can be waiting, accuracy losses will be small.

When applied to simulation of multi-threaded, software-only Posix
task sets on a single-, dual- and quad-core ARM-Linux platform,
results show that host-compiled OS and processor models can achieve
average simulation speeds of 3,500 MIPS with less than 0.5% error
in task response times [7]. When integrating processor models into a
SystemC-based virtual platform of a complete audio/video MPSoC,
more than 99% accuracy in frame delays is maintained. For some
cases, up to 50% of the simulated delays and hence accuracy is
attributed to accurately modeling the Linux interrupt handling over-
head. Simulation speeds, however, drop to 1,400 MIPS. This is due
to the additional overhead for co-simulation of HW/SW interactions
through the communication infrastructure. Methods for improving
performance of such communication models will be discussed in
Section V.

C. Cache Modeling
Next to external communication and synchronization interfaces, a

host-compiled processor simulator will generally incorporate timing
models for other dynamic aspects of the hardware architecture.
Specifically, timing effects of caches and memory hierarchies are hard
to capture accurately as part of a static source-level back-annotation.
Hit/miss rates and associated delay penalties depend heavily on
the execution history and the specific task interactions seen by the
processor. To accurately model such dynamic effects, a behavioral
cache simulation can be included [23], [24], [25], [26], [27].

As described in Section III, the source level can be annotated to
re-create accurate memory access traces during simulation. Such task-
by-task traces can in turn drive an abstract cache model that tracks
history and hit/miss behavior for each access. Resulting penalties can
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then be used to dynamically update source-level timing annotations.
Note that cache models only need to track the cache state in terms
of line occupancy. The data itself is natively handled within the
simulation host.

When combined with an OS model, such an approach allows for
accurate modeling of cache pollution and interference among differ-
ent tasks. A particular challenge emerges, however, when multiple
cores can interfere through a shared cache. A cache model can ac-
curate track shared state, including coherency effects across multiple
cache levels, as long as individual core models issue cache accesses
in the correct global order. As mentioned above (Section IV-B), this
is generally not the case in a coarse-grain, temporally decoupled
simulation. Cores may produce outgoing events ahead of each other
and as a result, multiple cores may commit their accesses to the cache
globally out-of-order. At the same time, from a speed perspective, it
is not feasible to decrease granularity to a point where each memory
access is synchronized to the correct global time.

Several solutions have been proposed to tackle this issue and
provide a fast yet accurate multi-core out-of-order cache (MOOC)
simulation in the presence of temporal decoupling [28], [3]. The
general approach is to first collect individual accesses from each core
including accurate local time stamps. Later, once a certain threshold
is reached, accesses are reordered and committed to the cache in
their globally correct sequence. Fig. 7 illustrates this concept [28].
In this approach, both cores first send accesses to a core-specific
list maintained in the cache model. After each time advance, cores
notify the cache to synchronize and commit all accesses collected up
to the current time. It is thereby guaranteed that all other cores have
advanced and produced events up to at least the same time.

An added complication are task preemptions [6]. Since cores and
tasks can run ahead of time, a task may generate accesses that would
otherwise not have been issued until after a possible preemption is
completed. This requires access re-ordering to be tightly integrated
with the OS model. By maintaining task-specific access lists in the
OS model instead of the cache, the OS can adjust remaining time
stamps by the duration of the preemption whenever such a preemption
occurs. Overall, such an approach can maintain 100% accuracy of
cache accesses at the speed of a fully decoupled simulation.

In other approaches, the cache model is moved outside of the
processor to become part of the TLM backplane itself [3]. In this
case, the cache is accessed via regular bus transactions, and all of
the reordering is relegated to a so-called quantum giver within a
temporally decoupled TLM simulation (see Section V-C). Note that
this still requires OS model support to generate accurate transaction
time stamps in the presence of preemptions. Similar re-ordering
techniques can then also be applied to other shared resources, such
as buses, as will be shown in the following sections.

V. ABSTRACT TLM MODELS FOR ACCURATE AND FAST SOC
SIMULATION

Embedded and integrated systems are compromised of many com-
municating components as we move towards embedded multi-core
processors. Fast simulation requires advanced communication models
at Transaction Level. Usually, scheduling events of the simulation
kernel are closely coupled to the communication events. An initiator
(master) module should be synchronized to the global simulation time
before it starts executing its transactions. As many communication
resources such as buses or target (slave) modules are shared between
initiators, accurate models may additionally require to schedule an
arbitration event at each arbitration cycle. Novel works have shown
that this requirement can be usually relaxed to improve simulation
speed. These works either raise the abstraction of the communication,
e.g., a single simulated block transaction represents a set of bus
transactions performed by the HW/SW system, or apply Temporal
Decoupling (TD).

TD and block transaction imply that initiators perform accesses,
which are located in the future with respect to the current global
simulation time. This leads to several challenges, which may penalize
simulation accuracy: Firstly, an initiator may generate transactions
early with respect to global simulation time, which may change the
order of accesses to shared variables. Secondly, shared resources
are unaware of future conflicting transactions and cannot compute
arbitration delays for TD transactions. Additionally, the initiator
module is also unaware of resource conflicts, which may have blocked
execution due to incoming data dependencies. Any computation
afterwards may not rely on the local time offset, as this value does
not reflect the additional delay time due to resource conflicts. This
may cause a chain of dependencies, which limit simulation accuracy.
Different methods addresses these challenges successfully and enable
accurate and fast simulation. A selection of advanced communication
models is briefly outlined in the following:

A. Optimistic Simulation

The TLM 2.0 standard offers the Quantum Keeper. The TLM 2.0
Quantum Keeper provides a global upper bound to the local time
offset. The quantum keeper is easily applicable to realize optimistic
temporal decoupling. In optimistic TD, we ignore any possible data-
dependencies or resource conflicts. Shared variables have to be
protected by additional synchronization methods. An example can
be seen from Fig. 8. The transaction of initiator I1 start at 140 ns,
yet it is executed before the transaction of I2 due to the local time
offset of 30ns. Additionally, the transactions to the target may overlap
on the shared bus, which would require arbitration. Yet, I1 can finish
its transaction without delay because the transaction of I2 was not
yet simulated. Thus, timing is very optimistic.

B. Conflict Handling at Transaction Boundaries

In [19][29], the additional delay due to resource conflicts are
resolved at the transaction boundaries. At the start of a transaction,
the communication state is inspected in [19]. If as higher priority
transaction is on-going, the end time of the considered transaction is
computed accordingly. Yet, still an optimistic end time is computed at
the beginning of a transaction because future conflicting transactions
are not considered. When the end time of the transaction is reached,
additional delay due to other conflicting transaction is retro-actively
added. In the case of [19], another wait is issued to account for
the additional delay but intelligent event re-notification could also
be applied. The method has as minimum only a single wait call
per transaction. An example is shown in Fig. 9 with I1 having
higher priority on the shared bus. The transaction of I2 is delayed
during execution due to the conflict with the first transaction of
I1. As I1 issues another transaction, the delay for I2 is adapted
with another call to wait to consider the second conflict. In [29], a
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similar approach is presented that handles conflicts at the transaction
boundaries. It additionally combines several atomic transactions into
block transactions. If these block transactions get pre-empted, the
transactions is split to assure that the order of data accesses is
preserved.
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C. Conflict Handling at Quantum Boundaries

With the Quantum Giver [3], each initiator can issue multiple
transactions until its individual local quantum is exceeded during
the so-called simulation phase. All transactions in one quantum are
executed instantaneously but use time stamping to record their start
times. After the quantum is reached, the initiator informs a central
timing manager, the so-called Quantum Giver, and waits for an end
event. During the scheduling phase, the Quantum Giver retro-actively
orders all transactions according to their time stamps. It computes
the delays due resource conflicts and resolves all dependencies.

According to the conflicts, the end event of each initiator is notified at
the correct time. Finally, the quantum of each initiator is adjusted for
the next simulation phase. The concept is illustrated in Fig. 8. During
the simulation phase, transaction on the shared bus still overlap. The
resulting delays are computed in the scheduling phase by traversing
the list of transaction ordered by their starting time. The method also
considers that conflicts on different shared resources might effect each
other. This method targets fast simulation with temporal decoupling.
Only a single context switch is required in each quantum, which
may include several transactions. Yet, the transactions are executed
immediately, thus, out-of-order accesses to shared variables must be
avoided with additional synchronization guards. In [30], Advanced
Temporal Decoupling (ATD) is presented. It targets TD but also
cycle-accuracy and preservation of access order. The initiators may
advance their local time until they meet an inbound data dependency,
e.g., a read on a shared variable. All write transactions performed
on shared data are buffered by an additional communication layer.
After all initiators have completed execution, the transactions are
ordered and the write transactions are completed according to their
start time together with pending read transactions. This preserves
the correct order of transactions. So-called Temporal Decoupled
Semaphores handle resource conflicts and compute arbitration delays.
The ATD communication model is implemented in a transparent TLM
(TTLM) library, which hides the implementation details from the
model developer.
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D. TLM+: Conflict Handling at Software Boundaries

TLM+ is a SW-centric communication model targeting host-
compiled SW simulation [31]. Usually a driver function does not
transfer a single data item but a range of control values together
with a possible block of data. Execution of a driver function involves
a complete set of bus transactions from the processor. This set of
bus transactions is abstracted into a single TLM+ block transaction.
The HW/SW interface is adapted accordingly. Conflicts at shared
resources are handled by a central timing manager, the so-called
resource model. In order to give good estimates on the delay due
to conflicts, the resource model requires to save a profile of the
original driver function [32]. This profile allows to extract a demand
for communication resources. Usually, a driver function would not



block a shared bus completely such two TLM+ block transactions
can interleave. Analytical demand-availability estimators inside the
resource model can be used to estimate the delay due to resource
conflicts [33].

The scheduling is conducted by the resource model at the trans-
action boundaries. These boundaries then correspond to the entry
and exit to the respective driver function. The concept is illustrated
in Fig. 11. Initiator I1 first executes a block transaction. At a later
point, I2 starts another block transaction. Yet, because I1 has higher
priority, I2 is scheduled to take longer as it has not the full availability
of the shared bus. When the block transaction of I1 finishes, I2 has
no further conflicts on the bus. Its end time gets re-scheduled to an
earlier time. This is done by event re-notification, which leads to a
single call to wait for each block transaction. TLM+ targets higher
abstraction and faster performance compared to the other methods.
It also does not execute the original SW as the driver functions are
abstracted away.
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VI. PERIPHERALS: CENTRALIZED CLOCK CONTROL
MECHANISM FOR CYCLE-ACCURACY WITH SPEED

With the increasing interest in the architecture exploration and per-
formance analysis, there is an increase in demand of cycle-accurate
SystemC models along with simulation performance comparable to
that of loosely-timed models [1]. This requires not only CPU, Bus
and Memory Models to be designed efficiently but also the way
peripherals like ADC (Analog Digital Converter), interacts with them.
It requires change in the modelling techniques to achieve cycle-
accuracy with the desired performance.

In this section, we talk about a design methodology which enables
designers to achieve cycle-accuracy without any significant loss in
simulation performance.

A. Centralized Clock Control Mechanism
Accuracy and speed of the model can be achieved by functional

abstraction, efficient modelling of time related behaviour using cen-
tralized clock control mechanisms, reduced number of processes and
process activations in the design.

With the conventional method of using toggling clock to model
timing behaviour, cycle-accuracy can be achieved but it is not feasible
to achieve the desired simulation performance.

An alternative is to use clock period to model timing behaviour.
In this approach, the clock period is used to predict time at which
the required clock edge would occur rather than waiting for the clock
edge. All the processes in the design predict when are to be triggered
again based on the clock time period and schedule the triggering
accordingly in the form of event notification and wait statements.
The advantage of this methodology is that it is easier to achieve
better simulation performance for the software models. However, the
models loose accuracy with changes in the clock frequency as It is

difficult to synchronize already scheduled processes in the design
when period of the clock changes. For complex designs, it becomes
difficult to debug and to adapt for cycle-accuracy. The simulation
performance also degrades as the number of processes increase in a
design due to increased context switching and the advantage of this
approach is lost [34].

Our new design methodology refines this approach by providing
a generic clock control unit (CCU) which acts as a single source of
clock-information in a design. It recommends a design to be modular-
ized where the sub-modules implement clock-dependent operations in
call-backs registered with CCU instead of processes waiting on events
or time outs. It reduces the overall number of processes in the design
and the associated scheduling logic which results in better simulation
performance. It further reduces the model complexity and makes it
easier to adapt models for cycle-accuracy. The CCU maintains the
operations synchronized and handles changes in the clock-period. It
assures cycle-accuracy in all cases.

As shown in Fig. 12, the CCU becomes part of the design as a
sub-module. It is connected to the modules input clock and to all
other sub-modules, also called clock-clients (CCt), which require the
clock to operate via registered call-backs. The CCU supports call-
backs on both, rising and falling edges of clock as triggering edge.
It works on a request-call mechanism where a CCt can request CCU
to provide a call-back after a given number of clock cycles or clock
ticks. The CCts can be categorized as active and passive. An active
CCt is the one that requests the CCU for a call-back i.e. it works
directly on clock edges. A passive CCt does not request the CCU for
a call-back but implement call-back to perform operations on change
in input from another CCt or external input.

Fig. 12. Modeling with CCU

On receiving call-back requests, the CCU selects the minimum of
the number of cycles requested by various clock-clients and schedules
call-backs using clock period. After the elapse of requested clock-
cycles, the call-backs are invoked on all the clock clients, both active
and passive. For active CCts, the call-backs are executed only if
the elapsed number of cycles matches the requested cycles; else
the required number of cycles are re-adjusted and requested back
to the CCU. The call-backs are invoked sequentially in the order
they were registered which omits non-deterministic behaviour. In a
scenario where two CCts are registered with different CCUs and need
to exchange data, race condition may happen if call-backs are invoked



simultaneously on both the CCts. In such case, the predefined channel
sc signal can be used to avoid race conditions.

This approach was used to re-develop an ADC and a Timer module.
The results are discussed below:

ADC: In comparison to old model with traditional modeling
approach, the number of SystemC process has been reduced from
thirteen to five (including CCU). The reduced event handling and
context switching resulted in 77% improvement in simulation speed.
It further increased the cycle accuracy of the design.

Timer: It is a relatively much simpler design than the ADC. The
model with traditional approach had fewer processes to implement
the functionality but couldnt handle the in-accuracies due to clock
frequency changes. With the new approach, it resulted in an accept-
able 10% decrease in the simulation speed in comparison with old
approach but is a more accurate model.

VII. INFINEON’S METHOD FOR BETTER DEVELOPMENT
PRODUCTIVITY AND VERIFICATION

We need a proper development cycle, code generation and verifi-
cation methodology to ensure quick development of the models and
best use giving the maximum benefit to the company.

A. Common Infineon Library
At Infineon, a central modelling library based on SystemC is

used to develop various models. The library provides classes for
modelling modules, registers, attributes, multiple clock and reset
domains as well as interface implementation. It supports register call-
backs to enable user implementation on register read-write operations.
It supports TLM-2.0 standard interfaces and provides ready to use
master and slave interface implementation, thus reduces the overall
development time and brings consistency in modelling.

B. Code Generation
Along with other techniques to improve the productivity and

accuracy in building software models, code generation is one of the
most important mechanisms to ensure quality and consistency. The
single source concept where everything is derived from the same
specification and concept becomes important with more complex
designs which involve more number of people and with increasing
number of different abstract views.

The biggest challenge at system level is that all companies/groups
have their own modelling and coding styles. So a common code
generation mechanism developed by an external vendor doesnt fit
for all. Hence an adoptable in-house code generation methodology
becomes very important and need of the time.

In Infineon, we use meta-modelling and code generation methodol-
ogy which takes data at higher level of abstraction and generates the
desired output. Automatic generation ensures that we get consistent
code quality and faster development of models at all levels.

In meta-modelling flow, the target of generation is a so called view,
which may be e.g. SystemC code or a schematic description. The
view is generated by a so called generator, which is often a template
engine [35]. This template engine renders a so called template, a mix
of target code, substitutions, and generation pragmas.

In order to generate register view in SystemC style, often from a
specification - the template engine has to retrieve the required data
appropriately. This data is stored in a structured way in a so called
model.

The structure of the model is defined in a so called meta-model
as shown in Fig. 13. Here meta means above and meta-model means
a model above or more abstract than a model [36]. A meta-model
is also called a model of a model or in other words, a model is an
instance of a meta-model.

The data of the model is read from a specification, parsed from
any other document, imported from a description formulated in a so
called domain specific language, or entered through a generated GUI.

Fig. 13. Flow diagram of a meta-modeling environment

C. Verification of SystemC Models
For a SystemC model, functional accuracy and in case of ar-

chitectural exploration and performance analysis, cycle accuracy is
very important for developing software that will run successfully
on the real chip. The SystemC modelling is done based on the IP
specification, which could be interpreted differently by a designer
and could result in a totally different implementation on RTL. Such
inaccuracies may cause the developed software to be re-worked
when it is run on the real chip. At IFX, we have a co-simulation
methodology to verify the SystemC model which is re-using existing
verification environment (VE) of the corresponding RTL. In this
approach, the RTL model is replaced with its SystemC model in
the VE. It allows the SystemC model to be tested with the same
stimulus as used for RTL and compare its output against the same
reference model in the VE.

Fig. 14. SystemC model as DUT in Specman Verification Environment (eVE)

In Fig. 14, a SystemC model as DUT in a specman e verification
environment (eVE) is depicted. The required wrapper to connect
SystemC model as DUT is generated from the source files and
the VHDL test-bench. The VE refers to the internal signals of
the RTL DUT to perform certain checks which are not valid for
the SystemC DUT. Hence it requires an additional block Register



Signal Information Driver to drive these signals to the VE. This
approach reduces the verification effort and provides a platform to
compare RTL against the SystemC model. With this co-simulation,
the functional as well as temporal accuracy between the RTL and
SystemC models can be established.

VIII. CONCLUSION

With time to market shrinking day by day, developing fast and
accurate models are no more a luxury or good-to-have-methodology.
It is essential for companies to invest in making software models
for meeting their time to market. However, the fastest model is not a
good model if it does not accurately match or predict the final design
reality. Therefore, new methods are required that enable efficient
but accurate simulation of HW/SW systems. Next-generation virtual
platforms based on host-compiled software simulation can provide
such a ultra-fast yet highly-accurate modeling solutions.
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