
Sampling-Based Binary-Level Cross-Platform
Performance Estimation

Xinnian Zheng, Haris Vikalo, Shuang Song, Lizy K. John, Andreas Gerstlauer
The University of Texas at Austin, TX, USA

{xzheng1, hvikalo, songshuang1990, ljohn, gerstl}@utexas.edu

Abstract—Fast and accurate performance estimation is a
key challenge in modern system design. Recently, machine
learning-based approaches have emerged that allow predicting
the performance of an application on a target platform from
executions on a different host. However, existing approaches
rely on expensive instrumentation that requires source code
to be available. We propose a novel sampling-based, binary-
level cross-platform prediction method that accurately predicts
performance of a workload on a target by relying on various
performance statistics sampled on a host using built-in hardware
counters. In our proposed framework, samples acquired from
the host and target do not satisfy straightforward one-to-one
correspondence that characterizes prior instrumentation-based
approaches. The resulting alignment problem is NP-hard; to solve
it efficiently, we develop a stochastic dynamic coupling (SDC)
algorithm which, under mild assumptions, with high probability
closely approximates optimal alignment. The prediction model
constructed using SDC-aligned samples achieves on average
96.5% accuracy for 45 benchmarks at speeds of over 3 GIPS. At
similar accuracies, this is up to 6× faster than instrumentation-
based prediction, and approximately twice the speed of executing
the same applications natively on our ARM target.

I. INTRODUCTION

Estimating performance of complex software on hardware
that is not readily available is among the key challenges in
modern system-level design. Due to increasing complexity
of software and hardware, performance modeling and pre-
diction are difficult tasks. Widely adopted simulation-based
approaches, such as cycle-accurate instruction set simulators
(ISSs), excel in accuracy yet lack significantly in speed.
By contrast, traditional analytical models are computationally
efficient but their accuracy is limited. To this end, novel
machine learning-based cross-platform prediction techniques
have recently been proposed [1], [2]. Compared to traditional
cycle-accurate ISSs, cross-platform methods offer several or-
ders of magnitude speedup while maintaining similar accuracy.
The key idea behind such approaches is the simple intuition
that performance of the same application running on two
different hardware platforms is correlated, and that this latent
correlation can be extracted by supervised learning methods
to ultimately predict performance of applications running on a
target while executing them natively on a host. Resulting pre-
diction models trained by executing small micro-benchmarks
on an early reference implementation or model of the target
can be used by software and hardware developers to evaluate
large, real-world application behavior that would otherwise
require target access or be too slow if not infeasible to obtain.

Existing cross-platform prediction approaches achieve high
accuracy using a setup where training and prediction are
both performed at program phase granularity. Such approaches

require intrusive instrumentation of a compiler-generated inter-
mediate representation (IR) with profiling calls at basic block
boundaries to capture phase-level performance features of a
program on the host as well as, during training, reference
performance on the target. Instrumentation at the IR basic
block level leads to three major problems, however: (1)
it introduces performance overhead, (2) application source
code is required, and (3) prediction is only possible for a
single standalone application at a time. These inherently limit
practical applicability, e.g. to predict performance of an actual
application and system code mix running on a platform.

In this paper, we instead propose a sampling-based, binary-
level technique that addresses the drawbacks of existing
instrumentation-based cross-platform prediction methods. Our
approach is source-oblivious and can perform background
prediction for arbitrary binary code while maintaining similar
prediction accuracy with a significant increase in speed. A
key challenge in sampling-based learning methods is proper
alignment of samples during training. In instrumentation-based
approaches, since the IR is architecture-independent, profiling
every fixed number of dynamic basic blocks guarantees an
exact correspondence between the performance features on the
host and reference performance on the target for each captured
phase. By contrast, when host and target measurements are
sampled with respect to time rather than to fixed block or
phase boundaries, the one-to-one correspondence between host
and target measurements is lost. Due to a different pace of
application progress, sampling an application at the same rate
on different hardware platforms almost always results in a
vastly different number of samples. Hence, the main challenge
is to align and synchronize the host and target samples during
training such that they approximately correspond to the same
section of executed code. To solve this alignment problem,
we propose a novel, efficient and effective stochastic dynamic
coupling (SDC) heuristic. Crucially, numerical measurements
from the host and target can be viewed as two stochastic
signals, and our aim is to align them such that their cross-
covariance is maximized. Using the aligned samples from
the host and target, we then train prediction models, which
correlate performance from the host to the target.

The rest of the paper is organized as follows: after a
discussion of related work and an overview of our approach,
Section II presents the formulation of the alignment problem
and the SDC algorithm as well as theoretical performance
guarantees. Section III discusses the experimental setup and
Section IV presents results. Finally, Section V concludes the
paper with a summary of key contributions and results.

Prediction

Training

Host
Machine

App.
New
App.
New

.

.

.

.

.

.

Sampled Reference
Performance

.

.

.

.

.

.

Predictive
Model

Predictive
Model

Reference
Target Model

App. 1App. 1

App. NApp. N

App. 1

.

Sampled
Performance Feature

Sampled
Performance Feature

Aligned Reference
Performance

Aligned Reference
Performance

Sample Alignment

Host
Machine

Learning
Algorithm

.

.

Sampled
Performance Feature

Sampled
Performance Feature

Predicted
Performance

Predicted
Performance

App. N

Fig. 1: Sampling-based cross-platform prediction framework.

A. Related Work
Simulation-based approaches such as cycle-accurate or

cycle-approximate ISSs [3], [4] have been proposed and
widely adapted for performance estimation. However, through-
put of most ISSs is on the order of several hundred KIPS
to several MIPS. Recently, source-level host-compiled and
transaction level modeling (TLM) techniques [5] have been
proposed for improving simulation speed while maintaining
accuracy close to an ISS, but they often require tedious back-
annotation of source code with static or dynamic performance
estimates, which makes them source dependent and inherently
limits speed and accuracy.

Many analytical models based upon statistical methods have
been proposed [6]–[8]. However, all of these approaches try
to obtain performance models for some target architecture
of interest from measurements performed on the same base
architecture. By contrast, in earlier work [1] we introduced
performance and power prediction by establishing analyti-
cal models that correlate two distinct architectures. Ardalani
et al. [9] proposed similar concepts for estimating GPU
performance from CPU executions. These approaches were
limited to predicting performance of whole programs only,
where errors of more than 50% were shown. Phase-based ap-
proaches [2] were later proposed to support estimation of both
performance and power at finer temporal granularities with
more than 95% accuracy when targeting complex benchmarks
and architectures. However, all these instrumentation-based
approaches are limited to prediction of single applications for
which source code is available. Furthermore, instrumentation
comes with non-negligible execution overhead.
B. Overview

An overview of our approach is shown in Fig. 1. Like
in previous instrumentation-based cross-platform prediction
approaches, our sampling-based approach consists of a training
and a prediction phase. During training, a set of representative
programs is first executed on both the host and the target
to obtain a training set. The target reference can be either
a simulator or real hardware. During the execution of each
training program, instead of instrumenting profiling calls at
the phase level to measure various hardware performance
features on the host and reference performance on the target,
we sample them periodically. Samples are then aligned and a

Fig. 2: Training sample alignment formulation.

cross-platform prediction model is learned from them. Finally,
during the prediction phase, an arbitrary binary is executed and
sampled periodically on the host. Sampled features are then
fed into the model to predict performance on the target.

II. TRAINING AND PREDICTION

In this section, we describe sample alignment employed in
the training phase and formulate the regression model used
for performance prediction. We demonstrate that the sample
alignment problem is NP-hard, which motivates the search
for computationally efficient heuristics. Moreover, we propose
one such heuristic, a linear-time approximation scheme that
we refer to as stochastic dynamic coupling, and show it is
guaranteed to converge under mild and realistic assumptions.
A. The Sample Alignment Problem

During training, we choose one representative feature on
host and target to be used for sample alignment. Let α ∈ Rn+
and β ∈ Rm+ denote positive vectors whose entries are samples
of the time series of chosen base measurements acquired on a
host and target, respectively, that need to be aligned. Without a
loss of generality, assume that n < m; this assumption holds
for the rest of the paper. The goal of sample alignment is
to find a binary coupling matrix H ∈ {0, 1}n×m such that
the empirical covariance between the host samples α and the
aligned target samples β′ = Hβ is maximized. As illustrated
in Figure 2, the coupling matrix H belongs to the space
H of binary matrices characterized by descending staircase
pattern of consecutive ones and non-overlapping support of
rows. Since the ith row of H specifies how consecutive target
samples in β need to be aggregated to form the ith element
of the aligned vector β′, every element in the original vector
β must correspond to only one element of α. Formally, the
alignment problem can be expressed as the optimization

maximize
H∈H

cov(α, β′) =
1

n
(α− E[α])T (β′ − E[β′]). (II.1)

If α and β are normalized so that
∑n
i=1 αi = 1 and∑m

j=1 βj = 1, then E[α] = (1
n

∑n
i=1 αi, . . .,

1
n

∑n
i=1 αi)

T

= (1n , . . . ,
1
n)
T and similarly, due to the structure of

H , E[β′] = (1n
∑n
i=1(Hβ)i, . . . ,

1
n

∑n
i=1(Hβ)i)

T =
(1n

∑m
j=1 βj , . . . ,

1
n

∑m
j=1 βj)

T = (1n , . . . ,
1
n)
T . Therefore,

expectations E[α] and E[β′] are constants that do not depend
on matrix H and the original optimization problem (II.1) can
hence be simplified as

maximize
H∈H

αTHβ. (II.2)

Due to the combinatorially high number of potential solutions
to the alignment problem, optimization (II.2) is NP-hard and
thus finding its exact solution for large n and m is generally
intractable. As an alternative, we propose a practically feasible

Algorithm 1 Stochastic Dynamic Coupling

Input: α ∈ Rn+, β ∈ Rm+ ;
Output: H , total error

1: Initialize Hij = 0 ∀i, j and total error = 0;
2: Normalize α = α∑n

i=1 αi
, β = β∑m

j=1 βj
;

3: k = 1;
4: for i = 1, . . . , n do
5: residual = αi;
6: for j = k, . . . ,m do
7: if |residual| > |residual− βj | then
8: residual = residual - βj ;
9: Hij = 1;

10: else
11: ri = |residual|;
12: total error = total error + ri
13: k = j;
14: break;
15: end if
16: end for
17: end for
18: return H , total error

greedy strategy with time complexity O(max(m,n)), hence
only linear in m and n, and show that its solution converges
asymptotically in probability to the optimal alignment.
B. Stochastic Dynamic Coupling

The stochastic dynamic coupling (SDC) procedure is for-
malized as Algorithm 1. SDC starts with the first component
of α and aligns to it multiple consecutive components (starting
from the first one) of β; specifically, SDC proceeds to aggre-
gate components of β and align them to α1 for as long as
the absolute value of the alignment residual keeps decreasing
(line 7 to line 16 in Algorithm 1). The residual represents the
remainder of α1 that has not yet been accounted for by the sum
of aligned β components. Once no more β components can
be aligned, SDC moves to α2 and aligns to it the next subset
of consecutive β components, and so on. The SDC procedure
keeps track of the total residual error during the execution
(line 12) as a quality measure of the overall alignment. The
total residual error accumulates the leftover αi residuals that
are unaccounted for during each iteration of the outer for loop
(line 4). Ideally, we want the total residual error to be as close
to zero as possible. In the next section we show that the total
residual error from SDC indeed converges in probability to
zero asymptotically with sampling parameters.
C. Optimality of SDC

Before arguing asymptotic optimality of SDC, we impose
the following boundedness assumption on vector β.
Assumption 1. There exist a constant C > 0 such that
‖β‖∞ ∈ [0, Cλ], where λ = m

n characterizes the relative
sampling rate between the two input vectors α and β.

To see that Assumption 1 is intuitive and realistic, note
that in the alignment problem each component of vector β
corresponds to the total number of hardware performance
events of a certain type that occur during a sampling period.

Since sampling periods are finite, the total number of hardware
performance events in each period is bounded. Moreover,
if we assume application runtime is finite, the number of
performance events in each sampling period decreases with
sampling frequency. The ratio λ between the total number of
samples on two platforms may therefore serve as a proxy for
the ratio of sampling frequencies.

Theorem 1. Under the boundedness Assumption 1, the total
residual error R =

∑n
i=1 ri of the SDC procedure satisfies

P(R ≥ nC

2λ
+ ε) ≤ exp(− λ2ε2

2n3C2
) (II.3)

for all ε ≥ 0.

Intuitively, Theorem 1 states that as the relative sampling
rate λ increases, the probability of having large total residual
error decreases exponentially with λ2. Asymptotically, as λ→
∞, (II.3) becomes

lim
λ→∞

P(R ≥ nC

2λ
+ ε) ≤ lim

λ→∞
exp(− λ2ε2

2n3C2
)

⇒ lim
λ→∞

P(R ≥ ε)→ 0⇒ R
p→ 0,

and the total residual SDC error converges in probability to 0.

Proof. It follows from Assumption 1 that βj ∈ [0, Cλ]. The
SDC procedure guarantees that the residual error satisfies ri ∈
[0, C2λ]. This is straightforward to prove by a contradiction
argument. Assume the contrary, which means that at some
iteration i of the inner loop (line 7 in Algorithm 1) SDC in
the else branch (line 11 in Algorithm 1) assigns ri > C

2λ .
However, since all the elements of β are bounded above by
C
λ , it follows that |ri − βj | ≤ | C2λ −

C
λ | ≤

C
2λ ≤ ri, which

means the condition for the previous if branch (Algorithm 1,
line 8) is satisfied and the algorithm could not have entered
the else branch (line 11), hence a contradiction.

Define a random variable Zi = E[
∑n
k=1 rk|r1, . . . , ri] and

note that the random sequence {Zi : i = 0, . . . , n} forms a
martingale with respect to the sequence r1, r2, . . . , rn. From
the definition of a discrete-time martingale [10] it follows that
E[Zi+1|r1, . . . ri] = E[E[

∑n
k=1 rk|r1, . . . , ri+1]|r1, . . . ri] =

E[
∑n
k=1 rk|r1, . . . , ri] = Zi ∀i = 0, . . . , n, where we ap-

plied the smoothing property of conditional expectation since
G(r1, . . . , ri) ⊆ G(r1, . . . , ri+1). Here, G(S) denotes the σ-
algebra generated by set S. Such a construction is also known
as a Doob backward martingale [10].

Now, since ri ∈ [0, C2λ], the martingale difference can be
bounded as follows: |Zi − Zi−1| = |E[

∑n
k=1 rk|r1, . . . , ri]−

E[
∑n
k=1 rk|r1, . . . , ri−1]| ≤ |E[

∑n
k=1 rk|r1, . . . , ri]| +

|E[
∑n
k=1 rk|r1, . . . , ri−1]| ≤

2nC
2λ = nC

λ , where we used
the triangle inequality and the fact that both Zi and Zi−1
are bounded above by nC

2λ . Therefore, sequence {Zi} is a
martingale with bounded increments and hence the Azuma-
Heoffding inequality [10] implies that, for all ε ≥ 0,

P(Zn−Z0 ≥ ε) = P(
n∑
k=1

rk−E[

n∑
k=1

rk] ≥ ε) ≤ exp(− ε2λ2

2n(nC)2
).

From E[rk] ≤ C
2λ it follows E[

∑n
k=1 rk] ≤

nC
2λ . By rearrang-

ing both sides of the inequality we arrive at (II.3).

The martingale analysis outlined above applies to the most
general case where no independence assumption is imposed on
the random variables ri. With certain independence assump-
tion on ri, we can achieve significantly tighter bounds on the
concentration behavior of R. In what follows, we describe a
special case which yield better concentration results.

Remark 1. (Independence) Under independence assumptions
on random variables ri, the Heoffding inequality [10] for the
sum of independent sub-Gaussian random variables yields

P(R ≥ nC

2λ
+ ε) ≤ exp(−8λ2ε2

nC2
)

for all ε ≥ 0. Here we used the fact that ri ∈ [0, C2λ] implies ri
is a sub-Gaussian random variable with parameter σ = C

4λ .

Note that in this case, the multiplicative constant in the
exponential term (8

nC2) is larger than in the general case
(1
2n3C2), which implies faster convergence of the total residual

error R to nC
2λ . In practice, we may not be able to drive

parameter λ to extremely large values, which is the setting on
which asymptotic results are predicated. We discuss in Section
IV practical aspects of tuning parameter λ by sampling one
platform at a faster rate than the other.

D. Prediction

We use sampled feature vectors consisting of selected
hardware performance counters from the host for prediction.
During training, we sample host features and target reference
performance for each workload in the training set, and perform
SDC alignment using selected host and target measurements
to determine the coupling matrix H . Similar to existing cross-
platform prediction approaches, we then apply a constrained
locally linear regression (CLLR) on the the aligned host
feature vectors and the target performance to obtain a local
LASSO-like prediction model specific to each period.

To formalize the prediction procedure, for each sample t let
xt ∈ Rd denote the performance feature vector obtained from
the host and yt ∈ R the performance on the target. The goal of
prediction is to extrapolate a mapping F : Rd → R such that
for all t, F(xt) ≈ yt. Results in [1] suggest that performance
features on one platform and timing on another follow a non-
linear relationship. Instead of assuming that F is globally
linear, one can only impose a differentiability assumption, i.e.
that F is differentiable everywhere in its domain. Although F
can no longer be expressed explicitly in closed form as in an
ordinary linear regression case, the differentiability assumption
allows approximating F point-wise via a first-order linear
approximation, which we denote here as F̂.

Formally, given the feature vector x̂t̂ at sample t̂ to be
predicted, let {(xl, y′l), l = 1 . . . q} with y′l =

∑
j Hljyj be

the set of feature vector and H-aligned reference performance
pairs in the training set that are close to x̂t based upon the
distance criteria, ‖x̂t̂ − xl‖2 ≤ µ, where µ is a parameter for
determining the size of the local neighborhood of interest. Let
X ∈ Rq×d be the matrix that contains all the xTl as its row
vectors, and Y ′ ∈ Rq be the column vector that contains all
the y′l as its elements. The CLLR then solves the following

TABLE I: Performance counters profiled on the host.
Total Cycles Total Instructions

Total Cache References Total Cache Misses
Total Branches Total Branch Misses

optimization problem,

minimize
wt̂

1

2m
‖Xwt̂ − Y

′‖22 + ν‖wt̂‖
2
2

subject to wt̂ ≥ 0.

(II.4)

The solution wt̂ is then used for prediction as parameter for
the local linear approximation F̂ at x̂t̂ (i.e, F(x̂t̂) ≈ F̂(x̂t̂) =
wT
t̂
x̂t̂). Notice that the optimization problem in (II.4) does not

have an analytical solution. However, as the objective function
is both smooth and convex, the solution can be computed
efficiently via standard gradiant decent methods [11].

In the CLLR, we need to choose two tuning parameters, the
regularization penalty ν and the parameter µ for controlling
the size of the neighborhood to explore. We iteratively employ
a standard cross-validation technique [12] over the training set
to empirically determine their optimal values.

III. PREDICTION SETUP

We have implemented a prediction setup using the Linux
Perf tool infrastructure v3.16 for timer interrupt based counter
sampling, and Python v2.7.3 and SciPy v0.15.1 as the main
computation environment. We collect a total of 6 hardware
performance counters, shown in Table I, on an Intel Core i7-
920 machine with 24GB of memory used as the host. Note
that host hardware limits simultaneously collectable counters.
We use fewer features than prior work [1], [2], which relied
on expensive, repeated profiling of each program to collect 14
counters in total. We sample at 5 different periods ranging
from 100ms to 1000ms on the host to study the effect of
sampling period on the prediction accuracy and speed. On the
target, we sample only cycles and instructions as reference,
where we choose the sampling period to be 100ms as the
minimum allowed by the Perf tool.

We use the total number of host and target instructions in
each sampling period as α and β base features to perform
alignment in our setup. Unlike other performance features
that are both microarchitecture and instruction set architecture
(ISA) dependent, the number of instructions only depends on
the ISA. We otherwise obtain sampled training data consisting
of host counter vectors xi and corresponding reference target
performance yj . The aligned training data is then used in
prediction by solving the optimization problem in (II.4).

Similar to [2], our training set consists of 284 diverse and
representative sample programs from the ACM International
Collegiate Programming Contest (ICPC) database. We employ
a larger training set than [2] to account for use of fewer
counters and coarser sampling. We apply our trained prediction
setup to a test set consisting of 19 CPU-bound C++ programs
(perlbench, bzip2, gcc, mcf, milc, namd, gobmk, dealII, soplex,
povray, hmmer, sjeng, libquantum, h264ref, lbm, omnetpp, as-
tar, sphinx3, xalancbmk) from the SPEC 2006 CPU suite with
“ref” input, 13 Java programs (avrora, eclipse, fop, h2, jython,
luindex, lusearch, pdm, sunflow, tomcat, tradebeans, trades-

(a) 19 SPEC CPU C/C++ programs. (b) 13 DaCapo Java and 13 Pybench Python programs.
Fig. 3: Predicted target cycles and prediction accuracy of 45 benchmarks (host sampling period T = 500ms).

(a) 19 SPEC CPU C/C++ programs. (b) 13 DaCapo Java and 13 Pybench Python programs.
Fig. 4: Runtime of 45 benchmarks.

oap, xalan) from the DaCapo Java benchmark v9.12 [13] and
13 Python programs (2to3, bzr startup, django v3, fastpickle,
hg startup, html5lib, json load, nbody, nqueen, regex v8,
spectral norm, telco, tornado http) from the commercial Uni-
fied Python benchmark suite (PyBench) [14]. The Java and
Python benchmarks include significant binary-only library, or
virtual machine performance components. In our current setup,
we are interested in predicting performance for single-core
workloads excluding disturbances due to host/target operating
system variations. Thus, all programs are restricted to run on
one core till completion, which minimizes measurement noise
due to core migration. On both the host and target, the Java
programs are executed with the OpenJDK Runtime v2.6.7, and
the Python test programs with Python v2.7.3.

To demonstrate the effectiveness of our approach on state-
of-the-art, real-world mobile target platforms, we employ a
physical hardware reference as target for training and predic-
tion. We specifically use the ODROID-U3 development board
with a quad-core ARM Cortex-A9 based Samsung Exynos
4412 SoC as our target platform for experiments.

IV. EXPERIMENTAL RESULTS

To demonstrate the accuracy of the proposed approach, we
apply our sampling-based prediction framework to the 45 test
programs on the Intel host in order to predict performance of
each benchmark on the ARM target. We compare predictions
against actual measurements obtained from the U3 hardware.
Fig. 3 shows the accuracy of predicting whole program perfor-
mance with a host sampling period of T = 500ms. Predicted
cycles are very close to actual hardware measurements. Worst-

case prediction error is around 6%, with average errors of less
than 3.5%. Despite using fewer counters and coarser sampling
but with a larger training set, for the C++ benchmarks for
which complete source code is available (Fig. 3a), this is
comparable to results reported by existing instrumentation-
based, source-level cross-platform prediction techniques [2],
which achieve on average over 97% accuracy.

The total runtime of each test program is shown in Fig. 4. It
consists of profiling and prediction times. The profiling time is
the time it takes to collect various counters on the host. Our In-
tel host supports simultaneous reading of 3 counters at a time.
Since the Linux Perf tool allows for over-sampled counter
multiplexing, only one run of each program is necessary to
collect all 6 counters with little overhead. Compared to prior
work [2], which incurs instrumentation overhead at every basic
block, samples at faster rates, and requires 5 separate runs of
each program to collect 14 counters, profiling in our approach
is significantly faster while achieving similar accuracies. The
prediction time measures the total duration of solving the
optimization problem (II.4) for all the samples obtained from
the program. Solving time is governed by the dimension of
the data matrix X and the neighborhood defined by distance
threshold µ in II.4. Prior work [2] uses a convex but non-
smooth objective function. By contrast, our objective function
is both convex and smooth, which results in faster solving
speed overall. Combined, shorter profiling and prediction times
significantly increase the speed of our approach as compared to
prior work [1], [2]. Overall simulation speed of our approach
is on the order of 3 giga target instructions per second (GIPS).
Related work runs at 500-800 MIPS counting instrumented

Fig. 5: Speed and accuracy tradeoff.
Fig. 6: Convergence behavior of total

residual in training.
Fig. 7: Alignment example

(447.dealII-train).

instructions, with a peak of around 1 GIPS excluding any
prediction. Furthermore, as the Intel host is significantly more
powerful than our ARM target, performance estimation using
our approach is in fact on average twice as fast than running
the test application natively on the target itself.

For the same sampling period T , comparing runtimes of
the SPEC programs (Fig. 4b) with Java and Python programs
(Fig. 4a), we see that as programs execute longer, the number
of samples increases proportionally, which results in more
time spend in solving the optimization problem (II.4). As
sampling periods become smaller, since Perf introduces only a
very small sampling overhead, the profiling time stays roughly
the same. The prediction time, however, increases due to an
increase in the total number of samples.

Fig. 5 shows the prediction accuracy and speed tradeoff with
respect to the choice of host sampling period T . For reasons
outlined above, as sampling period increases, speed increases
proportionally. Prediction accuracy also increases initially until
the sampling period reaches 500ms. Increasing the sampling
period causes the relative sampling ratio λ to also increase,
which results in a smaller alignment error as discussed in
Section II-C. This is empirically confirmed in Fig. 6, which
shows the convergence behavior of the total residual R with
respect to λ for the training data. In general, an increase in host
sampling rate T results in an increase of the effective λ. As
λ increases, the total residual error deviates significantly less
often from its mean, which in turn roughly scales as O(nC2λ)
and thus converges to zero as λ → ∞. This agrees with our
analysis of SDC optimality in Section II-C. In other words,
the training data from the host and target are better aligned at
larger sampling periods. However, this trend does not continue
beyond a sampling period of 500ms. When the host sampling
period becomes too large, the total amount of samples obtained
during training decreases, and prediction accuracy suffers due
to a lack of training data.

Finally, Fig. 7 illustrates SDC alignment during training
using SPEC program 447.dealII with “train” input as an
example. As mentioned before, we perform SDC alignment on
the total number of instructions due to their microarchitecture
independence. The aligned samples measured on the ARM
target couple closely with the reference samples obtained on
the Intel host. Even when the underlying application exhibits
drastic temporal variations, SDC is able to accurately track and
map the application’s behavior from the target to the host.

V. SUMMARY AND CONCLUSIONS

This paper proposes a novel sampling-based approach for
source-oblivious, binary-level cross-platform performance pre-
diction. We introduce a stochastic dynamic coupling (SDC)
algorithm to address the training sample alignment problem
unique to the proposed approach. Although solving such
alignment exactly is NP-hard, we show that our algorithm ap-
proximates the optimal alignment with high probability under
mild boundedness assumptions. Using SDC-aligned samples
for prediction achieves on average over 96.5% accuracy across
45 diverse academic and commercial test programs in C/C++,
Java and Python. With a host sampling period of 500ms,
the average simulation speed is over 3 GIPS, which, at the
same accuracy, is up to six times faster than state-of-the-
art instrumentation-based cross-platform prediction, and twice
the speed of executing the test applications natively on our
ARM A9 target. In the future we plan to extend our approach
to support both performance and power prediction for more
complex multi-threaded and IO-intensive workloads, as well
as other architectures, such as GPUs.

REFERENCES

[1] X. Zheng et al. Learning-based analytical cross-platform performance
prediction. In SAMOS, 2015.

[2] X. Zheng et al. Accurate phase-level cross-platform power and perfor-
mance estimation. In DAC, 2016.

[3] Nathan Binkert et al. The gem5 simulator. SIGARCH Computer
Architecture News, 39(2):1–7, 2011.

[4] T. E. Carlson et al. Sniper: Exploring the level of abstraction for scalable
and accurate parallel multi-core simulation. In SC, 2011.

[5] O. Bringmann et al. The next generation of virtual prototyping: Ultra-
fast yet accurate simulation of HW/SW systems. In DATE, 2015.

[6] W. L. Bircher et al. Runtime identification of microprocessor energy
saving opportunities. In ISLPED, 2005.

[7] B. C. Lee et al. CPR: Composable performance regression for scalable
multiprocessor models. In MICRO, 2008.

[8] J. C. McCullough et al. Evaluating the effectiveness of model-based
power characterization. In USENIX, 2011.

[9] N. Ardalani et al. Cross-architecture performance prediction (XAPP)
using CPU code to predict GPU performance. In MICRO, 2015.

[10] S. Boucheron et al. Concentration Inequalities: A Nonasymptotic Theory
of Independence. Oxford university press, 2013.

[11] A. Beck and M. Teboulle. A fast iterative shrinkage-thresholding
algorithm for linear inverse problems. SIAM Journal on Imaging
Sciences, 2(1):183–202, 2009.

[12] R. Kohavi. A study of cross-validation and bootstrap for accuracy
estimation and model selection. In IJCAI, 1995.

[13] S. M. Blackburn et al. The DaCapo benchmarks: Java benchmarking
development and analysis. In OOPSLA, 2006.

[14] The Grand Unified Python Benchmark Suite. https://www.openhub.net/
p/python-benchmarks.

