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Abstract—Fast and accurate design-space exploration is a
critical requirement for enabling future hardware designs. How-
ever, big-data applications are often complex targets to evaluate
on early performance models (e.g., simulators or RTL models)
owing to their complex software-stacks, significantly long run
times, system dependencies and the limited speed of performance
models. To overcome the challenges in benchmarking complex
big-data applications, in this paper, we propose a proxy gener-
ation methodology, CAMP that can generate miniature proxy
benchmarks, which are representative of the performance of big-
data applications and yet converge to results quickly without
needing any complex software stack support. Prior system-level
proxy generation techniques model core locality features in detail,
but abstract out memory locality modeling using simple stride-
based models, which results in poor cloning accuracy for most
applications. CAMP accurately models both core-performance
and memory locality, along with modeling the feedback loop
between the two. CAMP replicates core performance by modeling
the dependencies between instructions, instruction types, control-
flow behavior, etc. CAMP also adds a memory locality profiling
approach that captures spatial and temporal locality of appli-
cations. Finally, we propose a novel proxy replay methodology
that integrates the core and memory locality models to create
accurate system-level proxy benchmarks. We demonstrate that
CAMP proxies can mimic the original application’s performance
behavior and that they can capture the performance feedback
loop well. For a variety of real-world big-data applications, we
show that CAMP achieves an average cloning accuracy of 89%.
We believe this is a new capability that can facilitate for overall
system (core and memory subsystem) design exploration.

I. INTRODUCTION

Early computer design evaluation is performed using per-
formance models such as execution-driven simulators or RTL-
based models. Unfortunately, emerging big-data applications
are often complex targets to evaluate on early performance
models as running such applications requires handling their
complex software layers, back-end databases, third-party li-
braries, which are challenging (often impossible) to support
on most early performance models. Also, detailed performance
models are significantly slower than real hardware that makes it
difficult to analyze complete execution characteristics of these
long-running applications. Furthermore, effective modeling
techniques require access to either the application source code
or traces. Unfortunately, end-user applications or exact traces
are often inaccessible due to their proprietary nature [1]. To
address these challenges, a promising solution adopted by
designers/researchers is to use a miniaturized representation
of the end-user workloads, called a “proxy” or “clone”, which
mimics the end-user workload performance.

Prior system-level proxy generation proposals [1l, [2l,
[3] model core-level locality metrics in detail, but abstract
out memory locality modeling using very simple dominant
stride-based models. This results in poor cloning accuracy of
the proxies, especially in applications with complex memory
access patterns [4], [5]. Most big-data applications are highly
data-intensive and their overall system-level performance is
significantly impacted by the performance of the cache and
memory hierarchy [6]], [[7], [8]. As a result, prior system-level
performance cloning techniques are not effective to study the

performance of big-data applications. Few detailed cache and
memory cloning techniques [4], [5] have also been proposed.
For example, spatio-temporal memory (STM) [3] tracks long
history-based stride transitions in the global memory refer-
ence sequence of applications to generate miniature memory
clones. Such techniques generate only a memory access trace,
which can be used for cache/memory hierarchy design space
exploration, but do not model any core/instruction locality
behavior. In reality, the processor core configuration and the
application together determine processor performance, which
affect the timing of requests received in the memory system.
At the same time, memory performance has a feedback loop
on processor performance, which in turn affects the timing
of other memory requests and the overall application perfor-
mance. None of the prior cloning studies accurately model the
joint performance of both core and memory subsystems and
their complex interactions. As such, there is a need for system-
level proxy benchmarking techniques that can model both core
and memory performance accurately.

To overcome the challenges in benchmarking complex big-
data applications, in this paper, we propose CAMP, a novel
proxy generation methodology that accurately models both
Core performance And Memory locality to create miniature
Proxy benchmarks. CAMP proxies are representative of the
performance of real-world big-data applications and yet, con-
verge to results quickly without needing any complex software-
stack support. To model the core performance, we adopt
existing methods for generating proxy instruction streams by
capturing and modeling the dependencies between instructions
(instruction-level parallelism), instruction types, control-flow
behavior, etc. We add an improved memory locality profiling
approach that captures both the spatial and temporal local-
ity of applications. However, as most big-data applications
typically do not have a single dominant stride/offset based
access pattern, it is quite challenging to control the different
dynamic execution instances of the low-level static load/store
instructions in the proxy to reproduce the complex memory
access patterns of the original applications using synthetic
data-structure accesses in the proxy code. To address this
challenge, we introduce a novel proxy modeling and replay
methodology that integrates the core and memory locality
models to create accurate system-level proxy benchmarks.
We demonstrate that CAMP proxies can mimic the original
application’s core as well as memory performance behavior
and that they can capture the performance feedback loop
between core and memory subsystem well. For a variety of
real-world database applications, we show that CAMP achieves
an average cloning accuracy of ~89%. We believe this is a new
capability that can facilitate evaluation of overall system (core,
cache and memory subsystem) design-space exploration.

II. RELATED WORK

On the systems-side, Bell et al. [9]] introduced the black-
box cloning approach, which used several execution-related
metrics (e.g., branch misprediction rate) to create miniature
proxy benchmarks. Few other studies [10], [2] used micro-
architecture independent attributes to clone core-side perfor-
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Fig. 1: CAMP’s profiling and proxy generation framework

mance of proprietary applications. Such approaches use a
single dominant stride-based model to characterize memory
access locality and are not effective in modeling complex
access patterns. As such, such proposals have been evaluated
for simpler, general-purpose (e.g., SPEC CPU2006 [11]]) or
embedded (Implantbench [12]) benchmarks. PerfProx [3] cre-
ates proxy benchmarks for big-data applications, but it uses
performance-counter based characteristics to model behavior
of big-data applications. Thus, PerfProx proxies are dependent
on the profiled micro-architecture and have poor cloning
accuracy for other systems. CAMP creates proxy benchmarks
by modeling both instruction locality and complex memory
access locality using a set of micro-architecture independent
metrics, and thus, enables design-space exploration of core,
cache and memory hierarchy targeting big-data applications.
On the memory-side, trace-based cloning schemes [4],
[S] have been explored to replicate data cache and memory
performance of applications. However, they don’t model other
workload features, e.g., instruction dependencies, control-flow
behavior, etc. Thus, they are not suitable to study system-level
application performance. Other approaches such as SimPoint
[13] try to reduce simulation time by identifying regions of
program execution with distinct performance characteristics.
However, using such techniques for database applications
requires supporting complete software stacks of database ap-
plications and fast-forwarding on simulation frameworks.

III.METHODOLOGY

Figure [T] shows an overview of CAMP’s core and memory
locality modeling framework. During the profiling phase (D,
CAMP characterizes the inherent instruction (e.g., instruction-
level parallelism, instruction mix) and memory access locality
patterns (spatial & temporal locality of memory accesses) of
big-data applications to create a statistical workload-specific
profile . During the proxy generation and modeling phase
(3@, CAMP adopts a systematic methodology to create a
miniaturized clone of the big-data application based on the
workload-specific profile, which can be used to drive CPU
core, cache & memory performance exploration. Next, we
will discuss CAMP’s workload characterization methodology
followed by its proxy generation algorithm in detail.

A. Workload Profiling

CAMP’s profiling infrastructure (see (D in Figure [T) is
implemented on the architecture simulator, MacSim [14] and
DRAMSim?2 [15] DRAM simulator. The profiler modules are
developed as stand-alone modules, separate from the simula-
tor’s code. To characterize a big-data application and extract
its workload statistics, we insert profiling probes into the
simulation infrastructure at two points - one before the decode
stage of the processor pipeline to collect the “instruction
locality profile” and another before the data cache access ports

to collect the “memory access locality profile”. Next, we will
discuss the different metrics corresponding to the instruction
and memory locality profiles.

1) Instruction Locality Parameters

a. Basic-block features and instruction footprint -
CAMP identifies the number of dominant static basic blocks
in the original big-data application, which constitute a fixed
threshold (empirically, set to 90% in our case) of the big-data
application’s total dynamic basic-block count. The number of
basic blocks instantiated in the proxy benchmark is set to the
number of dominant basic blocks identified in the original
application. A lower threshold value can lead to a higher
degree of miniaturization but at the expense of a loss in
cloning accuracy. Next, CAMP tracks the average basic block
size of the dominant basic blocks and transition probabilities
between pairs of basic blocks. Average basic block size is an
important metric because it determines the average number
of instructions that can be executed in the program sequence
without executing any control instructions.

b. Instruction mix - The instruction mix (imix) of a
program measures the relative frequency of various operations
performed by the program and is an important determinant of
an application’s performance. For example, an integer division
operation often takes more cycles to execute than simpler arith-
metic instructions. The fraction of floating-point and integer
instructions influence a program’s execution time. CAMP mea-
sures the imix of the big-data applications, specifically in terms
of the fraction of integer arithmetic, integer multiplication,
integer division, floating-point operations, SIMD operations,
loads, stores and control instructions in the dynamic instruction
stream of the program. The captured imix statistics are used to
populate corresponding instructions into the static basic blocks
in the proxy benchmark.

c. Control flow behavior - Another important metric that
affects big-data application performance is its control flow
behavior. Difficult-to-predict branches lead to poor branch
predictor performance, which causes higher number of wrong-
path executions and degrades system performance. Prior re-
search work [10]], [9], [2] have shown that an application’s
branch misprediction rate is highly correlated with the transi-
tion frequency of the branch instructions [16]]. Branch transi-
tion rate measures how often a branch transitions between its
taken and not-taken paths and is an indicator of the overall
branch predictability. CAMP captures the transition rate of the
branch instructions in the big-data applications and bins them
into eight buckets, where each bucket represents the fraction
of branches with a transition rate ranging from 0-100%. To
model a certain branch transition rate in the proxy, each branch
instruction is assigned a transition frequency to satisfy the
target branch transition rate.

d. Instruction-level parallelism - Next, CAMP captures



the instruction-level parallelism (ILP) of the big-data applica-
tions. Tight producer-consumer chains can significantly affect
application performance due to serialization effects. CAMP
models an application’s ILP based on its inter-instruction de-
pendency distance, which is defined as the number of dynamic
instructions between the production (write) and consumption
(read) of a register/memory operand. CAMP classifies the
instruction dependency distance into eight bins (1,2,< 4, <
8,...,< 128), where each bin represents the percentage of
instructions having that particular dependency relation. During
proxy benchmark generation, an instruction’s register or mem-
ory operands are assigned a dependency distance to satisfy the
dependency metrics collected from the original application.

e. System activity - Many emerging, big-data applications
spend a significant fraction of their execution time executing
operating system code [6], [7]. To model the impact of high
system activity, CAMP tracks the fraction of executed user-
mode and kernel instructions in the big-data applications dur-
ing profiling. Next, CAMP adds the target fraction of system
calls into the proxy benchmark during proxy generation.

Table [I| summarizes the different instruction locality fea-
tures captured by CAMP.

2) Memory Locality Parameters

As discussed, prior system-level proxy benchmarking tech-
niques use a very simple model to capture memory access
locality. They model locality of individual load/store instruc-
tions in the original application based on a single dominant
stride value. Although such an approach can work for small
loop-based programs (e.g., array-based accesses), the memory
instructions in most big-data applications have quite random,
complex access patterns which cannot be captured by a single
stride alone [|6]. For example, join operations using hash tables,
key-value stores and complex structures such b-trees do not
lend themselves well to dominant strides as a representative
model [7]. In this section, we will discuss how CAMP ad-
dresses the need for a more representative memory model.

Different requests in the cache and memory subsystem are
generated by the following reasons: (a) memory read-write
requests caused by memory instructions in an application, (b)
speculative prefetch requests typically generated by a hardware
prefetching logic and (c) write-back requests generated by
upper level caches (e.g., write-back caches) to lower levels
of the memory hierarchy. While the first type of requests are
generated by execution of instructions on the processor, the
other two depend on the architecture (e.g., cache write-policy,
prefetcher configuration).

To accurately model the read requests generated by mem-
ory instructions run by the core (type (a)), we first capture a
per cache-set stack distance distribution (SSD) profile [17] for
a baseline L1 cache (16KB, 2-way). The SSD profile captures
the fraction of memory references to the different LRU stack
positions (stack position O represents the most recently used
block, stack position 1 represents the second most recently
used block, etc.) within every cache set of the baseline L1
cache. For example, SSD;; represents the probability for an
access to fall in the i* set at the j LRU stack position.
Using SSDs helps to capture the temporal locality of memory
access streams. For the accesses that miss in the L1 cache, we
capture their spatial locality patterns by learning global stride
transitions in a stride history table (SHT). A stride is defined as
the difference between addresses of two consecutive memory
accesses that miss in the profiled L1 cache. Each SHT entry
records a history of past consecutive stride values (length is
based on the history depth), and the next strides that followed
the stride history in the past, along with each next stride’s rate

Original memory access stream ={0, 4,0, 4,1,0,4,0,4,2,0,4,0, 4, 3}

f=67% 1-f=33%
MRU LRU History-2 | nextstr 1 prob next str 2 prob
50% | 50% +4,-3 +1 100%

100% 0%
-3, +1 +1 100%

100% 0%
Set Stack Distance (SSD) Table

Stride History Table (SHT)
Fig. 2: STM-based memory locality profiling

of occurrence. We also collect another statistic, fsp, which
records the fraction of memory accesses that hit in the SSD
table. Figure [2] illustrates a simplified view of these profiling
structures. Note that these statistics are the only ones, which
are similar to the statistics used in STM [5]], all the remaining
statistics are unique to CAMP.

Apart from tracking the per-set SSD profiles (like STM),
we observed that it is equally important to capture the distri-
bution of memory accesses across sets. Not capturing access
distribution across sets leads to different conflict behavior
between cache sets when L1 test configurations differ from the
baseline, resulting in cloning errors. So, in addition to tracking
the per-set SSD profiles, we also capture the fraction of
accesses (S;) that are generated to every set of the baseline L1
cache. Together, the above profiles provide sufficient temporal
and spatial locality information to replicate the behavior of
processor memory requests and prefetch requests.

However, we found that STM’s statistics are not sufficient
to deal with write-back request traffic in the memory system.
STM collects a metric, p,,, which records the fraction of write
accesses in the original program. But the number of write-
backs is not determined by the fraction of write accesses.
Rather, it depends on the number of dirty blocks in the cache
hierarchy and this is not captured by STM’s write statistics.
Figure [3] shows an example case that leads to different number
of write-backs in STM versus the original program. In the
original program, 50% of the accesses are stores, but the stores
occur to the same cache block, resulting in one dirty cache
block. As STM does not capture the fraction of writes to clean
or dirty cachelines, it can generate two writes to different
blocks, resulting in two dirty blocks and two future write-
back requests. In order to capture this effect, in CAMP, we
record the number of writes to clean and dirty blocks. When
a clean block receives a write request, it becomes dirty and
any subsequent read/write operations on the same block do
not impact its status. Based on the counts aggregated during
the profiling phase, we compute two probabilities, W, and
W,, which represent the probability of writing to a clean or
dirty block, respectively. During proxy synthesis, we select the
request type (load or store) based on the clean or dirty state
of the generated address and the probabilities (W, and W,).
B. Proxy Generation and Modeling

Next, we will describe CAMP’s proxy generation process
(see @ in Figure [I). Table [I| summarizes the locality metrics.

Algorithm [I] shows how the “memory proxy generator”
leverages the memory locality profiles to create a dynamic

MRU_LRI

Original State of Cache | - -
Original Program: 1 write-back STM: 2 write-backs CAMP: 1 write-back
stoA MRU_LRU st 6 MRU_LRU st G MRU_LRU
Id B st | Id |
Id C Id J Id J

CAMP’s write statistics:
- 50% writes, 50% reads
- 100% W, 0% W,

STM'’s write statistics:
- 50% writes, 50% reads

Fig. 3: Profiling for write-back requests



TABLE I: Profiled statistics

Statistic Description
Simix Instruction mix distribution (e.g., #loads, #branches)
Ps, 65,618 Dependency distance distribution (1,2,...,< 128)
Pg,rr Branch transition frequency distribution (0-100%)
Soys Fraction of system activity
B Number of basic blocks in the proxy
Bgize Average basic block size
SSD;; Stack distance probability at the i’ set and
j™ stack position
SHT(, ,..5;}—>nstrs Stride pattern table keeping stride transition
counts from past i strides to next strides (nstrs)
Si Fraction of accesses to the i set
W, Probability of write to clean block
Wa Probability of write to dirty block
Pw Fraction of write accesses

memory access trace (DynMem). Based on the target number
of memory instructions in the proxy (N) after miniaturization,
CAMP chooses whether it will generate a proxy address using
the SSD or the SHT profiles based on fsp probability. If the
SSD profile is used, CAMP picks the address located at a set
and way chosen using the SSD;; and S; profiles (line 6). If
the SHT profile is used, then the next address is chosen based
on the stride transitions saved for the current stride history
(LAST_STR, lines 8-9). To make a load/store assignment,
CAMP checks if the chosen address block is dirty or clean.
Accordingly, it uses W; or W, (and p,) to determine if the
instruction should be a load or store (lines 12-17). This process
is repeated till the target number of memory accesses are
generated. The resultant trace forms the DynMem proxy trace.
Next, the “instruction proxy generator” leverages the in-
struction locality metrics to create an instruction proxy (see
Algorithm [2). First, CAMP populates each basic block in
the proxy with an appropriate number (satisfying the mean
and standard deviation of the target Bi;,.) and type (satisfy-
ing fimix) of instructions. The last instruction of every basic
block is instantiated as a conditional branch instruction. Next,
each instruction is assigned a dependency distance (i.e., a
prior instruction that generates its operands) to satisfy the
dependency distance criterion (line 7). As memory instructions
in most big-data applications typically do not have a fixed
stride/offset, it is very challenging to control the different
dynamic execution instances of the low-level, static load/store
instructions in the instruction proxy to dynamically produce
the same dynamic memory access sequence produced by
Algorithm [T (DynMem). To achieve this, we temporarily assign
all the memory instructions in the instruction proxy to have
a zero stride with respect to a baseline array (line 8). After
instruction proxy generation completes, CAMP uses a binary
instrumentation engine to integrate the DynMem trace into the
instruction proxy, as we will discuss in the next paragraph.
Next, system calls are injected (or not) into the basic block
based on the target system-call frequency (line 9). An x86 test
operation is inserted before every branch to set the condition
codes that control the branch’s outcome. The test instruction’s
operand is chosen to control the transition frequency of the
branch instruction (line 10). The above steps are repeated till
the target number of basic blocks (B) are generated. Finally,
architectural registers are assigned to each instruction to satisfy
the identified dependencies. The instruction proxy generator
generates C-language based proxies with embedded x86-based
assembly instructions using the asm construct. The proxy
instructions are nested under a two-level loop where the loop
iterations control the number of dynamic instructions.

Next, the above static instruction proxy is compiled and

Algorithm 1 Dynamic memory proxy generation algorithm
1: Output: DynMem[] = {(ADDRy, RW}), ..., (ADDRy, RWy)};

2: forn=1,...,N do
3:  Sample f, € {0,...,100};

4 if fn i fSD then

5: Use S; to choose set, SSD;; to choose LRU dist. position;
6: Choose ADDR,, based on chosen set and stack position;
7. else

8 Sample stride S, from SHT based on LAST_STR;

9: ADDR,, = LAST_ADDR + Sy;

10: LAST _STR.push_back(S,); LAST_ADDR = ADDR,;

11:  end if

12:  if ADDR,, € DirtyBlocks then

13: Sample W; and p,, to assign RW,,;

14:  else

15: Sample W, and (1-p,,) to assign RW,;;

16:  end if

17:  DirtyBlocks.add(ADDRy,) if RW, = Write;

18: end for

Algorithm 2 Instruction proxy synthesis algorithm

1: Output: Instruction proxy, B[]

2: while b < B do

3 Sample a random basic block (BB);

4 Find BB size [ to satisfy mean & std. dev of target By;z,;
5. fori<Ido

6: Assign instruction type based on target finiy;

7 Assign dependency relation based on Py distribution;
8 For memory ins., assign a 0 stride to base array;

0 o0

Inject system-calls based on target fiys;
10: Insert x86 rest operation with chosen modulo operand;
11: Assign last instruction to be conditional branch instruction;
12:  end for

13: end while
14: Assign arch. registers to satisfy dependency rels. of step 7.

profiled using a binary instrumentation tool (e.g., PIN) to gen-
erate a dynamic instruction stream (Dynlnst) of the same. An
example format of DynInst is shown in Figure d] Next, we pro-
pose and implement a dynamic binary instrumentation engine
for integrating the DynMem and Dynlnst profiles to create the
unified CAMP proxies, capturing both instruction and memory
access behavior of the original big-data applications. For every
dynamic execution instance of the load/store instructions in the
Dynlinst sequence, the instrumentation engine overrides the
temporary address assigned to the instruction during the in-
struction proxy generation time with the next address from the
DynMem sequence in a serialized fashion. The instrumented
instruction and memory stream forms the CAMP proxy. To
evaluate the CAMP proxies on simulators, we implement a
replay engine that interfaces with the trace/binary reading logic
of the architectural performance or power simulator and feeds
the simulator with the unified CAMP dynamic instruction
and memory sequences. Most architectural simulators (e.g.,
SniperSim [18]], Macsim [14]], Ramulator [19]) support well-
defined dynamic trace driven execution modes and CAMP
proxies could be easily integrated into such frameworks by
modifying the replay engine.

1. Inst. address = PC1; Opcode = add; Src regs =r1, r3; Dest. reg = r4

2. Inst. address = PC2; Opcode = Id; Src regs = r0, load address = 0; Dest. reg = r4
3. Inst. address = PC3; Opcode = br; branch_target = PC1; branch taken = true
4. Inst. address = PC1; Opcode = add; Src regs = r1, r3; Dest. reg = r4

5. Inst. address = PC2; Opcode = Id; Src regs = r0, load address = 0; Dest. reg = r4

ions

PC2: Id r4, 0(r0)

CPCl: addrl, r3, r4
PC3: br PC1

2 iterati

(a) Instruction proxy (b) Dynamic instruction proxy stream (Dyninst)

Fig. 4: Dynlnst format
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IV.EXPERIMENTS AND RESULTS

For profiling and validation, we use a detailed architecture
simulator Macsim [14], connected with DRAMSim2 [15]
memory simulator. We evaluate CAMP using a set of big-data
data-serving (Yahoo! Cloud Serving Benchmark (YCSB)[20])
and data-analytics applications (TPC-H benchmarks [21]). We
run the standard benchmarks provided with YCSB framework,
which cover the most important operations (read, write and
insert) performed against a typical data-serving database. TPC-
H models a decision-support system for order-processing en-
gines, with queries performing different business-like analyses.
We run 5 TPC-H benchmark queries. Both TPC-H and YCSB
benchmarks interact with a backend MySQL database. The
test databases are chosen to have a total size of ~ 10-12GB
so that the data fits into memory of the server nodes. We
fast forwarded each benchmark to skip the initialization stage
and clone one particular phase of the application consisting
of 1 billion instructions (to capture other phases, we can
choose other 1 billion instruction windows). It should be noted
that profiling is a one-time cost and CAMP receives only
a statistical profile as input (independent of the execution
length). The system configuration used for collecting CAMP
profiles is shown in Table[[l We evaluate CAMP’s accuracy in
predicting various performance metrics across different core,
pipeline, branch predictor, cache and memory configurations.

Core configurations - First, we compare the effectiveness
of CAMP proxies in replicating overall performance of the
database applications. We evaluate 8 different core configura-
tions per benchmark by changing the pipeline width between 2-
8, re-order buffer size between 128-512 and issue rate between
2-4. Figure [5a shows the results. We can observe that the aver-
age error between the proxy and original applications is ~11%.
Highest error is experienced by the TPCH-Q14 benchmark as
it suffers from aliasing effects in the stride history table due to
complex join-based access patterns, leading to higher L1/L2

TABLE II: Profiled system configuration

Component  Configuration
CPU x86_64 processor, atomic mode, 4 GHz

L1 Cache 32KB, 2 way Icache; 64KB, 2 way Dcache; 64B line-size, LRU
L2 Cache 256KB, 4-way, LRU
DRAM 16GB DDR3, 12.8 GB/sec

cache and memory performance cloning errors. Increasing the
stride history length can improve memory performance cloning
accuracy but at the expense of higher metadata overhead. Over-
all, CAMP’s methodology of capturing different instruction
and memory access locality metrics leads to small error rates
across most benchmarks (including complex queries in TPC-
H and YCSB benchmarks). Overall, the proxies replicate the
overall performance behavior with ~0.94 correlation.

Branch predictor configurations - Next, we evaluate
the effectiveness of CAMP proxies in replicating behavior of
original applications across different branch predictor config-
urations. In particular, we test two different branch predictors
(gshare and tournament) and we also vary the predictor’s
branch history depth between 8-18. Figure [5b| shows the
average error in branch misprediction rate between the original
and proxy applications. We can see that the average error is less
than 1% (correlation = 0.93). This shows that CAMP’s method-
ology of using branch transition rates to track predictability
of control instructions is fairly accurate to model application
behavior across different branch predictor configurations.

L1 cache and prefetcher configurations - Next, we
evaluate CAMP’s effectiveness across different L1 cache and
prefetcher configurations. We evaluate 6 different L1 cache
configurations per benchmark (varying the cache size from
16KB-64KB, associativity from 2-8). For each cache configu-
ration, we also vary the L1 stream prefetcher configurations by
changing the stream detection window between 8-16, prefetch
degree between 0-4. Results showing the L1 cache miss
rate errors is shown in Figure Capturing both temporal
and spatial locality patterns using long history-based stride
transitions in the memory access streams of the complex, big-
data applications leads to highly accurate replication of cache
performance. The proxies experience about an error up to
2 MPKI in some configurations, especially when cache line
size of L1 caches changes significantly because the collected
memory profiles do not capture locality within cache-blocks.
Nonetheless, we can observe that the overall correlation be-
tween the proxy and original applications is high (0.98).

L2 cache and prefetcher configurations - Next, we
evaluate CAMP’s effectiveness across different L2 cache and
prefetcher configurations. We evaluate 8 different L2 cache
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Fig. 7: IPC cloning accuracy of CAMP versus SDS proxies.

configurations per benchmark (varying the cache size from
128KB-1MB, associativity from 2-16). For each cache con-
figuration, we vary the L2 stream prefetcher configurations by
changing the stream detection window between 8-16, prefetch
degree between 0-2. Results showing the L2 cache miss rate
errors is shown in Figure [5d| We can observe that the overall
correlation is high (0.97) due to accurate modeling of load-
store patterns and write-back cache traffic.

DRAM performance - Next, we evaluate effectiveness of
the CAMP proxies to enable design-space exploration of the
memory system in lieu of the original applications. In partic-
ular, we evaluate 6 different DRAM configurations (changing
the memory controller scheduling policy between FR-FCFS
and FCFS, channel parallelism between 4-8, row buffer size
between 2-4 KB) per benchmark (total 54 configurations).
We compare the original and proxy benchmarks in terms of
average read/write latency per instruction (see Figure[5¢). Each
value is normalized with the original TPC-H Q14 benchmark’s
performance metrics. Overall the average error in average read-
write latency per instruction is 14.5% (correlation = 0.89).

Comparison with prior techniques - Figure [6] compares
the clones generated using the single dominant stride (SDS
proxy) profile, the most commonly used statistic in literature
for modeling memory locality patterns in system-level proxy
benchmarks, against CAMP proxies. For this, we vary the L1
cache size from 16-64KB and associativity between 2-8. We
observe that the SDS clones show significant errors in L1
miss ratio at many points, reaching as high as 33%. CAMP
proxies, on the other hand, show < 1% errors in most cases,
and only a few data points have relatively higher error (< 4%).
This result demonstrates that the SDS approach is not suitable
for modeling complex memory access patterns of big-data
workloads. Figure [/| compares the IPC cloning accuracy of the
SDS and CAMP proxies for three big-data benchmarks across
different core pipeline and cache configurations. Overall, by
accounting for accurate memory locality models together with
replicating the program ILP, instruction types, basic block etc.,
CAMP proxies achieve much lower cloning error (~ 11%)
compared to the SDS proxies (~ 21%).

Degree of miniaturization - Since CAMP relies on statis-
tical convergence to replicate instruction and memory locality,
it is important to have sufficient number of samples in the
original application to replicate the different probability values
due to the law of large numbers. The proxies contain roughly

90-100 million dynamic instructions, yielding a clone that is
~10-12x smaller than the original application resulting in a
~ 10x reduction in simulation time. The degree of miniatur-
ization on full applications can be higher since the number of
samples in the full application traces is often very large.

V. CONCLUSION

In this paper, we proposed a methodology (CAMP) to solve
the confidentiality and representativeness problems of work-
load performance cloning for big-data applications. CAMP
accurately models both core-performance and memory locality,
along with modeling the feedback loop between the two.
To model the core performance, we adopt existing methods
for generating proxy instruction streams by capturing and
modeling the dependencies between instructions, instruction
types, etc. We add an improved memory locality profiling
approach that captures both the spatial and temporal locality
of applications. Finally, we introduce a novel proxy generation
and replay technique that integrates the core and memory
locality models together to create accurate system-level proxy
benchmarks. We demonstrate that CAMP clones can mimic the
original application’s performance behavior and that they can
capture the performance feedback loop well. For a variety of
real-world database applications, we show that CAMP achieves
an average cloning error of ~11%. We believe this is a new
capability that can enable accurate overall system (core and
memory subsystem) design exploration.
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