
UNIVERSITY OF CALIFORNIA,
IRVINE

Modeling Flow for Automated System Design and Exploration

DISSERTATION

submitted in partial satisfaction of the requirements
for the degree of

DOCTOR OF PHILOSOPHY

in Information and Computer Science

by

Andreas Gerstlauer

Dissertation Committee:
Professor Daniel D. Gajski, Chair

Professor Rainer Dömer
Professor Michael Franz

2004

c© 2004 Andreas Gerstlauer

The dissertation of Andreas Gerstlauer
is approved and is acceptable in quality
and form for publication on microfilm:

Committee Chair

University of California, Irvine
2004

ii

To my dad.

iii

Contents

List of Figures viii

List of Listings x

List of Tables xii

List of Acronyms xiii

Acknowledgments xvi

Curriculum Vitae xviii

Abstract of the Dissertation xxiii

1 Introduction 1
1.1 Design and Synthesis . 2
1.2 System Design . 4
1.3 Abstraction Levels and Design Models . 5
1.4 Design Language . 6
1.5 Problem Definition . 7
1.6 Dissertation Overview . 8
1.7 Related Work . 10

1.7.1 Design Methodologies . 10
1.7.2 Computation Synthesis . 10
1.7.3 Communication Synthesis . 12
1.7.4 Design Environments . 12

2 Modeling Flow 14
2.1 Overview . 14

2.1.1 Design Flow . 16
2.1.2 Modeling . 17

2.2 Design Models . 20
2.2.1 Specification . 22
2.2.2 Architecture . 23

iv

2.2.3 Communication . 26
2.2.4 Implementation . 28

2.3 Design Methodology . 32
2.4 Design Process . 34
2.5 Design Environment . 35

2.5.1 Modeling . 36
2.5.2 Refinement . 37
2.5.3 Exploration . 37
2.5.4 Synthesis . 37

2.6 Summary . 38

3 System Specification 40
3.1 Modeling Guidelines . 40

3.1.1 Computation . 41
3.1.2 Communication . 43

3.2 Modeling Style . 44
3.2.1 Computation . 46
3.2.2 Communication . 48

3.3 Design Example . 49
3.4 Summary . 51

4 Computation Design 52
4.1 Overview . 52
4.2 Partitioning . 54

4.2.1 Processing Element Layer . 54
4.2.2 Memory Layer . 63

4.3 Scheduling . 75
4.3.1 Static scheduling . 75
4.3.2 RTOS Layer . 77

4.4 Summary . 87

5 Communication Design 90
5.1 Overview . 90

5.1.1 SoC Communication . 92
5.1.2 Communication Layers . 94

5.2 Network Design . 99
5.2.1 Application Layer . 99
5.2.2 Presentation Layer . 102
5.2.3 Session Layer . 105
5.2.4 Transport Layer . 108
5.2.5 Network Layer . 109

5.3 Link Design . 112
5.3.1 Link Layer . 112
5.3.2 Stream Layer . 116
5.3.3 Media Access Layer . 124

v

5.3.4 Protocol Layer . 134
5.4 Summary . 143

6 Backend 146
6.1 Hardware Design . 146

6.1.1 Overview . 147
6.1.2 Superstate Model . 149
6.1.3 Behavioral RTL . 151
6.1.4 Structural RTL . 152

6.2 Software Design . 156
6.2.1 Overview . 158
6.2.2 C Model . 162
6.2.3 Instruction Set Simulation Model . 164

6.3 Summary . 166

7 Design Environment 168
7.1 Overview . 168

7.1.1 Simulation . 170
7.1.2 Profiling . 170
7.1.3 Refinement . 170
7.1.4 Synthesis . 171
7.1.5 User Interface . 171

7.2 Specification Capture . 173
7.2.1 Modeling . 173
7.2.2 Simulation . 174

7.3 Profiling and Estimation . 176
7.3.1 Profiling Flow . 176
7.3.2 Metrics . 177
7.3.3 Visualization . 180

7.4 Databases . 183
7.4.1 Database Format . 183
7.4.2 Allocation and Selection . 185

7.5 Computation Design . 186
7.5.1 Partitioning . 187
7.5.2 Scheduling . 188

7.6 Communication Design . 188
7.6.1 Network Design . 189
7.6.2 Link Design . 190

7.7 Backend . 190
7.7.1 Hardware Design . 191
7.7.2 Software Design . 192

7.8 Summary . 193

vi

8 Experimental Results 194
8.1 Overview . 195

8.1.1 Modeling and Simulation . 195
8.1.2 System Design . 196

8.2 Vocoder System . 198
8.2.1 Modeling and Simulation . 199
8.2.2 PE Modeling . 205
8.2.3 OS Modeling . 206
8.2.4 Communication Modeling . 208

8.3 JPEG Encoder Subsystem . 210
8.3.1 Modeling and Simulation . 210
8.3.2 PE Modeling . 214

8.4 Baseband System . 216
8.5 Summary . 220

9 Summary and Conclusions 222

Bibliography 226

vii

List of Figures

1.1 Y-Chart. 2
1.2 System design. 5

2.1 System-level design. 15
2.2 System design flow. 16
2.3 Abstraction levels and models. 21
2.4 Specification model example. 23
2.5 Architecture model example. 25
2.6 Communication model example. 28
2.7 Behavioral implementation model example. 30
2.8 Structural implementation model example. 31
2.9 System design methodology. 32
2.10 Design process. 35
2.11 SoC Design Environment (SCE). 36

3.1 Specification model top-level structure. 45
3.2 System design example specification model. 50

4.1 Computation design flow. 53
4.2 Behavior partitioning. 55
4.3 Behavior partitioning refinement. 56
4.4 PE model. 64
4.5 Distributed variable partitioning. 66
4.6 Shared memory variable partitioning. 70
4.7 Partitioned model. 74
4.8 Static scheduling refinement. 76
4.9 Scheduled model. 78
4.10 RTOS modeling layers. 79
4.11 Model refinement example. 81
4.12 Dynamic scheduling implementation. 85
4.13 RTOS model simulation traces. 86
4.14 Architecture model. 88

5.1 Communication design flow. 91

viii

5.2 Communication architecture example. 97
5.3 Communication model refinement. 98
5.4 Application model. 101
5.5 Session model. 104
5.6 Transport model. 107
5.7 Link model. 111
5.8 Stream model. 115
5.9 Media access model. 122
5.10 Protocol model. 133
5.11 Communication model. 141

6.1 Hardware design flow. 147
6.2 Hardware refinement. 148
6.3 Software design flow. 158
6.4 Software implementation layers. 160
6.5 Software refinement. 161

7.1 SCE tool flow and architecture. 169
7.2 SCE graphical user interface (GUI). 172
7.3 Model capture and browsing. 174
7.4 Simulation output and traces. 175
7.5 Profiling and estimation flow. 177
7.6 Weight table editor. 179
7.7 Visualization of design metrics. 181
7.8 Connectivity display. 182
7.9 Design quality dialog. 183
7.10 Database browser and component allocation. 186
7.11 Behavior and variable mapping. 187
7.12 Scheduling dialog. 188
7.13 Channel routing. 189
7.14 Link parameter dialog. 190
7.15 RTL scheduling and binding dialog. 191

8.1 Vocoder modeling results. 200
8.2 Vocoder simulation results. 201
8.3 Vocoder PE exploration. 206
8.4 JPEG encoder modeling results. 211
8.5 JPEG encoder simulation results. 212
8.6 Baseband implementation detail added during model refinement 218
8.7 Baseband simulation times. 218
8.8 Baseband simulated delays. 218

ix

List of Listings

3.1 Specification model top-level code. 45

4.1 Specification model. 57
4.2 Grouped model. 58
4.3 Handshaking synchronization behaviors. 59
4.4 PE model. 60
4.5 Timing refinement. 62
4.6 DSP PE distributed variable refinement. 67
4.7 SI PE distributed variable refinement. 67
4.8 Top-level distributed variable refinement. 68
4.9 Message-passing refinement. 69
4.10 Top-level shared memory refinement. 71
4.11 Shared memory behavioral model. 71
4.12 DMA PE shared memory refinement. 72
4.13 ColdFire PE shared memory refinement. 72
4.14 Static scheduling refinement. 76
4.15 Interface of the RTOS model. 80
4.16 Task modeling. 82
4.17 Task creation. 83
4.18 Synchronization refinement. 84

5.1 Communication model PE refinement. 98
5.2 Presentation layer. 102
5.3 Shared memory presentation model. 103
5.4 Memory access presentation layer. 105
5.5 Transducer model. 110
5.6 Link layer. 113
5.7 Shared memory link model. 114
5.8 Data stream layer. 117
5.9 Memory stream layer. 118
5.10 Control stream translator. 119
5.11 Stream layer for non-OS processor. 120
5.12 Stream layer for processor with OS. 121

x

5.13 Interrupt handler task for control streams. 123
5.14 Media access layer data transactions. 126
5.15 Media access layer for memory access in the master. 127
5.16 Media access layer for memory slave. 128
5.17 Media access layer arbitration. 129
5.18 PE hardware abstraction layer (HAL). 130
5.19 PE hardware abstraction layer (HAL) with interrupt sharing. 131
5.20 Media access layer slave interrupt polling. 131
5.21 Data transfer protocol layer. 136
5.22 Arbitration protocol layer. 137
5.23 Interrupt protocol layer. 138
5.24 Processor core hardware model. 139
5.25 Bus-functional processor model. 140

6.1 Custom hardware behavioral model. 150
6.2 Custom hardware SFSMD model. 151
6.3 Custom hardware FSMD model. 153
6.4 RTL netlist custom hardware model. 154
6.5 Custom hardware controller. 155
6.6 Custom hardware datapath. 156
6.7 Custom hardware controller behavior hierarchy. 157
6.8 Application software C code. 163
6.9 Software C model. 164
6.10 Instruction set simulation (ISS) model. 165

xi

List of Tables

2.1 System-level design steps. 18

4.1 Computation design steps. 89

5.1 Communication layers. 95
5.2 Communication design steps. 144

6.1 Accellera RTL styles. 152
6.2 Backend design steps. 166

8.1 Baseband computation design parameters. 196
8.2 Baseband communication design parameters. 197
8.3 Vocoder modeling results. 200
8.4 Vocoder simulation results. 201
8.5 Vocoder OS simulation results. 207
8.6 Vocoder simulated communication delays. 209
8.7 JPEG encoder modeling results. 211
8.8 JPEG encoder simulation results. 212
8.9 JPEG encoder PE exploration. 215
8.10 Baseband system modeling results. 217

xii

List of Acronyms

ALU Arithmetic Logic Unit. A block of combinatorial logic that performs arithmetic and logic

operations.

Behavior An entity that encapsulates and describes computation or functionality in the form of an

algorithm.

CAD Computer Aided Design. Design of systems with the help of and assisted by computer pro-

grams, i.e. software tools.

CE Communication Element. A system component that is part of the communication architecture

for transmission of data between PEs, e.g. a transducer, an arbiter, or an interrupt controller.

Channel An entity that encapsulates and describes communication between two or more partners

in an abstract manner.

FSM Finite State Machine. A model that describes a machine as a set of states, a set of transitions

between states, and a set of actions associated with each state or transition.

FSMD Finite State Machine with Datapath. An FSM in which each state contains a set of expres-

sions over variables.

GUI Graphical User Interface. A graphical interface of a computer program that allows visual

entry of commands and display of results.

HAL Hardware Abstraction Layer. The lowest layer of software in a processor implementing the

interface to the processor’s hardware.

HDL Hardware Description Language. A language for describing and modeling blocks of hard-

ware.

xiii

HW Hardware. The tangible part of a computer system that is physically implemented.

IP Intellectual Property. An IP component is a pre-designed system component that is stored in the

component database.

ITRS International Technology Roadmap for Semiconductors. Roadmap published by SEMAT-

ECH identifying and predicting the technological challenges and needs facing the semicon-

ductor industry over the next 15 years.

MoC Model of Computation. A set of rules that define the interaction and composition of compo-

nents.

OS Operating System. A piece of software that manages and controls functionality in a computer

system.

PE Processing Element. A system component that performs computation (data processing), e.g. a

software processor, a custom hardware component, or an IP.

RTL Register-Transfer Level. A level of abstraction at which computation is described as transfers

of data between storage units (registers) where each transfer involves processing and manip-

ulation of data.

RTOS Real-Time Operating System. An operating system that provides predictable timing and

timing guarantees.

SEMATECH Global consortium of leading semiconductor manufacturers.

SCE SoC Environment. Tool set for automated, computer-aided design of SoC and computer sys-

tems in general.

SLDL System-Level Design Language. A language for describing complete, heterogeneous, mixed

hardware/software computer systems at high levels of abstraction.

SoC System-On-Chip. A complete computer system implemented on a single chip or die.

TLM Transaction Level Model. A model of a system in which communication is abstracted into

channels and described as transactions at a level above pins and wires.

Transducer A CE that translates between incompatible communication protocols and connects two

or more incompatible communication media, e.g. a bus bridge.

xiv

VHDL VHSIC Hardware Description Language. An HDL commonly used for hardware design at

RTL and logic levels.

VHSIC Very High Speed Integrated Circuit.

xv

Acknowledgments

The work in this thesis was to a large extent shaped and influenced by all the members of

the SpecC/SCE group in the Center for Embedded Computer Systems (CECS) at UC Irvine. First

and foremost, this work certainly would not have been possible without the leadership, direction and

vision of my advisor, Prof. Daniel Gajski, who started the project and contributed many of the initial

ideas. I would like to thank him for his support, guidance—both academically and otherwise—and

patience in dealing with my stubbornness over the years.

The foundation of this work was laid by the fathers of the SpecC language, Prof. Rainer

Dömer and Prof. Jianwen Zhu. In particular, I would like to thank Prof. Dömer for serving on my

committee, for all his support throughout this project and for many fruitful discussions that always

proofed helpful in bringing me back on track. In addition, I would also like to thank Prof. Michael

Franz for serving on my committee and for his valuable comments on improving this dissertation.

Many details of this thesis were determined in discussion with my colleagues and co-

authors in the team developing the SCE system: Samar Abdi, Lukai Cai, Junyu Peng, Dongwan Shin

and Haobo Yu. Furthermore, I would like to thank Alexander Gluhak, David Berner, Martin von

Weymarn and Shuqing Zhao who as visiting researchers or former students helped tremendously in

the development of the GUI and of several design examples.

Finally, I want to thank all the former and current members, students and office-mates

in CECS and in the computing support group of the department who provided often desperately

needed technical, administrative or research support, glimpses into a world outside the box and a

productive and fun working environment in general. Furthermore, I am grateful for the help and

support of the CECS staff who are instrumental in running the center so friendly, smoothly and

efficiently.

On a personal level, life in Irvine would have been so much less bearable without all the

friendships made here over the years. In addition to all the people mentioned above, this includes

xvi

the many friends in the graduate student body and the international community at UCI. Especially

Sumit Gupta has been both a helpful colleague and an invaluable friend, roommate and partner in

many activities throughout our journey together to seek those elusive Ph.D. degrees.

xvii

Curriculum Vitae

Andreas Gerstlauer

Education
2004 Ph.D., Information & Computer Science, University of California, Irvine

1998 M.S., Information & Computer Science, University of California, Irvine

1997 Dipl.-Ing. (M.S.), Electrical Engineering, University of Stuttgart, Germany

Experience

1998-2004 Graduate Research Assistant Center for Embedded Computer Systems,
University of California, Irvine

1997-1998 Teaching Assistant Information & Computer Science,
University of California, Irvine

1996-1997 Graduate Research Assistant Integrated Systems Engineering,
University of Stuttgart, Germany

1995-1996 Research Assistant Institute for Microelectronics Stuttgart,
University of Stuttgart, Germany

1993-1994 Research Assistant Communication Networks & Computer Engineering,
University of Stuttgart, Germany

1989-1997 Senior Software Engineer Embedded Software Development,
Ehrler Prüftechnik, Germany

1994 Summer Intern Böblingen Instruments Division,
Hewlett-Packard GmbH, Germany

xviii

Publications

Books

• A. Gerstlauer, R. Dömer, J. Peng, D.D. Gajski, “System Design: A Practical Guide with

SpecC,” Kluwer Academic Publishers, 2001.

• D.D. Gajski, J. Zhu, R. Dömer, A. Gerstlauer, S. Zhao, “SpecC: Specification Language and

Methodology, Japanese Edition,” CQ Publishing, Japan, 2000.

• D.D. Gajski, J. Zhu, R. Dömer, A. Gerstlauer, S. Zhao, “SpecC: Specification Language and

Methodology,” Kluwer Academic Publishers, 2000.

Book Chapters

• A. Gerstlauer, H. Yu, D.D. Gajski, “RTOS Modeling for System-Level Design,” in Embedded

Software for SoC, edited by A.A. Jerraya, S. Yoo, N. When, D. Verkest, Kluwer Academic

Publishers, 2003.

• A. Rettberg, F. Rammig, A. Gerstlauer, D. Gajski, W. Hardt, B. Kleinjohann, “The Speci-

fication Language SpecC within the PARADISE Design Environment” in Architecture and

Design of Distributed Embedded Systems, edited by B. Kleinjohann, Kluwer Academic Pub-

lishers, 2001.

Conference Papers

• L. Cai, A. Gerstlauer, D. Gajski, “Retargetable Profiling for Rapid, Early System-Level De-

sign Space Exploration,” Design Automation Conference (DAC), June 2004.

• A. Gerstlauer, H. Yu, D. Gajski, “RTOS Modeling for System-Level Design,” Design, Au-

tomation & Test in Europe (DATE), March 2003.

• A. Gerstlauer, D.D. Gajski, “System-Level Abstraction Semantics,” International Symposium

on System Synthesis (ISSS), October 2002.

• W. Mueller, R. Dömer, A. Gerstlauer “The Formal Execution Semantics of SpecC,” Interna-

tional Symposium on System Synthesis (ISSS), October 2002.

xix

• S.B. Saoud, D.D. Gajski, A. Gerstlauer, “Co-design of Emulators for Power electric Processes

Using SpecC Methodology,” Annual Conference of the IEEE Industrial Electronics Society,

November 2002.

• S.B. Saoud, D.D. Gajski, A. Gerstlauer, “Co-design of Embedded Controllers for Power Elec-

tronics and Electric Systems,” International Symposium on Intelligent Control, October 2002.

• S.B. Saoud, D.D. Gajski, A. Gerstlauer, “Seamless approach for the design of control systems

for Power Electronics and Electric Drives,” International Conference on Systems, Man and

Cybernetics, October 2002.

• R. Dömer, A. Gerstlauer, D. Gajski, “SpecC Methodology for High-Level Modeling,” IEEE/-

DATC Electronic Design Processes Workshop, April 2002.

• A. Gerstlauer, S. Zhao, D. Gajski, A. Horak, “SpecC System-Level Design Methodology

Applied to the Design of a GSM Vocoder,” Workshop on Synthesis and System Integration of

Mixed Technologies (SASIMI), April 2000.

Professional Documents

• R. Dömer, A. Gerstlauer, D. Gajski, “SpecC Language Reference Manual, Version 2.0,”

SpecC Technology Open Consortium (STOC), December 2002.

• R. Dömer, A. Gerstlauer, D. Gajski, “SpecC Language Reference Manual, Version 1.0,”

SpecC Technology Open Consortium (STOC), March 2001.

Technical Reports

• L. Cai, A. Gerstlauer, D. Gajski, “Retargetable Profiling for Rapid, Early System-Level De-

sign Space Exploration,” UC Irvine, Technical Report CECS-TR-04-04, October 2003.

• D. Shin, A. Gerstlauer, R. Dömer, D. Gajski, “C-based Interactive RTL Design Methodology,”

UC Irvine, Technical Report CECS-TR-03-42, December 2003.

• S. Abdi, J. Peng, H. Yu, D. Shin, A. Gerstlauer, R. Dömer, D. Gajski, “System-on-Chip

Environment (SCE Version 2.2.0 Beta): Tutorial,” UC Irvine, Technical Report CECS-TR-

03-41, July 2003.

xx

• A. Gerstlauer, “Communication Abstractions for System-Level Design and Synthesis,” UC

Irvine, Technical Report CECS-TR-03-30, October 2003.

• A. Gerstlauer, L. Cai, D. Shin, R. Dömer, D.D. Gajski, “System-On-Chip Component Mod-

els,” UC Irvine, Technical Report CECS-TR-03-26, August 2003.

• A. Gerstlauer, K. Ramineni, R. Dömer, D.D. Gajski, “System-On-Chip Specification Style

Guide,” UC Irvine, Technical Report CECS-TR-03-21, June 2003.

• H. Yu, A. Gerstlauer, D. Gajski, “RTOS Scheduling in Transaction Level Models,” UC Irvine,

Technical Report CECS-TR-03-12, March 2003.

• D. Gajski, J. Peng, A. Gerstlauer, H. Yu, D. Shin, “System Design Methodology and Tools,”

UC Irvine, Technical Report CECS-TR-03-02, January 2003.

• S. Abdi, J. Peng, R. Dömer, D. Shin, A. Gerstlauer, A. Gluhak, L. Cai, Q. Xie, H. Yu,

P. Zhang, D. Gajski, “System-On-Chip Environment (SCE): Tutorial,” UC Irvine, Techni-

cal Report CECS-TR-02-28, September 2002.

• A. Gerstlauer, D.D. Gajski, “System-Level Abstraction Semantics,” UC Irvine, Technical

Report CECS-TR-02-17, July 2002.

• A. Gerstlauer, “SpecC Modeling Guidelines,” UC Irvine, Technical Report CECS-TR-02-16,

April 2002.

• J. Peng, L. Cai, A. Gerstlauer, D.D. Gajski, “Interactive System Design Flow,” UC Irvine,

Technical Report CECS-TR-02-15, April 2002.

• W. Mueller, R. Dömer, D.D. Gajski, “The Formal Execution Semantics of SpecC,” UC Irvine,

Technical Report CECS-TR-02-04, January 2002.

• W. Mueller, R. Dömer, A. Gerstlauer, “The Formal Execution Semantics of SpecC,” UC

Irvine, Technical Report ICS-TR-01-59, November 2001.

• A. Gerstlauer, “SpecC Modeling Guidelines,” UC Irvine, Technical Report ICS-TR-00-48,

August 2000.

• A. Gerstlauer, “Communication Software Code Generation,” UC Irvine, Technical Report

ICS-TR-00-46, August 2000.

xxi

• D. Gajski, J. Zhu, R. Dömer, A. Gerstlauer, S. Zhao, “The SpecC Methodology,” UC Irvine,

Technical Report ICS-TR-99-56, December 1999.

• L. Cai, J. Peng, C. Chang, A. Gerstlauer, H. Li, A. Selka, C. Siska, L. Sun, S. Zhao and

D. Gajski, “Design of a JPEG Encoding System,” UC Irvine, Technical Report ICS-TR-99-

54, November 1999.

• A. Gerstlauer, S. Zhao, D.D. Gajski, A. Horak, “Design of a GSM Vocoder using SpecC

Methodology,” UC Irvine, Technical Report ICS-TR-99-11, March 1999.

• A. Gerstlauer, S. Zhao, D.D. Gajski, “VHDL+/SpecC Comparisons - A Case Study,” UC

Irvine, Technical Report ICS-TR-98-23, May 1998.

xxii

Abstract of the Dissertation

Modeling Flow for Automated System Design and Exploration

by

Andreas Gerstlauer

Doctor of Philosophy in Information and Computer Science

University of California, Irvine, 2004

Professor Daniel D. Gajski, Chair

Raising the level of abstraction is widely seen as the solution for closing the productivity

gap in the design of embedded computer systems and systems-on-chip (SoCs). However, system

design thus far suffers from a lack of rigorous, structured, and comprehensive design processes from

abstract specification down to cycle-accurate implementation. In order to provide an automated

design process, a well-defined design flow with clear and unambiguous abstraction levels, models,

and transformations is required. The key to the success of this approach are properly defined design

models. Arbitrary models without clear semantics do not enable synthesis and verification. In

addition, synthesis requires clear definitions of the target architecture and a set of synthesis steps to

transform the input model into the target model. In this dissertation, we define such input and target

models, a set of design steps, design decisions, model transformation, and intermediate models that

are necessary for an automated system design flow.

The design flow has been implemented in the form of an interactive system-on-chip de-

sign environment (SCE). Automating tedious and error-prone tasks while reaping human expertise

and insight results in a flow with the necessary transparency, controllability, observability and pro-

ductivity. As part of this work, architecture, organization, tool flow, design model management,

interfaces, and databases of the design framework have been established. Models in the flow have

xxiii

been defined such that they can be automatically generated and model refinement tools have been in-

tegrated into the design environment. Finally, a graphical user interface (GUI) has been developed

that aids and steers the designer in the decision making process, provides visualization of design

models, and supports interactive, graphical decision entry for each design step.

Experiments using the design environment prove the feasibility and effectiveness of a

seamless, comprehensive, and automated design flow supporting rapid, early design space explo-

ration. Results obtained by applying the design flow to several industrial-strength examples show

the tradeoffs and benefits of intermediate models at each step and demonstrate that required produc-

tivity gains can be achieved while supporting a wide range of realistic target implementations.

xxiv

Chapter 1

Introduction

As we enter the era of ubiquitous computing where we will find computer systems em-

bedded into all parts of our environment, the demand for efficient processes and methodologies

for designing and implementing such embedded computer systems is rising steadily. In general,

systems grow in complexity and size, and technological improvements as predicted by the Interna-

tional Technology Roadmap for Semiconductors (ITRS) [60] will allow us to create systems-on-chip

(SoCs) with billions of transistors on a single die. On the other hand, traditional design processes,

methodologies and tools in place today will not enable us to design and implement such systems

within reasonable cost and time limits as demanded by ever increasing market pressures.

In order to tackle and close this emerging productivity gap, both raising the level of ab-

straction for the design of complete systems and massive reuse of pre-designed, pre-existing intel-

lectual property (IP) components have been proposed as solutions. With higher levels of abstraction,

the number of design objects decreases exponentially. On the other hand, decisions made at such

high levels can have huge impacts on the final quality of the implementation. Therefore, system

design at high levels of abstraction allows the designers and tools to focus on the critical aspects

without being overwhelmed by unnecessary details. Thus, large parts of the design space can be

explored in short amounts of time.

The key to any of these approaches are well-defined design flows with clear and unam-

biguous abstraction levels, models and transformations. Only a rigorous, well-defined flow enables

efficient design space exploration by both humans or tools. Furthermore, such a formalized defi-

nition of the design process allows application of design automation for synthesis and verification

in order to achieve the required productivity gains. Finally, clearly defined design models are the

basis for interoperability across tools within a complete design environment. So far, however, no

1

CHAPTER 1. INTRODUCTION 2

Behavior
(function)

Structure
(architecture)

Physical
(layout)

Logic

Transistor

Register-Transfer

System

Figure 1.1: Y-Chart.

such well-defined, formalized modeling flows existed and system design has been done in an un-

structured, ad-hoc manner based largely on designer experience.

1.1 Design and Synthesis

A classification of the process of designing computer systems in general is available

through the Y-Chart [35]. The Y-Chart distinguishes between three different views or ways of

describing a design:

(a) A behavioral view describes the functionality of the design in terms of abstract concepts, in-

dependent of any implementation details.

Building blocks of a behavioral description are abstract entities that do not represent phys-

ical components. Each block describes a piece of functionality that takes inputs, processes

them and finishes after producing its output. In a behavioral view, such blocks are arranged

hierarchically to model the control and data dependencies between them.

Parallelism in a behavioral description does not imply true concurrency in hardware. Again,

behavioral blocks are abstract representations of algorithms that are free of implementation

assumptions.

(b) A structural view describes the design architecture as a netlist of lower-level components and

their connectivity.

Building blocks of a structural description represent real, physical objects. As such, each of

the blocks is active all the time, constantly processing data. In a structural view, the system is

CHAPTER 1. INTRODUCTION 3

modeled as a set of non-terminating, concurrent processes representing the way the system is

composed out of tangible lower-level components. Dependencies have to be modeled as part

of the processes’ functionality by inserting synchronization as needed.

Since the processes of a structural description represent real hardware, the parallel composition

of the processes reflects the true concurrency available among the set of physical components

on the chip or the board.

(c) A physical view describes the spatial layout of the lower-level components on the chip. A

physical view describes the floorplan of how the components and their interconnect are placed

and routed on the chip.

The Y-Chart defines several levels of granularity of design objects. With lower levels,

the design process focuses on more and more detailed aspects of the system. At each level, the

designer works with a specific set of objects. Objects at higher levels of abstraction are hierarchi-

cally composed of lower-level design objects. At the transistor level, a gate is composed as a netlist

of transistors. At the logic level, a block of combinatorial logic is described as a set of boolean

equations or as a netlist of gates. At the register-transfer level (RTL), a processors is described as a

piece of sequential program code or as a netlist of RTL components. Finally, at the system level, a

system is described as a hierarchical task graph or as a netlist of processors.

In general, design is the process of moving from a behavioral to a structural (and even-

tually physical) description at a certain level, implementing the desired functionality through an

architecture of subcomponents. At the next lower level of abstraction, the subcomponents, in turn,

are designed by moving from a behavioral description to a structural (and physical) description of

the subcomponent. For example, at the system level, the designer will create a system architec-

ture consisting of a set of processors connected through system busses that implements the desired

system functionality. The processing element’s functionality, in turn, is implemented by designing

a microarchitecture of functional units, registers files, and so on for the processor at the register-

transfer level.

A design flow can be bottom-up or top-down. In a bottom-up approach, design moves

from the lowest level of abstraction up to the system level by assembling previously designed com-

ponents such that the desired behavior is achieved at each level. In a top-down approach, design

starts with a specification of the system behavior and moves down in the level of abstraction by

mapping the desired behavior at each level onto a set of components and specifying the behavior of

each component for the next level.

CHAPTER 1. INTRODUCTION 4

In order to automate the design process with CAD tools, the models and transformations

of the design methodology must be formalized. Languages with special support to describe different

views of the design at different levels of abstraction in a formal and efficient manner are needed.

In addition to the application of formal methods for verification, an executable language allows

validation through simulation of the models.

Once the models for the different design views at different abstraction levels are formally

defined, CAD tools can automate parts of the design process. Specifically, the formalized process

of deriving a structural description from a behavior description of the desired functionality is called

synthesis. The synthesis processes at the highest levels of abstraction are:

(a) System synthesis

Given a specification of the system behavior, synthesize a system architecture consisting of

processing elements and system busses that implements the desired functionality [36, 28].

(b) High-level/behavioral synthesis

Given a behavioral description of a processor, synthesize a microarchitecture implementation

out of RTL components like functional units, register files, and so on [34, 76].

(c) Logic synthesis

Given a description of the functionality of an RTL component, synthesize a gate netlist that

implements the combinatorial/sequential logic for the component [76, 33].

1.2 System Design

Based on the general overview provided in the previous section, system design is therefore

defined as the process of moving from a behavioral description of the system to a structural descrip-

tion at the system and eventually register-transfer/instruction set level. As shown in Figure 1.2,

system design starts with a system specification that describes the desired system functionality as

a process graph. During system synthesis, the specification is mapped into a system architecture

described as a netlist of system components. Finally, in a backend process, each of the components

in the system is then brought down to a cycle-accurate implementation by synthesizing its behavior

in hardware or software on top of the component’s custom or fixed micro-architecture.

In general, the system design process is too complex to be completed in one single step.

The gap between pure functionality and implementation is too big for either humans or tools to

handle. When combined, the large number of interrelated tasks, concerns and design issues leads to

CHAPTER 1. INTRODUCTION 5

Proc

Proc

Proc

Proc

Proc

System Specification

Mem RF
State

Control

ALU

Datapath

PC

Control Pipeline

State

IF FSM

State

IF FSM
IP Netlist

RAM

IR

Memory

System Synthesis

HW/SW
Synthesis System Architecture

System Implementation

Memory

Memory

µProcessor

Interface

Comp.
IP

Bus

Interface

Interface

Interface

Custom HW

Figure 1.2: System design.

exponential growth of problem complexities that exceed any mental or machine capacity. In order to

bridge the gap, the system design process therefore has to be broken down into smaller, manageable

steps, breaking the overall problem into individual, contained subproblems that each can be solved

by relatively simply algorithms at the expense of loss of global optimality.

1.3 Abstraction Levels and Design Models

With each step in the system design process, the system is gradually brought closer to an

implementation by introducing more and more detail into the system description. Therefore, each

step in the system design process corresponds to a certain abstraction level. An abstraction level

is defined by the amount of implementation detail it contains where implementation detail is both

structure (space) and order (time).

A model is then a description of the system at a certain level of abstraction, usually cap-

tured in a machine-readable form, i.e. in some language. The purpose of design models in between

design steps is twofold:

(a) A model serves as a representation of the chosen implementation as the result of the previous

design step. As such, it provides a description and abstraction of the reality of already designed

physical aspects of the system. If details of certain implementation aspects are not yet avail-

able, the model can be augmented by back-annotating estimates about such characteristics.

CHAPTER 1. INTRODUCTION 6

(b) A model serves as the specification of the desired behavior for the following design steps. As

such, it describes the functionality to be implemented without restricting how these parts will

be implemented later. In addition to functionality, the model can include other constraints and

requirements for this purpose.

Ideally, a model should clearly and unambiguously describe all of its aspects. It should allow to

distinguish between parts that are already implemented and parts that are not. In the former case,

the model should identify the structure of the implementation. In the latter case, the model should

define what has to be implemented. Only if all of these aspects are properly formalized, human and

tools will be able to process models efficiently and design automation for synthesis and verification

becomes possible. Note that the use of specific languages to capture models (see Section 1.4)

has a large influence on model ambiguity. If the language does not allow to distinguish among

different concepts, ambiguities have to be resolved outside the language via meta-information (e.g.

annotations), or other conventions and rules.

1.4 Design Language

In order to enable seamless exchange of models and in order to apply automated tools,

design models have to be captured in machine-readable, formalized form, i.e. in some well-defined

language. Furthermore, all design models within the flow should be executable for validation of

design descriptions through simulation at any given point in the flow. Finally, it is desirable to

capture all models throughout the flow in a single language. In contrast to heterogeneous approaches

in which a system is specified in one language and then transformed into another, one common

language removes the need for tedious translations throughout the design process. In addition, such

homogeneous approaches allow to reuse a single testbench for validation of all models in the flow.

Due to these reasons, a number of system-level design languages (SLDLs) have been

developed in recent years. Out of the large number of proposals, two languages are emerging as

major candidates for standardization: SystemC [53, 79] and SpecC [38, 91]. Both candidates are

C-based languages that are build on top of well-established C++ or C frameworks, respectively.

SystemC is a library-based approach that implements system-level modeling concepts in the form a

C++ class library [78, 56]. SpecC, on the other hand, extends standard ANSI-C with around ten new

keywords for system modeling, thus creating a new language supported by a dedicated compiler and

simulator [27, 77, 111].

CHAPTER 1. INTRODUCTION 7

Deriving new SLDLs from existing programming languages allows to leverage legacy

knowledge and code in order to reduce the learning curve and reuse existing system models. In

contrast to normal programming languages, SLDLs have to have support for modeling of special

features required to describe complete systems consisting of a mix of hardware and software. On top

of the software modeling capabilities offered by the underlying C language base, SLDLs therefore

support the concepts of concurrency, synchronization, time, exception handling, hierarchy, and state

machines needed for hardware and system modeling [25].

For our research, we chose SpecC as the SLDL for describing design models in the design

flow [41]. SpecC was chosen due to its simplicity and completeness. By implementing all required

system-level concepts in an orthogonal, clear and unambiguous manner, the language remains small

yet allows to capture all possible system models from specification down to implementation. Note,

however, that even though examples of models and corresponding code in this work are using SpecC

syntax and semantics, the concepts presented here can be applied in an equivalent manner to any

other SLDL that supports the required system-level modeling features.

1.5 Problem Definition

System design today is mostly done in an ad-hoc and unstructured manner, largely based

on designer experience. Design decisions are made without proper exploration and evaluation of

design alternatives. Based on informally specified decisions, systems are then implemented directly

at the lowest, cycle-accurate level. At such low levels, significant exploration, evaluation and vali-

dation become infeasible. In order to achieve the required productivity gains, design processes and

design space exploration therefore have to be moved to higher levels of abstraction.

High-level system design starts from an abstract, functional specification and gradually

derives a system implementation from this specification. As outlined previously, the semantic gap

between specification and implementation is too big to be completed in one step. In order to bridge

the gap, the design process has to be broken down into smaller, manageable steps. The problem is

therefore to define such a design flow of successive design steps. The number of steps and their order

have to be chosen such that individual steps can be implemented by automated tools. In addition,

steps should be largely independent such that decisions can be made reliably and intermediate design

models between steps can provide accurate feedback. The goal is to provide a minimal, orthogonal

set of steps and intermediate models for design automation and exploration.

CHAPTER 1. INTRODUCTION 8

In order to provide an automated design process, a well-defined design flow with clean and

unambiguous abstraction levels, models, and transformations is required. The key to the success of

this approach are properly defined design models. High-level models must be implementable while

providing an abstraction of implementation detail that allows rapid, early, and reliable exploration

of critical design issues. Arbitrary models without clear semantics do not enable synthesis and ver-

ification for an automated path to implementation. In addition, synthesis requires clear definitions

of the target architecture and the set of synthesis steps to transform the input model into the target

model. In this dissertation, we aim to define such input and target models, a set of design steps, and

intermediate models that are necessary for an automated system design flow.

All in all, the resulting design flow should support a wide variety of realistic system

applications and target architectures. The formalized nature of the process should enable design

automation for decision making and model refinement. Finally, together with design automation,

high-level models should enable exploration of large parts of the design space in short amounts of

time.

1.6 Dissertation Overview

In this dissertation, we propose a system modeling flow and methodology that is the ba-

sis for an automated, interactive system design environment. We provide the necessary rigorous

structuring of the step-by-step system design process from abstract specification down to cycle-

accurate implementation along a well-defined, linear set of design steps and design models. To

achieve the required productivity gains for rapid system design and design space exploration, a flow

of successive design models is defined that supports a wide range of target implementations, allows

early validation of critical design issues, and enables design automation for model refinement and

decision making.

Starting with a separation of computation and communication, we identify and classify

implementation details and implementation decisions of different system design tasks. Based on

dependencies between decisions and orthogonality of concerns, tasks and decisions within each task

are ordered and grouped into a sequence of design steps and corresponding abstraction levels such

that critical design issues can be addressed early while being able to obtain reliable feedback. Highly

related decisions are grouped together, design tasks are broken into independent, manageable steps

in order to bridge the design gap, and steps are ordered according to their dependencies. We develop

design models after each step that accurately represent the corresponding implementation decisions

CHAPTER 1. INTRODUCTION 9

while abstracting unnecessary or unknown implementation detail. For each design step, we define

the necessary design decisions and model transformations such that decisions can be automated and

models can be transformed automatically through successive refinement. Consequently, the set of

design decisions and refined models defines the target architecture for each step and for the overall

design flow.

The design flow has been implemented in the form of the system-on-chip design environ-

ment (SCE). Automating tedious and error-prone tasks while reaping human expertise and insight

results in an interactive, automated flow with the necessary transparency, controllability, observ-

ability and productivity. As part of this work, we defined the overall architecture, tool flow, and

interfaces of an environment that enables integration and interoperability of various tools for au-

tomation of the design process under a common framework. Models in the flow have been defined

such that they can be automatically generated through successive refinement. Corresponding model

refinement tools have been integrated. In addition, a graphical user interface (GUI) has been devel-

oped. The GUI aids and steers the designer in the decision making process, provides visualization

of design model characteristics and metrics, supports interactive, graphical decision entry for each

design step, and allows the user to employ automated decision-making algorithms selectively on

parts of the design.

Experimental results obtained by applying the design flow to several industrial-strength

examples demonstrate the feasibility and effectiveness of the design flow and design environment.

By showing tradeoffs and benefits of design models in terms of accuracy and speed, results confirm

the choice of design steps and intermediate design models for rapid, early design space exploration.

Furthermore, experiments show that complete systems can be designed in a short amount of time

for realistic applications and target architectures.

The rest of this dissertation is organized as follows. Chapter 2 describes the overall design

flow and the corresponding design methodology as implemented by the SoC design environment.

In Chapter 3, requirements, rules, and guidelines for specifying a system at the start of the design

process are given. Chapter 4, Chapter 5 and Chapter 6 then describe in detail the different steps and

design models that comprise computation, communication and backend design tasks, respectively.

In Chapter 7, the implementation of the SoC design environment (SCE) including its architecture,

user interface, databases, and tool flow is described in more detail. Experimental results of applying

the design flow and design environment to the system design examples are shown in Chapter 8.

Finally, Chapter 9 summarizes and concludes the dissertation.

CHAPTER 1. INTRODUCTION 10

1.7 Related Work

1.7.1 Design Methodologies

There are several approaches dealing with classification and structuring of the design

process [58, 65]. However, none of these defines an actual flow with models at specific points.

Traditionally, abstracted models of a design are used mainly for simulation purposes. In

such simulation-centric approaches, the designer is responsible for manually rewriting the model at

a fixed level of abstraction to adjust to changes in the design. There has been a lot of work done

on horizontal integration of different models for simulation. At lower levels, different languages

or implementations are integrated for co-simulation [20, 40]. At higher levels, different models of

computation are combined into common simulation environments for specification [9]. However,

none of these approaches attack the vertical integration of models that is needed for a synthesis-

centric design flow with refinement of higher-level models into lower-level ones.

1.7.2 Computation Synthesis

1.7.2.1 Partitioning

Automation and optimization of partitioning of functionality onto a set of processing ele-

ments (PEs) is a well-studied problem. Early hardware/software co-design approaches were based

on architectural templates usually consisting of one processor assisted by a custom hardware co-

processor [29, 55]. More recently, general partitioning for heterogeneous, distributed multiproces-

sor systems has been solved using optimal, but exponential-complexity, integer linear programming

(ILP) [84] or non-optimal heuristic [101, 22] approaches.

Similar to partitioning of behavior onto PEs, there are a number of approaches dealing

with exploration of storage to memory mapping, considering different memory hierarchy config-

urations [54, 81, 16]. In all cases, however, automated partitioning approaches by itself do not

provide a path to final implementation. Therefore, they are complementary to our design flow in the

sense that the corresponding algorithms can be plugged into our design environment and applied to

design models at corresponding design steps as determined by the user.

1.7.2.2 Scheduling

In the embedded software world, there is a well-established dynamic scheduling theory

as part of real-time operating system (RTOS) design [10, 67, 72]. Variants of earliest deadline first

CHAPTER 1. INTRODUCTION 11

(EDF) scheduling for aperiodic task sets [59] or of rate monotonic (RM) scheduling for periodic

tasks [71] are universally employed today. Even though these approaches can provide necessary

timing guarantees, they are generally limited to pure software solutions on a single processor. As

such, they are integrated into modern RTOS implementations. Therefore, in our design flow they

provide the targets for dynamic scheduling of tasks on each PE in the system.

General scheduling approaches that deal with distributed multiprocessor systems are usu-

ally limited by specific assumptions. Static scheduling, for example, is feasible for specific models

of computation (MoC) like synchronous dataflow (SDF) [69]. For multiprocessor dynamic schedul-

ing, there exist a number of schedulability analysis approaches that aim to validate pre-determined

scheduling strategies [105, 21, 103]. More recent work has been dealing with analysis of systems

with multiple, mixed scheduling strategies [86, 114]. Similar to the situation for partitioning al-

gorithms, all of these analysis and optimization approaches are complementary to the design flow

proposed in this work and can be integrated into our design environment at corresponding stages.

1.7.2.3 RTOS Targeting

In terms of targeting real-time operating systems (RTOS) for dynamic scheduling of soft-

ware tasks mapped into a processor during computation synthesis, traditionally work has been fo-

cusing on automatic RTOS and code generation for embedded software. Gauthier et al. [39] give a

method for automatic generation of application-specific operating systems and corresponding appli-

cation software for a target processor. Cortadella et al. [19] propose a way of combining static task

scheduling and dynamic scheduling in software synthesis. While both approaches mainly focus on

software synthesis issues, the papers do not provide any information regarding high level modeling

of the operating systems integrated into the whole system.

There are a limited number of approaches dealing with high-level modeling of operating

systems for early validation of dynamic scheduling effects during system design. Tomiyama et

al. [93] show a technique for modeling fixed-priority preemptive multi-tasking systems based on

concurrency and exception handling mechanisms provided by SpecC. However, the model is limited

in its support for different scheduling algorithms and inter-task communication, and its complex

structure makes it very hard to use. Finally, Desmet et al. [23] propose a high-level model of a

RTOS called SoCOS. Instead of being written on top of existing SLDLs, however, SoCOS requires

its own proprietary simulation engine. Therefore, it is difficult to integrate the model into overall

system design models and design flows.

CHAPTER 1. INTRODUCTION 12

1.7.3 Communication Synthesis

Recently, SLDLs have been proposed as vehicles for so-called transaction-level modeling

(TLM) of systems to provide communication abstraction [18, 15]. However, no general definition

of the level of abstraction and the semantics of transactions in such models have been given. Fur-

thermore, TLM proposals so far focus on simulation-purposes only and they lack a path to vertical

integration of models for implementation and synthesis.

There are several approaches dealing with automatic generation, synthesis and refinement

of communication [104, 17, 74, 96, 92]. None of these approaches, however, provide intermediate

models breaking the design gap into smaller steps required for rapid, early exploration of critical

design issues. Furthermore, to our knowledge, there is no approach that deals with methodical and

automated implementation of communication over network-oriented, non-traditional communica-

tion structures.

Finally, in [89], the authors show an approach for modeling of communication at different

levels of abstraction with automatic translation between levels based on message composition rules.

However, they do no propose an actual design methodology and their approach is, for example,

limited in its support for arbitration and interrupt handling in traditional bus-based architectures.

1.7.4 Design Environments

There are several approaches which aim to provide complete design environments that

allow designers to bring an initial specification down to an implementation ready for final manufac-

turing.

The SpecSyn system [36] developed by Prof. Gajski’s group at UC Irvine in the early

nineties is based on the SpecCharts [94] language which is the predecessor of SpecC. SpecCharts

are an extension of VHDL for system design and as such oriented more towards hardware design and

limited in terms of support for complex embedded software. In contrast, SpecC is based on ANSI

C with extensions for hardware modeling and as such supports complex SoC designs consisting of

arbitrary combinations of hardware and software in a unified manner.

In the mid nineties, several co-design environments with focus on the hardware/software

partitioning problem emerged. As mentioned previously, such hardware/software co-design ap-

proaches are based on architectural templates consisting of a microcontroller assisted by a custom

hardware co-processor. As such, the systems are limited in their support for heterogeneous, dis-

tributed multiprocessor target architectures.

CHAPTER 1. INTRODUCTION 13

The COSYMA environment [80] developed by Prof. Ernst’s group at TU Braunschweig is

among the earliest examples of such systems. COSYMA is a hardware/software co-design system

which uses an extension of C called CX as its input language. It employs a number of algorithms

for automatic partitioning and scheduling of specifications onto the architectural template.

In the COSMOS system [95] developed by Prof. Jerraya’s group at TIMA laboratory in

Grenoble, specifications written in the telecommunication standard language SDL [64] are con-

verted into an internal representation called SOLAR [66] on which a set of transformations are

defined that the user can apply to manually refine the specification into an implementation.

Finally, the POLIS system [4] developed at UC Berkeley under Prof. Sangiovanni-

Vincentelli is another example of a hardware/software co-design environment. POLIS uses Esterel

[6] as its input language and is based on an internal co-design finite state machine (CFSM) model

which is, however, limited in its support for complex system designs, e.g. in terms of arbitrary bus

protocols for communication. VCC from Cadence Design Systems, Inc. was a commercial prod-

uct that was developed in the late nineties (discontinued in 2003) based on ideas from the POLIS

system.

More recently, design environments have been developed that aim to provide support

for more complex system designs beyond limited architectural templates. An example of such

an environment is the OCAPI system which started development at IMEC in Belgium in the late

nineties. The OCAPI system [98, 87] is based on an object-oriented modeling of designs using a

C++ class library. OCAPI allows designers to model system with emphasis on dataflow-dominated

designs at different levels of abstraction in a unified manner with easy refinement between models.

Furthermore, it supports automatic code generation for both software and hardware with focus on

targeting reconfigurable hardware devices (FPGAs).

Chapter 2

Modeling Flow

In order to implement an automated system design process in the form of a system design

environment, a well-defined design flow and corresponding design methodology have to be devel-

oped. Starting from an identification and classification of necessary implementation concepts, the

design process has to be broken into design tasks and input, output and target design models for

each task have to be defined. The well-defined, formalized set of design models and design tasks

between models defines a corresponding design methodology that is the basis for implementation

of the automated system design flow through a design environment.

In this chapter, we define the overall design flow and design methodology that is the basis

for our system design environment. Following an overview of system design issues and design tasks

in Section 2.1, the four major design models at the core of the design flow are defined in Section 2.2.

The resulting design methodology is summarized in Section 2.3. Finally, the design process for

implementation of the design flow and the resulting system design environment are introduced in

Section 2.4 and Section 2.5, respectively. Details of the implementation of each design task and of

the environment itself will then be presented in the remaining chapters of the dissertation.

2.1 Overview

An overview of the system design process and corresponding design issues and design

tasks is shown in Figure 2.1 Generally, system design starts with a set of requirements where dif-

ferent parts are possibly captured in domain-specific models of computation (MoCs). However, in

order to feed into a global design and synthesis flow, requirements have to be combined into a sin-

gle, unambiguous system specification. As outlined in the introduction (Chapter 1), design at the

14

CHAPTER 2. MODELING FLOW 15

System specification

Space

(Structure)

Time

(Order)

Network topology

and routing

Processor architecture

and partitioning

Scheduling

Task management

Multiplexing

Arbitration

C
o

m
m

u
n

icatio
n desig

nC
o

m
p

ut
at

io
n

d
es

ig
n

System architecture

Requirements / Constraints / MOCs

Component implementation (HW/SW synthesis)

Figure 2.1: System-level design.

system level is then the process of implementing this specification down to a system architecture of

components connected via wires. From there on, each of the component is then further implemented

through software and hardware synthesis in a backend process at the RT level.

Based on the observation that computation and communication in a system are to a large

part orthogonal and hence can be separated, the system design process can be divided into the

two major tasks of computation design and communication design. Furthermore, separation of

computation and communication is necessary for support of intellectual property (IP) components

in design space exploration [25].

Starting with the system specification, the actual design process therefore consists of sep-

arate computation and communication design tasks. In each case, synthesis and design means that

space (where?) and time (when?) of computation and communication have to be resolved. In terms

of computation, the behavior of the specification has to be partitioned onto a set of hardware or

software processors. Since each processor has a single thread of control only, execution on the

inherently sequential then needs to be scheduled statically or dynamically. In terms of communi-

cation, the network topology of stations connected via communication media has to be defined and

system channels have to be routed over this network. Then, interfaces to the shared media have to

be implemented by resolving multiple accesses to the same media via multiplexing and arbitration.

Even though interactions between computation and communication tasks are minimized,

there are still strong dependencies. Specifically, since partitioning of computation determines the

amount of communication, computation design needs to be performed before communication de-

sign. Similarly, within each task, space issues generally have to be resolved first in order to deter-

mine how much functionality has to be shared and ordered in time on each processor or medium.

CHAPTER 2. MODELING FLOW 16

Specification

Computation
Design

Communication
Design

HW/SW
Design Communication

Implementation

Processor & Memory
Allocation

Behavior & Variable
Partitioning

Static & Dynamic
Scheduling

Bus & Transducer
Allocation

Channel Merging
& Routing

Media Accessing
& Interfacing

Architecture

Figure 2.2: System design flow.

2.1.1 Design Flow

The resulting system design flow in the Y-Chart is shown in Figure 2.2. System-level

design starts with the behavioral system specification. The first design task is computation design.

In order to map computation as represented by behavioral blocks and variables in the specification

onto a processing architecture, computation design requires allocation of processors and memories,

mapping of behavior and variables onto those components, and finally scheduling of execution on

the processors.

After computation design, an intermediate virtual architecture description of the system

is generated in which processors communicate through transactions over abstract channels. The

virtual architecture is a mixed behavioral/structural description. It defines the computation structure

but leaves communication at a behavioral level.

Then, communication design implements communication between processors and mem-

ories over a network of busses or other communication media. Communication design requires

allocation of busses and bus transducers (bus bridges), merging and routing of channels over links

between processors and transducers, and interfacing of processors and transducers to bus media.

The result is a fully structural, bus-functional description of the system showing all the details of

communication between components at the system level.

Finally, in a backend process, each of the PEs in the system is implemented separately by

implementing its behavior in hardware or software on top of the PE’s synthesized or fixed micro-

architecture. On the hardware side, the backend process follows a standard high-level synthesis

approach [34, 76] requiring allocation of RT units (functional units, registers and register files,

CHAPTER 2. MODELING FLOW 17

local memories and busses), scheduling of operations into clock cycles, and binding of operations,

variables and transfers to functional units, storage units and busses. On the software side, code for

the target processor has to be generated, compiled and linked against a selected target operating

system.

2.1.2 Modeling

Given the basic division of the system design process into computation, communication

and backend design tasks, details of each design task have to be defined as a basis for any imple-

mentation of the design flow in an automated way. In a first step, design models at the input and

output of each design task have to be defined. More specifically, corresponding abstraction levels as

determined by the amount and granularity of implementation detail represented in each model have

to be specified. Clear definitions of inputs and outputs of each task then serve as a specification

for the implementation of each design task. In general, characteristics and features of each input,

output and intermediate model have to defined such that interactions between tasks are minimized,

automation of design tasks becomes feasible, and reliable feedback for design space exploration is

provided.

Details of system-level design steps are listed in Table 2.1 in terms of necessary design

decisions, resulting implementation detail in the form of structure and order, and applicable quality

metrics for evaluation and exploration. Generally, for each design step, a new design model can

be generated that reflects the design decisions made by introducing corresponding implementation

detail. However, if steps are dependent on each other they have to be combined into a single model

in order to obtain useful feedback. On the other hand, independent steps should be separated into

different models in order to break the problem into smaller parts, manage complexity and separate

concerns. With each new model, a minimal number of new features should be introduced such

that they will not be influenced by later steps and can be evaluated and decided at a high level of

abstraction. The goal is therefore to organize steps into a minimal, orthogonal set of design models

such that each model provides the designer with reliable feedback for design and exploration.

The first step in system design is the definition of the processing architecture. Allocation

of processors defines the hardware execution platform, trading off system cost versus true concur-

rency available in the system. In order to evaluate the quality of the allocation, however, raw pro-

cessing performance of the architecture has to be matched against the characteristics (e.g. available

parallelism) of the application. Therefore, processor allocation has to be combined with behavior

CHAPTER 2. MODELING FLOW 18

Design Decision
Implementation Detail / Granularity

Quality Metrics
Structure / Space Order / Time

Processor Processor
-

Cost,
Allocation Architecture Concurrency
Behavior Execution host, Execution Code size, Traffic,

Partitioning Synchronization time Behavior delay
Memory Memory

-
Cost, Memory

Allocation Architecture bandwidth
Variable Storage, Memory access Memory size, Traffic,

Partitioning Communication time Behavior delay
Static Task grouping, Serialization, Task delay, Processor

Scheduling Task graph Behavior order utilization
Dynamic OS scheduler, Context Processor delay,

Scheduling Task creation switches Utilization
Network Network

-
Cost, Bus

Allocation topology bandwidth
Channel Logical Packet Transmission
Routing links transfers delay
Media Media access, Bus cycles, Latency, Bus

Sharing Arbitration Transactions utilization
Media Protocols, Wires, Signal Protocol

Interfacing Interrupt handling events timing

Table 2.1: System-level design steps.

partitioning. Given the processor architecture, functional blocks of the specification can be mapped

onto those processors. As a result, behavioral blocks are mapped onto their execution hosts, addi-

tional synchronization is inserted as necessary to preserve dependencies, and code at the leaves of

the hierarchy is annotated with estimated execution delays. The combined model after processor

allocation and behavior partitioning then allows to validate correctness of the partitioning and syn-

chronization implementation. Furthermore, it can provide feedback about relative performance of

different mappings of individual behaviors to processors.

Definition of the memory architecture is performed in a similar manner. Allocation of

memories has to be combined with partitioning of variables into those memories in order to obtain

feedback about the application-specific design quality. Together, memory allocation and variable

partitioning determine the actual memory sizes necessary to store all system variables and the mes-

sage traffic necessary for communication of variable values between processors and memories.

While memory allocation can be done together with processor allocation, variable parti-

tioning depends on the results of processor allocation and behavior partitioning which declare local

CHAPTER 2. MODELING FLOW 19

processor memories and expose variables shared between behaviors mapped to different processors.

Therefore, combined processor allocation and behavior partitioning has to preceeded by combined

memory allocation and variable partitioning. Even though processor issues can be resolved sepa-

rately from memory issues, they should be combined into a single allocation and partitioning step

since overall system communication and traffic is directly influenced by both. The resulting model

after allocation and partitioning validates implementation of mapping, synchronization and commu-

nication while providing feedback about basic cost, relative performance and overall traffic.

After allocation and partitioning, accurate delay estimates are available at the level of indi-

vidual functional blocks. In order to obtain feedback about overall input-to-output delays, schedul-

ing of execution on the processors is necessary. Static scheduling serializes and orders behaviors

within each task in a processor. Dynamic scheduling then orders tasks at runtime under control of a

scheduling algorithm. As a result of behavior and task ordering, estimated task and overall proces-

sor delays become available. Since overall delays depend on both, static and dynamic scheduling

are combined into a single scheduling step.

Scheduling in general depends on the mapping of behaviors to processors and as such

has to be preceeded by allocation and partitioning. Compared to the model after allocation and

partitioning, only the model after scheduling can provide accurate feedback about delays in each

processor and overall processing delays. Therefore, allocation, partitioning and scheduling all have

to be performed1 to obtain a model that supports reliable evaluation and exploration of design per-

formance and quality, especially for computation-dominated designs. Hence, the resulting models

is the architecture model at the output of the computation design task.

Communication design has to start from a model that accurately specifies the system

communication traffic to be implemented. As such, communication design depends on allocation

and partitioning. The input of communication design is therefore the architecture model at the

output of computation design. Note that for communication-oriented designs, the scheduling step

can be deferred after communication design and communication design can be started with the

model after allocation and partitioning.

Similar to computation design, communication design starts with allocation of a network

architecture consisting of busses or other communication structures connected by transducers (e.g.

bridges) based on cost and capacity factors. Given the communication architecture, channels in

the input model can be mapped onto this network and routed over logical links between stations.

1Not necessarily together in one step, e.g. for simplicity of algorithms, allocation, partitioning and scheduling can be
done sequentially in two or three steps, trading off complexity and optimality.

CHAPTER 2. MODELING FLOW 20

Again, network allocation and channel routing depend on each other and have to be performed in

one step. The resulting model is accurate down to individual data packet transfers and associated

packet transmission delays over each logical link. It allows to validate the raw network performance

and correctness of the network and routing implementation.

Similar to scheduling during computation design, accurate estimates about overall delays

and performance are only available after ordering of communication on each shared medium. Me-

dia sharing requires data slicing, addressing and arbitration to implement media accesses. As a

consequence, the resulting model is accurate down to individual media word/frame transaction (e.g.

bus cycles) and provides reliable feedback about overall communication delays. The model after

computation design, network design and media sharing is a transaction-level model (TLM) that sup-

ports reliable validation, evaluation and exploration of total system cost, quality and performance

including computation and communication.

A transaction-level model, however, can not directly feed into the backend design process.

For synthesis of system components in custom hardware, timing- and pin-accurate specifications of

component interfaces have to be available. Therefore, media sharing is combined with media inter-

facing to produce the final output model of the system design process. Media interfacing inserts bus

protocol descriptions into each component, implements interrupt handling via interrupt controllers

and connects components via pins and wires. The result after computation and communication de-

sign is the final communication model. The communication model serves as input to the backend

design process, allows validation of system connectivity and provides accurate feedback down to

the level of single value change events on the pins and wires of the system netlist.

2.2 Design Models

The abstraction levels and models corresponding to the system design flow outlined in

the previous section are shown in Figure 2.3. The specification model is the start of the design

flow, unifying different domain-specific models of requirements and constraints. It free of any

implementation detail and hence a purely functional, untimed system description. It defines a partial

order in the system, based on causality only. With the specification model, the designer defines,

validates and evaluates the functionality of the system design to be implemented without having to

consider any implementation issues.

The architecture model defines the interface between computation and communication

design. It describes the system as a structure of processors communicating through abstract trans-

CHAPTER 2. MODELING FLOW 21

Structure / Space Order / Time

Functional Untimed
(causality)Specification Model

Transaction Timed
(estimated)

Architecture Model

Gate
netlist

Gate
delays

Logic design, Physical design, Manufacturing

Bus-
functional

Timing-
accurate

Communication Model

RTL/IS Cycle-
accurate

Implementation Model

Application domain MOCs (Matlab, SDF, etc.)
Requirements Constraints

Figure 2.3: Abstraction levels and models.

actions. Additional order is introduced into the system through estimated execution delays on the

processors. Using the architecture model, the designer can evaluate and explore the raw processing

performance of the targeted system architecture. As results will show (see Chapter 8), with the

architecture model, rapid, early exploration of the processor design space with no or little additional

overhead is possible.

The result of design at the system level at the interface to the backend design process is the

communication model. Starting with the communication model, each system component can then

be further designed separately at lower levels. The communication model is a completely structural

description of the system architecture of processors connected by wires. It is timing-accurate in

the interactions between processors as observed through the events on the connecting wires. Using

the communication model, the designer can validate and explore the interaction between system

components in a timing-accurate manner.

Finally, the implementation model is the output of the backend design process and the

sign-off to traditional logic, physical and manufacturing design processes. The implementation

model provides a structural description of the micro-architecture of each processor at the RTL or

instruction-set level. A complete implementation model is a cycle-accurate description of the whole

system. As such, the implementation model allows the validate and explore the final, cycle-accurate

performance and timing of the system.

CHAPTER 2. MODELING FLOW 22

In the following, we will define each of the four models at the core of the design flow in

detail [47]. For each model, concepts, features and the amount of implementation detail represented

within will be shown. The four models define the input, output and target architecture for each

design task between models. As such, the formalized definition of design models forms the basis

for implementation and automation of the design flow in the design environment.

2.2.1 Specification

The specification is a behavioral description of the system. It describes the desired func-

tionality free of any implementation details. The specification is composed without any implications

about the structure of the implementation. Objects in the specification model are abstract entities

that perform computation on data and then terminate. Apart from timing constraints, there is no

notion of time, i.e. behavioral objects execute in zero time. Objects are ordered only based on their

dependencies.

At the specification level, a design consists of computation and communication. Compu-

tation is described by a hierarchical composition of behaviors. Behaviors communicate by transfer-

ring data messages over channels. More formally, a specification model is a triple

〈B,V,C,R〉

consisting of a set of behaviors B, a set of variables V , a set of channels C, and a connectivity

relation R ⊆ B× (C∪V) that defines connections of behaviors to channels and variables.

Behaviors form a semigroup (B,◦) under the composition operation ◦ ∈ {.,‖, |,∨}. Be-

haviors b1,b2 ∈ B can be composed sequentially (b1.b2), concurrently (b1‖b2), in a pipelined loop

(c : b1|b2), or in a mutually exclusive way (c : b1∨b2) where the pipelined and alternative compo-

sitions are guarded by additional conditions c. Blocks at the leaves of the hierarchy contain basic

algorithms that perform computations. Such leaf behaviors contain a description of the algorithm

using, for example, a standard programming language such as C. Hence, the code in the leaves de-

scribes how the behavior processes its input data to produce its output data using expressions over

variables with different data types as supported by the programming language. Throughout the sys-

tem design process, leaf behaviors will remain untouched, forming indivisible units for the purpose

of exploration and refinement. In general, models describe how the system is composed out of the

basic building blocks—the leaf behaviors—on top of any underlying language.

An example of a simple yet typical specification model is shown in Figure 2.4. In the

example of Figure 2.4, the specification is a serial-parallel composition of b1 followed by the con-

CHAPTER 2. MODELING FLOW 23

c1

b1

b2 b3

v1

v3
v2

Figure 2.4: Specification model example.

current execution of b2 and b3. b3, in turn, is a parallel composition of two additional subbehaviors.

Behavior b1 encapsulates a local variable v1 to store locally needed state information. At its out-

puts, b1 produces data and writes it to global variables v2 and v3. Data in v2 is then consumed

by b2 and b3 whereas v3 is read by behavior b3 only. Finally, the concurrent behaviors b2 and b3

communicate via a channel c1 to send data from b2 to b3 during their execution.

In summary, the purpose of the specification model is to clearly and unambiguously de-

scribe the system functionality. The system is composed of self-contained blocks with well-defined

interfaces enabling easy composition, rearrangement, and reuse. All dependencies are explicitly

captured through the connectivity between behaviors and no hidden side effects exist. The par-

allelism available between independent blocks is exposed through their concurrent or pipelined

composition. Computation and communication are abstracted as a composition of functions over

data. They are separated into behaviors and channels, respectively, allowing for a separate imple-

mentation of both concepts.

2.2.2 Architecture

The architecture model is the result of mapping computation onto actual processing ele-

ments (PEs). It represents the allocation and selection of PEs and the mapping of behaviors onto

PEs. It is a mix of a structural description of system computation and a behavioral description of

system communication.

The architecture model redefines the computational part of the design. Formally, an ar-

chitecture model is a triple

〈PE,C,R〉

CHAPTER 2. MODELING FLOW 24

where computation is described as a set of concurrent PEs. PEs are structural objects representing

physical components and as such are non-terminating. In general, the set of PEs in the system,

PE = P∪ IP∪M, consists of a set of hardware or software general-purpose processors, a set of IPs,

and a set of memories, respectively. Communication as the set of channels C and the connectivity

relation R between leaf behaviors and channels remains essentially untouched.

A processor p ∈ P is defined as a triple

〈Bp,Vp,Cp,Rp〉

that executes the set of behaviors Bp mapped onto it. Behaviors inside processors communi-

cate via sets of local channels Cp and local variables Vp as defined by the connectivity relation

Rp ⊆ Bp × (Cp ∪Vp). Due to the inherently sequential nature of structural objects such as process-

ing elements, behaviors inside a processor have to be serialized. In a static scheduling approach, the

order of behaviors is fixed and represented as artificial control dependencies of a purely sequential

composition of behaviors inside the PE, i.e. processor behaviors form a semigroup (Bp,.) under se-

quential composition only. In a dynamic scheduling approach, the order of behaviors is determined

at run-time. Behaviors are composed into tasks and operating system models inside the PEs provide

an abstraction of the dynamic scheduling behavior for dispatching tasks during runtime.

In contrast to general purpose PEs, a pre-designed intellectual property (IP) component

ip ∈ IP is defined as a triple

〈Bip,Vip,Aip〉

where the pre-defined, fixed functionality Bip and storage Vip is encapsulated in an IP adapter Aip.

The adapter abstracts the IP’s internal communication interface and provides a set of canonical

channel interfaces for communication with the IP at the behavioral (data message) level. At the

system level, behaviors communicate directly with those adapters, i.e. the system connectivity re-

lation R ⊆ B× (C ∪A) connects processor behaviors B =
S

p∈P Bp to channels C or IP adapters

A =
S

ip∈IP Aip. Note that a special case of IPs are dedicated memory components which do not

provide any functionality apart from (read and write) access to stored data Vip.

An exemplary architecture model corresponding to the specification example from Fig-

ure 2.4 is shown in Figure 2.5. b1 and b3 are mapped onto processing elements pe1 and pe2,

respectively. b2 is implemented by an existing IP component that provides the same functional-

ity. A vendor-supplied black-box description ip1 encapsulates a simulation, analysis and synthesis

model of the IP while allowing integration into the system through an IP adapter interface.

CHAPTER 2. MODELING FLOW 25

B1b1

b13snd

b34rcv

b2snd

b2rcv

v2

b3

b13rcv

b34snd

pe1

cb13

cb34

pe2m1

mem

v1
v3

ip1

b2

v2

OS Model

Figure 2.5: Architecture model example.

A system memory m1 holds variables v1 and v3 and provides read and write access

through its channel interface. On the other hand, local copies of the variable v2 have been cre-

ated in pe1 and pe2. In addition, communication and synchronization blocks bXXsnd and bXXrcv

have been inserted to preserve the original execution semantics. Execution of formerly sequential

blocks mapped to concurrent PEs is synchronized, and updated variable values are communicated

to keep local copies in sync.

Inside pe2 an operating system channel is inserted that manages dynamic scheduling of

the two concurrent subbehaviors inside b3. Tasks inside pe2 use operating system services for task

management and synchronization by communicating with the OS model channel.

Finally, behavioral blocks inside pe1 and pe2 communicate via global channels cbXX or

by accessing the channel interfaces of m1 and ip1 directly.

In summary, the architecture model refines computation by grouping behaviors and map-

ping them onto a PE structure while largely preserving the original behavioral communication. PEs

contain a behavioral description of their functionality. Behaviors inside PEs execute in order through

static or dynamic scheduling. In addition, the architecture model introduces the notion of time for

the computation mapped onto the PEs, further increasing the partial order among PEs. Based on

estimated execution times on the target PEs, behaviors are annotated with delay information. There-

fore, true parallelism at the architecture level is only available through the set of concurrent PEs.

CHAPTER 2. MODELING FLOW 26

The architecture model describes the implementation of the computation on the PEs of the

system architecture. It is a structural view of the system’s computational aspects. On the other hand,

the architecture model contains behavioral descriptions of the PEs that will feed into the lower parts

of the design flow. Finally, at the architecture level, communication between the PEs is exposed for

implementation in the following steps.

2.2.3 Communication

The communication model is a structural description of the complete system for both

computation and communication. In addition to allocation and selection of PEs as part of the mul-

tiprocessing model, the communication model represents the allocation and selection of busses and

the mapping of global channels onto busses. As a result, the system is modeled as a netlist of com-

ponents connected via bus wires. It is obtained by adding bus protocols to all channels, splitting

channels, and inlining them into each PE as bus drivers.

Based on the multiprocessing model definition, the communication model redefines the

global communication part of the system. An communication model is defined as a triple

〈S,W,c〉

where S is the set of network stations or system components, W is the set of bus wires, and

c :
S

p∈S Op 7→ W is the port mapping function connecting component ports to bus wires. In gen-

eral, the set of communication model components, S = PE ∪CE, is a combination of the sets of

processing elements PE = P∪ IP∪M (consisting of general-purpose processors, IPs and memo-

ries) and communication elements CE = T ∪A∪ IC (consisting of transducers, arbiters and interrupt

controllers).

Behavioral processor descriptions are transformed to bus-functional models by adding bus

drivers. A processor p ∈ P in the communication model is a quintuple

〈Bp,Vp,Cp,Dp,Op,Rp〉

where Bp is the scheduled set of behaviors executing on the processor, Vp is the set of local variables,

Cp is the set of local channels, Dp is the set of bus driver channel interfaces, Op is the processor’s

set of ports, and Rp ⊆ Bp × (Cp ∪Vp ∪Dp) is the connectivity relation that has been extended to

define the connection of behaviors to channels, variables and bus drivers. Bus drivers describe a

processor’s implementation of the data messages over the bus protocols on the processor’s ports.

CHAPTER 2. MODELING FLOW 27

Inside the processor, bus drivers provide a behavioral message interface to its behaviors and the

behaviors connect to those channel interfaces for all bus communication.

For IP components, bus-functional or structural IP models can be directly integrated

into the communication model. Bus-functional IP models are equivalent to the definition of bus-

functional processor models shown above. Structural IP models, on the other hand, are defined as

netlists of RTL components. A structural ip ∈ IP is a quadruple

〈Uip,Bip,Oip,cip〉

where Uip is the set of RTL units, Bip is the set of local busses, Oip is the set of ports, and cip is

the connectivity function mapping ports of RTL units to busses and external IP ports. In the com-

munication model, bus-functional and structural IP models can be used interchangeably allowing,

for example, mixed-level co-simulation. Again, note that memory components can be treated as a

special case of IPs.

If necessary, special transducer PEs that translate between incompatible protocols need

to be inserted into the communication model. A transducer interfaces to two busses via two sets of

ports and contains bus drivers for each protocol. Hence, a transducer is defined as a processor with

two sets of ports and two sets of bus driver channel interfaces.

Finally, the communication model can contain arbiters which mediate conflicting bus ac-

cesses in case of multiple masters on a bus. Arbiters implement a certain arbitration protocol on

their bus ports through internal bus drivers. Therefore, equivalent to scheduling of computation on

PEs in the multiprocessing model, arbiters serialize accesses to the inherently sequential busses.

Arbiters usually come in the form of IPs and as such can be defined as bus-functional or structural

processor models.

The communication model example corresponding to the previously shown architecture

model is shown in Figure 2.6. In the example, the memory m1 is connected to processor pe1 via

the processor’s bus bus1 while ip1 and co-processor pe2 are connected via bus2. Inside pe1 and

pe2, behavioral blocks connect to bus drivers that implement message-passing over the bus wires.

Transducers t1 and t2 translate between incompatible bus protocols. t1 acts as a bridge between

busses bus1 and bus2. t2 interfaces the IP with its proprietary protocol to bus2. The channel interface

of ip1 in the communication model is moved into t2 where it implements communication with ip1

over the exposed wires of the IP bus. Finally, an additional PE arbiter1 that regulates conflicting

accesses of pe1 and t1 on bus1 is inserted.

CHAPTER 2. MODELING FLOW 28

bus2

pe1

t1

bus1

t2

ip1

b2

m1ctrl

mem

v1
v3

m1

m1bus

IP1Bus

B1b1

b13snd

b34rcv

b2snd

b2rcv

v2

b3

b13rcv

b34snd

v2

OS Model

pe2

pic

isr

arbiter1

Figure 2.6: Communication model example.

In summary, the communication model refines communication into an implementation

over busses and transducers. Computation inside the PEs, on the other hand, remains largely un-

touched. The structural nature imposes a total order on the communication over each bus. Further-

more, the partial order between busses is refined by introducing bus protocol timing. Therefore, the

communication model is timing-accurate in terms of both computation and communication.

2.2.4 Implementation

The implementation model is the result of scheduling the functionality mapped onto the

PEs (both, computation and communication functionality) into register transfers per clock cycle.

Therefore, the implementation model is a cycle-accurate model at the register-transfer level.

For each PE, the implementation model defines the datapath, the control logic and the

clock frequency at which the component runs. In general, the implementation model requires allo-

cation of a datapath, binding of operations, variables, and transfers onto functional units, register-

s/memories and busses, and the scheduling of register-transfers into clock cycles.

For custom hardware PEs, high-level synthesis creates the implementation model of the

hardware PE from the code of the behaviors and adapters inside the PE behavior of the communica-

tion model. For programmable processors, the code of the behaviors in the communication model

is converted into C code and compiled into assembly code to create the implementation model.

CHAPTER 2. MODELING FLOW 29

The implementation model supports two views of the PEs in the design: a behavioral RTL

view and a structural RTL view [70]. In both cases, the steps of allocation, binding and scheduling

are required to derive the implementation model. The difference is that the behavioral RTL view

does not explicitly represent the datapath architecture and the binding information. However, it

corresponds closely to the original C code in the communication model. The structural RTL view, on

the other hand, explicitly describes the structure of data path plus control unit. Therefore, structural

RTL is closer to the implementation and forms the immediate input to logic synthesis.

2.2.4.1 Behavioral RTL

Behavioral RTL specifies the operations performed in each clock cycle without explicitly

modeling the units in the PE’s datapath. Instead, operations in each cycle are described in the form

of finite state machine with datapath (FSMD) models. Therefore, behavioral RTL is close to the

original, sequential C code. Essentially, behavioral RTL is obtained by scheduling the operations in

the C code into clock cycles.

Depending on the type of PE, different styles are needed for the implementation models

of the PEs at the behavioral RTL level. For programmable processors, the operations performed

in each clock cycle are defined by the assembly code compiled for that PE. On the other hand, for

custom hardware PEs the operations in each clock cycle can be explicitly modeled.

The behavioral RTL model for the given design example is shown in Figure 2.7. For

custom hardware and IP components such as pe1 and ip1, the behavioral RTL model contains FSMD

models describing the cycle-accurate behavior of both computation and communication inside the

PEs. Similarly, transducers t1 and t2 and the arbiter arbiter1 are replaced with descriptions that

contain FSMD models of their bus interfaces’ protocol implementation in hardware. Finally, the

memory m1 is modeled as a state machine that answers incoming requests in a similar manner.

In contrast to hardware PEs, the behavioral RTL model of programmable processors is

based on the execution of assembly output generated by compiling the code of the PE behavior in

the communication model. Therefore, the behavioral RTL model for the programmable component

pe2 implements an instruction set simulation (ISS) of the assembly code. The simulation model

of the processor executes the instruction stream synthesized through code generation, compilation

and linking in the backend. Existing ISS models of processors can be plugged into the system

through wrappers that drive and sample the ports of the PE behavior based on any I/O instructions

encountered during runtime.

CHAPTER 2. MODELING FLOW 30

bus2

pe1 pe2

t1

bus1

arbiter1

B2

t2

PE1_CLK PE2_CLK

OBJ

ISS

IP_CLK

ip1

ip1bus

m1ctrl

Mem

v1
v3

m1

m1bus

pic

Figure 2.7: Behavioral implementation model example.

2.2.4.2 Structural RTL

A structural RTL view of the PEs in the implementation model accurately reflects the

microarchitecture internal to the system PEs. As a result of the high-level synthesis process, struc-

tural RTL explicitly models the allocation of RTL components, the scheduling of register transfers

into clock cycles, and the binding of operations, variables and assignments to functional units, reg-

ister/memories and PE busses. The result is an RTL netlist of sequential and combinatorial logic

inside each PE. Structural RTL is the input to traditional logic synthesis which in turn will derive a

gate-level netlist from the netlist of units inside each PE.

A structural RTL representation is usually used for custom hardware PEs which have to be

synthesized further. Since structural RTL represents the hardware microarchitecture of PEs, at this

level there is no difference between models for custom hardware or programmable processors. In

both cases, structural RTL is a netlist of functional units, busses, memories and registers. However,

in case of predesigned components (IPs, programmable off-the-shelf processors, memories) the

level of detail for further synthesis of the hardware is not needed. A more abstract behavioral RTL

model is sufficient for effective simulation.

A structural RTL model example for the previously introduced design is shown in Fig-

ure 2.8. For each processing element pe1, ip1, and pe2, the structural RTL model consists of

controller and datapath netlists where the controller drives the datapath through a set of control

CHAPTER 2. MODELING FLOW 31

Controller Datapath

Register
file

Memory

ALU

IR

PC

Decode

pe1

bus1

S
ta

te

Lo
gi

c

B
uf

fe
r

FIFO

C
o

nt
ro

l

t1

B
uf

fe
r

S
ta

te

Lo
gi

c

C
o

nt
ro

l

m1Ctrl

Register

State

Logic

C
o

nt
ro

l

M
em

o
ry

m1

S
ta

te

Lo
gi

c

C
o

nt
ro

l

arbiter1
bus2

S
ta

te

Lo
gi

c

B
uf

fe
r

FIFO

C
o

nt
ro

l

t2

Controller

State

Next
state
logic

Output
logic

pe2

Datapath

Register
file

Memory

ALU

Controller

State

Next
state
logic

Output
logic

ip1

Datapath

Register
file

Memory

FU1 FU2

ip1bus

Fetch

Figure 2.8: Structural implementation model example.

and status wires. In each case, datapaths are given as netlists of RTL components such as register

files, memories and functional units connected by busses. For hardware PEs such as ip1 and pe2,

controller FSMs are hardwired in the form of state registers and next state and output logic blocks.

For programmable PEs like pe1, the controller contains instruction fetch and decode logic blocks in

addition to program counters (PC) and instruction registers (IR).

Structural RTL models of transducers, arbiters and memories all contain FSM implemen-

tations for control in the form of state registers and control logic. In the case of transducers (t1,

t2, and m1Ctrl), the datapath consists of simple queues for buffering between interfaces. For the

memory m1, the memory cell array is the datapath driven by the controller FSM.

2.2.4.3 Implementation Model

At the top level, the implementation model is equivalent to the communication model.

The system is a set of concurrent, non-terminating PEs communicating via busses and wires. Inter-

nally, on the other hand, PEs represented by the PE behaviors, are further refined and turned into a

model of the PE’s microarchitecture. The minimal requirement for the PEs in the communication

model is that they provide a cycle-accurate description of events on their ports through a behavioral

microarchitecture model. Alternatively, more detailed PE models can be used in the communication

model, e.g completely structural RTL descriptions.

PE behaviors are interchangeable between communication and implementation model.

This allows mixed-level simulations in which a cycle-accurate PE behavior is part of an otherwise

bus-functional simulation of the design and vice versa. Therefore, different parts of the system can

be simulated at different levels of detail, e.g. allowing to quickly validate individual PE’s.

CHAPTER 2. MODELING FLOW 32

System design Validation flow

Specification model

Algor.
IP

Comm.
IP

Architecture model

Communication design

Communication model

Comp.
IP

Estimation

Validation
Analysis

Compilation Simulation model

Estimation

Validation
Analysis

Compilation Simulation model

Estimation

Validation
Analysis

Compilation Simulation model

Implementation model

Software
synthesis

Interface
synthesis

Hardware
synthesis

Estimation

Validation
Analysis

Compilation Simulation model

RTOS
IP

RTL
IP

Computation design

Capture

Backend

Figure 2.9: System design methodology.

In summary, the implementation model is a cycle-accurate model of the system imple-

mentation of both, the communication between the PEs and the microarchitecture inside the PEs. In

contrast to the bus-functional communication model, the computation inside the PEs is refined down

to the register-transfer level. As a result of high-level synthesis of custom hardware and compila-

tion of software for programmable components, the implementation model is the basis for further

refinement down to the gate level through logic synthesis or instantiation of hard IP cores.

2.3 Design Methodology

In summary, the resulting overall system design methodology is shown in Figure 2.9. The

methodology is a set of four models and three transformation steps that take a system specification

down to an RTL/IS implementation [32, 46, 38, 37].

System design starts with the capture of the intended functionality in the form of an ex-

ecutable specification. The specification model describes the desired system behavior as well as

performance, power, cost and other constraints. Based on the general design flow outlined in the

previous sections, the system design flow is divided into two major tasks: computation design and

communication design. Starting from the specification model, the design is gradually mapped onto a

selected target computation and communication architecture through a series of well-defined steps.

CHAPTER 2. MODELING FLOW 33

Computation design selects a set of processing elements (PEs) and maps the computa-

tion behavior and storage inside the specification onto those PEs for implementation. Furthermore,

computation design decides the order of computation over time through static or dynamic schedul-

ing of concurrent functionality on the inherently sequential PEs. Computation design refines the

specification into the intermediate architecture model. The architecture model describes the virtual

computation architecture in the form of structural PE components that communicate via abstract,

behavioral message-passing channels.

Communication design then refines the abstract communication between PEs into an ac-

tual implementation over real busses or other communication structures. During communication

design, the topology of the communication network is defined, additional communication elements

(CEs) like bus bridges or arbiters are inserted, and abstract channels are mapped and routed over

this network. Inside the stations connected to the network, implementations of channel transactions

over the protocols of the selected media are created. As the result of communication design, the

communication model of the system is generated. The communication model is a fully structural,

bus-functional description of the system computation and communication architecture as a set of

components connected via pins and wires.

The communication model as the result of the system design process is then handed off

to the backend tools. The communication model specifies the desired functionality of computation

and communication inside each of the components of the system architecture. In the backend tools,

each component is synthesized separately by implementing its behavior in custom hardware or

software on top of the component’s synthesized or fixed RTL or instruction-set microarchitecture.

At the end of the backend process, the final implementation model of the system is generated. The

implementation model is a cycle-accurate description of the whole system at the register-transfer or

instruction-set level. This description, in turn, serves as the basis for manufacturing of the system

through traditional logic synthesis and physical design processes.

All models in the methodology are captured in the SpecC SLDL. In a validation flow that

is orthogonal to the design flow, models can therefore be simulated, verified, analyzed, and esti-

mated at any point in the flow in order to validate functionality and design quality. For example,

at the specification level system functionality is validated. At the architecture level, the computa-

tion structure is checked and computing performance is estimated. The communication level allows

validation of component communication and associated timing and overhead. Finally, at the im-

plementation level, clock-accurate performance, power, and other metrics are available for final

sign-off before manufacturing.

CHAPTER 2. MODELING FLOW 34

2.4 Design Process

In general, a design methodology is defined as a set of design models and a set of trans-

formations between models. With each step or task in the design methodology, a design model

at a certain level of abstraction is transformed and a new design model at the next lower level of

abstraction is produced. Again, if design tasks are implemented and automated by corresponding

design tools, output models are said to be synthesized.

In general, each design task consists of multiple steps to be performed. In any case,

however, all design tasks can be separated into two distinct steps:

(a) A process of making implementation decisions, e.g. choosing components out of databases

and determining the mapping of functionality onto these components for implementation. The

output of this process are design decisions (e.g. the list of components and the specification-

component mapping). Usually, there is a wide variety of possible implementations and deci-

sions have to be made in consideration of any given constraints by aiming to optimize design

quality under a cost function.

(b) A process of refining the design model to reflect the implementation decisions. Given the

design decisions, design models are refined such that the output model describes the chosen

implementation. At lower levels of abstraction, model refinement is usually a straightforward

process. For example, in logic synthesis, the design is represented as a gate netlist in a canoni-

cal form. However, at higher levels of abstraction, model refinement requires significant effort

to generate an efficient representation due to the large variance in possible design representa-

tions.

Within each design task, each of the two steps can be manual or automated. In either case, a well-

defined formal framework is necessary in order to apply automation. The primary goal of any au-

tomation should be to remove the need for tedious, error-prone model rewriting. Then, optimization

algorithms can be applied on top of model refinement for automated decision making. Especially at

higher levels, however, where optimality of solutions is hard or impossible to prove, the use of such

algorithms should be guided by the user in order to leverage human experience and insight.

A general view of the resulting design process is shown in Figure 2.10. Starting with

the specification, the design is brought down to an implementation through gradual, successive re-

finement of design models. In each step, design decisions are made either by the user through a

graphical user interface (GUI) or with the help of automated synthesis tools implementing optimiz-

CHAPTER 2. MODELING FLOW 35

RefinementRefinement

Model nModel n

LibLib

Model n+1Model n+1

Specification modelSpecification model

Implementation modelImplementation model

Optim. algorithmOptim. algorithm

GUIGUI

Design decisions

Figure 2.10: Design process.

ing algorithms. Based on the design decisions, a refinement tool will generate a new design model

from the input model automatically.

In general, model refinement is based on a layering of implementation functionality. With

each refinement step, a new implementation layer is inserted into the model. Depending on the mod-

eling language, implementation layers can be directly represented as additional layers of hierarchy.

Each new level of hierarchy covers one or more objects at lower levels and/or adds functionality in

the form of additional design objects. Keeping implementation functionality organized as a stack of

layers increases observability and transparency of the results of the design process. Note that in the

backend process that follows system design and implements each system component down to the

cycle-accurate level, layers still can be merged or combined for optimizations across layers.

2.5 Design Environment

The design methodology and design process defined in the previous sections are the basis

for implementation of an automated system design flow in the form of a system design environment.

The SoC Design Environment (SCE) is based on a philosophy of automating tedious, error-prone

manual tasks of the design process while benefitting from and reaping human experiences, knowl-

edge and insight whenever applicable. To maximize productivity, relative strengths and weaknesses

of humans and computers are balanced and exploited. The goal of SCE is not to implement a fully

automated push-button solution but to keep the designer in the loop by providing the necessary

transparency, controllability, and observability of the design process at any stage of the flow.

Towards this goal, SCE is based on a separation of synthesis and design into a decision-

making process on the one hand and a process of executing or implementing a decision on the

CHAPTER 2. MODELING FLOW 36

Specification model

Architecture model

Communication model

Comp. refinement

Comm. refinement

HW/SW refinement

Implementation model

Capture

Design decisions

Design decisions

Design decisions

RTL / OS
comp.

Comp. / IP
attributes

Protocol
attributes

Estimation

Profiling

Profiling data

Profiling
weights

Estimation results

Estimation

Estimation results

Protocol
models

Comp. / IP
models

Comp. synthesis

Comm. synthesis

HW/SW synthesis

D
ec

is
io

n
E

nt
ry

 G
U

I
D

ec
is

io
n

E
nt

ry
 G

U
I

M
o

d
el

 V
is

ua
liz

at
io

n
 G

U
I

M
o

d
el

 V
is

ua
liz

at
io

n
 G

U
I

Figure 2.11: SoC Design Environment (SCE).

other hand. Decision making is an interactive and iterative process. SCE provides feedback about

critical design issues that aid and steer the user in the decision making process at all stages of the

design flow. Execution of design decisions, however, is automated. SCE implements decisions

through fully automatic model refinement, avoiding the need for time-consuming rewriting of mod-

els completely. As a result, turn-around times are almost instantaneous and a large number of design

decisions can be explored in a short amount of time.

An overview of the SoC Design Environment (SCE) is show in Figure 2.11 [1, 46]. In

the following sections, we will outline how SCE supports the system design process with varying

degrees of design automation for modeling, refinement, exploration and finally fully automated

synthesis. After step-by-step descriptions of each design task in the flow, details about the actual

implementation of the design environment will be shown in Chapter 7.

2.5.1 Modeling

At the core of the design environment are the four system design models at four levels

of abstraction from specification down to implementation. The environment allows the designer to

capture, visualize and manipulate the four SoC models through the modeling part of its framework

CHAPTER 2. MODELING FLOW 37

and user interface. At any step in the design flow, the designer can browse the design hierarchy, edit

the source code of the design, or manually refine the design by adding, deleting or changing design

objects. Furthermore, design models can be validated through simulation at any time through the

compiler and simulator built into the environment.

2.5.2 Refinement

The environment supports automatic refinement of design models following the steps

of the design methodology by integrating corresponding model refinement tools. Given design

decisions entered by the designer through the user interface or through manual annotation of design

models, the refinement tools will automatically generate design models at the next lower level of

abstraction that implement and represent the chosen design. Therefore, no manual rewriting of

models is ever necessary and only the specification model at the input of the flow has to be supplied.

All other models will be derived from this golden model automatically.

2.5.3 Exploration

In order to support the designer in the decision making process and to enable fast design

space exploration, early and rapid feedback about a variety of design quality metrics is needed.

To this effect, the design environment incorporates additional profiling and estimation tools that

perform corresponding analysis of system design models.

Profiling and estimation data computed by the corresponding tools is presented and visu-

alized to the user through the graphical user interface. The user interface compiles, organizes and

summarizes data provided by the tools into tables, bar and pie charts. Thereby, it facilitates directed

queries of critical design data to identify hotspots, isolate problems, and evaluate trade-offs.

2.5.4 Synthesis

In the final stage, the design environment supports fully automated synthesis by allowing

the designer to employ algorithms for automated decision making through corresponding synthe-

sis tools. Synthesis tools automatically generate decisions for input into refinement using internal

optimization algorithms. A synthesis tool operates on a given part of a design model including anno-

tated meta-data like estimation metrics or constraints, runs an algorithm to automatically explore the

design space in order to find an optimal solution, and back-annotates the resulting implementation

decision into the design model.

CHAPTER 2. MODELING FLOW 38

Through the user interface, the designer is given the option to selectively apply synthesis

tools to all or part of the design at any time. With the help of synthesis tools, the designer can save

tedious work, rapidly explore parts of the design space, receive hints about possible design alter-

natives, and ultimately increase productivity. The user can apply different algorithms to different

parts of the design, apply non-optimal algorithms to non-critical parts of the design, or make partial

decisions and let algorithms fill in the blanks. At any time, however, the use of automated decision

making is under the control of the designer, and via the user interface, designers are always able

to observe, modify, and override decisions made by the algorithms before executing them through

refinement.

2.6 Summary

In this chapter, we defined the system design flow and corresponding design methodol-

ogy that are the basis for implementation of an automated system design environment. The design

methodology divides the system design process into three major design tasks of computation design,

communication design and backend design. Specification, architecture, communication and imple-

mentation models at the inputs and outputs of the design tasks have been defined in detail. Finally,

the SoC Design Environment (SCE) that implements and automates the proposed the design flow

has been introduced.

In the following chapters, we will provide detailed descriptions and specifications for each

of the design tasks within the design environment. Specifically, the flow of input, output and inter-

mediate models that breaks each tasks into individual design steps will be given in a well-defined

manner. As such, the remainder of the dissertation serves as a specification for implementation of

each design task within the environment and of the environment itself.

The proposed design flow and design environment form a comprehensive approach at

raising the level of abstraction in embedded systems design, supporting both computation and com-

munication abstraction. The definition of the design flow is based on a separation of concerns that

minimizes interactions between levels, reduces refinement between models, and supports rapid,

early exploration of critical design issues with a variety of components and IPs. As results will

prove (see Chapter 8), the two-step approach to the system design flow supports rapid design space

exploration by focusing on critical decisions at early stages while providing quick and reliable feed-

back.

CHAPTER 2. MODELING FLOW 39

The contributions of this chapter are definitions of necessary and sufficient design tasks

and design models in the design flow in a formalized way. The four models define the general

framework on which the detailed design flow is based. Models are sufficient in the sense that they

cover the complete flow from specification to implementation. On the other hand, intermediate

models are necessary to break the flow into manageable tasks and to bridge the semantic gap based

on orthogonality of computation, communication and cycle-accurate design concepts. Furthermore,

intermediate models are needed for rapid, early exploration by trading off unnecessary implemen-

tation detail to provide quick feedback about important overall system design issues. Finally, for-

malization of the models is required to enable interoperability and design automation. In summary,

a formalized framework of models and transformations based on the definitions presented in this

chapter is the foundation for the vertical integration of models through synthesis and verification

within the design environment.

Chapter 3

System Specification

The system specification model is the starting point of the design flow and is captured

by the designer to describe the desired system functionality and associated requirements. All other

design models will be generated automatically from the specification model through a sequences of

interactive refinement steps. As such, the specification model needs to precisely and unambiguously

describe the desired system behavior. Furthermore, the specification model defines the possible

design space for exploration. Therefore, quality of implementation results depends to a large extent

on the characteristics of the specification model.

In this chapter, we define how to describe a valid system specification that can serve as

the input to the design flow [48]. First, a set of general guidelines for writing proper specification

models will be given in Section 3.1. Then, in Section 3.2 specific and detailed rules and restrictions

imposed on the specification model style are defined. Finally, Section 3.3 shows an example of a

specification model of a real system that will serve as the design example throughout the rest of the

dissertation.

3.1 Modeling Guidelines

A key aspect of the specification model is to separate computation from communication.

On the one hand, this is a requirement for composability of a system out of components including

the reuse of pre-existing IP components. On the other hand, this separation of concerns allows to

implement computation and communication in two separate steps of the design flow.

40

CHAPTER 3. SYSTEM SPECIFICATION 41

3.1.1 Computation

In terms of computation, the specification is hierarchically composed of so-called be-

haviors. Behaviors are arranged sequentially, concurrently, or in a mix of both, i.e. in a pipelined

fashion. Behaviors at the leaves of the hierarchy contain basic algorithms in the form of straight-line

C code that perform arithmetic and logical operations on data. In addition to temporary data, leaf

behaviors will encapsulate any permanent storage required by the algorithm.

3.1.1.1 Granularity

The basic, indivisible units of granularity for design space exploration are SpecC behav-

iors. That is, during the design process the specification will be partitioned along behavior bound-

aries but behaviors at the leaves of the hierarchy form the smallest, indivisible units for exploration.

Therefore, leaf behaviors contain basic algorithms in the form of C code, reading from their inputs,

processing a data set, and producing outputs.

Algorithms of the specification model are split into leaf behaviors along the boundaries

defined between reading and writing of data structures. On the other hand, all the code needed to

process a complete, consistent data set should be kept together in one leaf behavior.

Also, the ratio of communication to computation should be minimized yet the size of the

leaf behaviors be kept small and manageable with well-defined, sensible interfaces and possible

reuse in mind. As a rule of thumb, what would be a traditional C function will become a leaf

behavior with typically half a page to maximally two pages of code.

3.1.1.2 Hierarchy

At each level of hierarchy, the system should be composed of self-contained blocks with

well-defined interfaces enabling easy composition, rearrangement, and reuse. Closely related func-

tionality is grouped through hierarchy. Higher-level behaviors encapsulate tightly coupled groups

of subbehaviors such that the ratio of external to internal communication is minimized. On the other

hand, the number of subbehaviors per parent should be kept small and manageable. As a guideline,

behaviors typically have 2-5 children on average.

At each level, the behavior hierarchy should be clean. Different behavioral concepts

should not be mixed within the same level. A behavior is either a hierarchical composition of

subbehaviors or a leaf behavior with sequential code. Similarly, a hierarchical behavior is either a

CHAPTER 3. SYSTEM SPECIFICATION 42

sequential, parallel, pipelined or FSM composition of subbehaviors but does not contain arbitrary C

code.

3.1.1.3 Encapsulation

In general, information should be localized as much as possible. This includes code (func-

tions, methods), storage (variables), and communication (port variables, channels). Each hierarchi-

cal unit (behavior) encapsulates and abstracts as many local details as possible, hiding them from

higher levels. Hierarchical behaviors encapsulate dependencies and communication of a group of

subbehaviors, providing only an interface to their combined functionality.

At the leaves, behaviors encapsulates all the code and storage needed by the algorithm. As

mentioned above, global, static variables become member variables of the leaf behavior. Further-

more, global functions that are called out of leaf behaviors should be avoided. Instead, depending

on size and number of callers, consider converting functions into separate leaf behaviors that get

instantiated as subbehaviors of the caller. Otherwise, global functions can be moved into the calling

behavior where they become local methods. An exception are small helper functions with a few

lines of code that are used ubiquitously and can be considered basic operations (on the same level

as additions or multiplications).

3.1.1.4 Concurrency

Any concurrency available between independent behaviors should be exposed through

their parallel or pipelined composition. That is, all behaviors that do not have any control or data

dependencies (or data dependencies only across iterations) should be arranged to execute in a con-

current fashion. Furthermore, the behavior hierarchy should be constructed in such a way as to

maximize the number of independent behaviors and hence the available parallelism.

Dependent behaviors, on the other hand, should generally not be arranged in a concurrent

fashion. Instead, their dependencies should be captured explicitly through transitions. An exception

are, for example, rare (control) dependencies between otherwise highly independent top-level tasks.

In those cases, communication and synchronization are modeled using channels between the tasks.

In general, concurrent behaviors in the specification model should reflect the available

parallelism in the specification. Therefore, they should be as independent as possible. Data or con-

trol dependencies between behaviors at the specification level should be explicitly captured through

the behavior hierarchy. Instead of concurrent behaviors that communicate or synchronize through

CHAPTER 3. SYSTEM SPECIFICATION 43

variables or events, the behaviors should be split into independent parts that can run in parallel and

dependent parts that have to be executed sequentially.

3.1.1.5 Time

The specification model is untimed and all behaviors execute in zero logical time. There-

fore, the only events in the system are events for synchronization in order to specify causality. The

ordering of events in the system is based on causal relationships only and there is no notion of time.

The system is partially ordered based on causality as determined by the explicit or implicit depen-

dencies between behaviors. As the design flow progresses, timing information that will be added to

the system will successively introduce additional order based on delays.

Apart from the untimed behavior, however, the specification model can contain constraints

for execution times of parts of the specification. During the design process, it has to be assured that

any delays introduced into the model do not violate any of the constraints.

3.1.2 Communication

In terms of communication, exchange of data between behaviors in the specification

model is encapsulated into SpecC channels that connect behaviors through ports. Channels de-

scribe how data and synchronization messages are transfered between two communication partners

in an abstract way.

3.1.2.1 Semantics

In general, behaviors at the specification level communicate via message-passing chan-

nels. Behaviors exchange data by sending and receiving messages over communication channels

with appropriate semantics. In the case of a sequential composition, message-passing degenerates

to simple variables. Data is exchanged by reading from and writing to the variable. In the case of

a parallel composition with simple synchronization only, the synchronization is implemented via a

single event. In the general case of data communication between concurrent behaviors, however, a

message-passing channel is instantiated.

The specification model instantiates channels out of a SpecC channel library with pre-

defined, known semantics. The library contains channels with abstract communication semantics

like buffered and unbuffered message-passing, FIFOs, shared-memory semaphores/mutexes, and so

CHAPTER 3. SYSTEM SPECIFICATION 44

on. By using the predefined channels out of the library, commonly needed communication func-

tionality is available for integration into the specification model.

Note that the specification models of channels do not imply any specific implementation

of their abstract semantics. The code inside the channel is for simulation of the correct semantics

during execution only. It is the task of communication design to refine those abstract channels into

an actual implementation of the desired semantics using the available system bus protocols and PE

interfaces.

3.1.2.2 Dependencies

Data dependencies should be reflected explicitly in the behavioral hierarchy as transitions

between behaviors, either through a sequential composition or conditionally using the fsm state-

ment. In this case, channels degenerate to simple variables connecting behaviors, and the need for

implicit synchronization through message-passing is eliminated.

All dependencies are explicitly captured through the connectivity between behaviors and

no hidden side effects exist. Global variables should be avoided completely. Static variables ac-

cessed from a single leaf behavior become member variables of that behavior. Global variables

used for communication have to be turned into explicit dependencies in the form of connectivity as

behaviors are only allowed to exchange data through their ports.

If the relationship of concurrent behaviors in the specification model extends beyond syn-

chronization through pure events and necessitates some actual form of data communication, the

specification needs to clearly separate such communication from the normal computation by encap-

sulating communication functionality in the form of channels.

3.2 Modeling Style

In general, the specification input model is written in SpecC and as such has to adhere to

the syntax and semantics of the SpecC language [27]. However, to form a valid specification model

that can be input into the design flow, additional rules and restrictions on top of the SpecC base have

to be adhered to as defined in this section. Note that unless otherwise noted here, any valid SpecC

code is an acceptable specification model.

Figure 3.1 and Listing 3.1 show an example template for a valid specification model. A

specification model has to be an executable SpecC model, i.e. it has to define a Main behavior

CHAPTER 3. SYSTEM SPECIFICATION 45

Design MonitorStimulus

Main

Figure 3.1: Specification model top-level structure.

import ” c d o u b l e h a n d s h a k e ” ;

behavior S t i m u l u s (i s e n d e r i n p u t) { / / S t i m u l i c r e a t o r
void main (void) {

5 / / w h i l e (. . .) { . . . ; i n p u t . send (. . .) ; . . . }
}

} ;

behavior Moni to r (i r e c e i v e r o u t p u t) { / / Ou tpu t m o n i t o r
10 void main (void) {

/ / w h i l e (. . .) { . . . ; o u t p u t . r e c e i v e (. . .) ; . . . }
}

} ;

15 behavior Design (i r e c e i v e r i n p u t , i s e n d e r o u t p u t) { / / Sys t em d e s i g n
/ / . . .

void main (void) {
/ / f sm { . . . }

20 }
} ;

behavior Main () { / / Top l e v e l
c d o u b l e h a n d s h a k e i n p u t , o u t p u t ;

25

S t i m u l u s s t i m u l u s (i n p u t) ;
Des ign d e s i g n (i n p u t , o u t p u t) ;
Moni to r m o n i t o r (o u t p u t) ;

30 i n t main (void) {
par {

s t i m u l u s . main () ;
d e s i g n . main () ;
m o n i t o r . main () ;

35 }
}

} ;

Listing 3.1: Specification model top-level code.

CHAPTER 3. SYSTEM SPECIFICATION 46

(line 23). Usually, a specification model consists of a testbench that surrounds the actual design to

be implemented. Typically, a testbench consists of stimulating (Stimulus, line 3) and monitoring

(Monitor, line 9) behaviors that are executing concurrently to the actual design (Design, line 15)

in the top-most Main behavior, and that drive the design under test and check the generated output

against known good values.

The design to be implemented is defined by a single SpecC behavior (Design) which in

turn can be hierarchically composed out of a tree of subbehaviors. For a valid specification model,

all the behaviors that are part of this tree have to comply with the rules and restrictions for describing

computation and communication that will be defined in the following sections. Note, however, that

these restrictions do not apply to the testbench part. Therefore, the testbench can be freely described

using any valid SpecC code. For example, while the code of the design to be implemented has to be

available completely in SpecC source form, the testbench can link against external translation units

(libraries) for additional functionality.

3.2.1 Computation

The computational part of the specification is described through the execution semantics

of the hierarchy of SpecC behaviors that form the design to be implemented. For a valid specification

model, this behavior hierarchy has to be clean. A clean hierarchy is defined as a tree of behaviors

in which every behavior is either a leaf behavior or a hierarchical composition of subbehaviors as

defined in the following sections.

3.2.1.1 Leaf Behaviors

In each leaf behavior, the behavior main()method contains a piece of straight-line, plain

ANSI-C code. Specifically, the following rules define the restrictions that apply to leaf behaviors.

Rule 3.1 A leaf behavior must not contain any channel or behavior instances. It can, however,

contain instances of variables.

Rule 3.2 A leaf behavior has exactly one method, the main() method.

Generally, the main() method contains any plain, valid ANSI-C code. Of the SpecC-

specific types, expressions and statements, only the following are permitted:

(a) calls to channel methods through behavior ports of interface type (see also Section 3.2.2.1),

CHAPTER 3. SYSTEM SPECIFICATION 47

(b) notify and wait statements on behavior ports of event or signal type,

(c) declarations of and operations on variables or ports of bit, long long, long double,

or bool basic type, and

(d) do-timing constructs to specify constraints.

Rule 3.3 For leaf behaviors that should be implementable in hardware, depending on the capabil-

ities of the backend tool used for hardware design, additional restrictions might apply (e.g. most

tools can not synthesize pointers).

If any of these restrictions are violated, the corresponding leaf behavior will be limited to

a software implementation. In order to allow the greatest possible flexibility for exploration, these

restrictions should be followed as much as possible for all leaf behaviors.

Rule 3.4 Generally, leaf behaviors can make calls to global functions. However, leaf behaviors that

call global functions can only be mapped to PEs that provide a native implementation of each global

function in the processor library (i.e. as a link-level library in software or a dedicated functional

unit in hardware). Therefore, global functions should be avoided completely as much as possible.

3.2.1.2 Hierarchical Behaviors

A hierarchical behavior is a composition of several subbehavior instances in a sequential,

parallel, pipelined or FSM fashion. More specifically, the following rules must be followed when

composing hierarchical behaviors.

Rule 3.5 A hierarchical behavior has exactly one method, the main() method, and the main()

method contains exactly one statement that is either

• a seq,

• a par,

• a pipe, or

• a fsm statement.

Rule 3.6 A hierarchical behavior generally contains instances of subbehaviors that execute in-

side the hierarchical behavior’s composition statement (by calling subbehavior main() methods).

CHAPTER 3. SYSTEM SPECIFICATION 48

However, each subbehavior instance can be called at most once inside the composition. Subbe-

havior instances communicate through ports, variables and channel instances of the hierarchical

behavior mapped to subbehavior ports (see Section 3.2.2.2).

Rule 3.7 For the expressions in the arguments of a pipe() statement and in the if() state-

ments of fsm transitions the same rules and restrictions as for the C code in leaf behaviors (Sec-

tion 3.2.1.1) apply.

3.2.2 Communication

All communication in the specification model, both inside the design to be implemented

and between the testbench and the actual design, is described through variables and channels that

connect ports of behaviors.

3.2.2.1 Behavior Interfaces (Ports)

The list of ports of a behavior defines the interface between the behavior and its envi-

ronment, i.e. behaviors are only allowed to communicate with other behaviors through their ports.

Rule 3.8 Behaviors can have ports of standard (variable with direction) type or of interface type.

In case of standard ports, ports that are of pointer type are not allowed. For ports of interface type,

only interfaces that are part of the standard SpecC channel library are allowed.

Rule 3.9 Behaviors are not allowed to export any methods, i.e. they cannot implement any inter-

faces.

Rule 3.10 Behaviors are not allowed to (directly or indirectly, e.g. through a call to a global func-

tion) access variables and channels that are outside of their local scope. Therefore, code inside

behaviors can only reference variables or call methods of interfaces that are defined inside the be-

havior as ports or local instances. Hence, accesses of global variables or channels are forbidden.

3.2.2.2 Connectivity (Variables and Channels)

Inside hierarchical behaviors, the connectivity of subbehaviors instances is defined by

mapping ports of the hierarchical behavior or instances of variables and channels onto the ports of

the subbehaviors.

CHAPTER 3. SYSTEM SPECIFICATION 49

Rule 3.11 Ports of subbehavior instances inside a behavior can only be connected to the ports of

the parent behavior or to variables or channels instantiated inside the parent. Hence, it is not

allowed to map other subbehavior instances onto a subbehavior port.

Rule 3.12 Given the restrictions on standard port types (see Section 3.2.2.1), variables used for

connections (i.e. mapped to ports) must not be of pointer type.

Rule 3.13 Variables with storage class piped are only allowed inside hierarchical behaviors with

a pipe composition (see Section 3.2.1.2) to connect subbehaviors that act as pipeline stages.

Rule 3.14 Only channels out of the standard SpecC channel library may be instantiated and

mapped to ports.

3.3 Design Example

An example of a system specification model is shown in Figure 3.2. The design being used

as an example is a simplified mobile phone baseband application which combines a JPEG encoder

for processing of digital still pictures taken by a camera and a voice encoder/decoder (Vocoder)

for speech processing on the transmission path. The JPEG encoder is an implementation of the

corresponding lossy image compression standard [7]. The Vocoder, on the other hand, implements

the speech transcoding standard that is part of the GSM set of standards for mobile telephony [30].

At the top level, the baseband system specification model therefore consists of concurrent functional

blocks for the JPEG encoder and the Vocoder. A channel Ctrl between the two blocks is used to

send control messages from the JPEG encoder to the vocoder.

The JPEG encoder [14, 106] is triggered by an external control signal. After initialization

of encoding tables and image headers in JPEGInit, JPEGEncode encodes the incoming picture in a

double-nested pipeline. In the outer loop, stripes of raw pixels are received from the external camera

and encoded. The inner loop consists of a four-stage pipeline that encodes each stripe in blocks of

8x8 pixels through discrete cosine transformation (DCT), Quantization, and Huffman encoding.

The voice encoder/decoder (Vocoder) [99, 52, 51], on the other hand, internally runs en-

coding and decoding behaviors in parallel, assisted by four pre- and post-processing behaviors for

framing, conversion, etc. On the encoding side, voice samples from the microphone are received

(SpchIn) as frames of 160 samples corresponding to 20 ms of speech. In the Coder, linear predic-

tion analysis (LP Analysis) and open loop analysis (Open Loop) are performed on a frame basis.

C
H

A
PT

E
R

3.
SY

ST
E

M
SPE

C
IFIC

AT
IO

N
50

ControlPixel

Storage

Vocoder

HandleData

Quantization

EncodeStripe
ReceiveData

JPEGEncode

HfmDc HfmDC

DefaultHuffman

JPEGStart

JPEGHeader

JPEGInit

mduHigh = 1..Height

mduWide = 1..Width

DCEHuffACEHuff

DCT

Huffman

JPEGEnd

JPEG

stripe[]

Voice

Radio

SpchIn

SerOut

Pre_Process

Subframes

Coder

Lp_Analysis Open_Loop

Closed_Loop

Codebook

Update

Post_Process

Ctrl

Radio

Voice

SerIn

SpchOut

Pre_Decoder

Decoder

Decode_Lsp

Decoder_
Subframe

Post_Decoder

Post_Filter

inframe[160]

outparm[244]

inparm[244]

outframe[160]

txdtx_ctrl

Figure
3.2:System

design
exam

ple
specification

m
odel.

CHAPTER 3. SYSTEM SPECIFICATION 51

Each frame is further subdivided into 4 subframes of 40 samples (5 ms of speech) each for closed

loop analysis (Closed Loop), codebook search (Codebook) and filter update (Update) on a subframe

basis. At the output of the encoder (SerOut), 244 bits of speech parameters are produced for each

incoming frame of speech. On the decoding side, the vocoder receives packets (244 bits) of speech

parameters (SerIn) and the Decoder synthesizes speech on a frame and subframe basis in a reverse

process to produce speech frames (160 samples) at the output (SpchOut).

In the rest of the dissertation, we will use this example design to illustrate the design flow

from specification down to implementation. As the design process moves along, the specification

model will gradually be refined by adding more and more implementation detail until the bus-

functional implementation is reached.

3.4 Summary

In this chapter, requirements, guidelines and rules for specification of systems have been

given. Formal, executable specifications captured in the form of SLDL code are the starting point

for deriving implementations from the specification in a systematic way [75]. After outlining gen-

eral guidelines for specifying desired system functionality in a clear, unambiguous and organized

manner, specific rules for writing SpecC specification models that can feed into the design flow have

been defined. Furthermore, an industrial-size design example has been introduced in the form of its

specification model that will serve as the guiding example throughout the rest of the dissertation.

The contributions of this chapter are detailed definitions of requirements and rules for

specification of systems such that specifications can be analyzed and synthesized with the help of

automated design tools.

Chapter 4

Computation Design

Computation design is the first part of the system design process. It derives a system ar-

chitecture model from the specification model. The purpose of computation design is to implement

the computation in the specification on a set of processing elements (PEs) and memories. In the

specification, computation is described in an abstract manner as an arbitrary hierarchical compo-

sition of behaviors that process data. At the end of computation design, the system architecture is

described as a set of non-terminating, concurrent PEs that each execute pieces of sequential code.

In this chapter, we describe and define the different steps of the computation design pro-

cess. In Section 4.1, an overview of the computation design flow including its subdivision into

partitioning and scheduling design tasks is given. Then, individual steps of these two design tasks

are described in detail in Section 4.2 and Section 4.3, respectively. As outlined previously (Chap-

ter 2, Section 2.4), the design process is based on a layering of implementation functionality in the

design models and with each step a new layer is introduced into the refined design models. Corre-

spondingly, for each step, the details of its layers as applied to the system design example introduced

in Chapter 3, Section 3.3 will be shown.

4.1 Overview

As described in the introduction (Chapter 1, Section 1.2), design generally requires that

the where (space) and when (time) of functionality has to be decided. As a result (Figure 4.1),

computation design is separated into two tasks for partitioning and scheduling. Partitioning and

scheduling tasks respectively resolve space and time issues for implementation of the computation

in the system.

52

CHAPTER 4. COMPUTATION DESIGN 53

PartitioningPartitioning

PEPE

Specification modelSpecification model

Architecture modelArchitecture model

GUIGUI

Partitioned modelPartitioned model

SchedulingScheduling

OSOS

Behavior partitioning

Variable partitioning

Static scheduling

Dynamic scheduling

Figure 4.1: Computation design flow.

The computation design process starts with partitioning. During partitioning, system

computation as represented by the behaviors and variables in the abstract system specification is

implemented on a computation architecture consisting of a set of processing elements (PEs) and

memories. Behavior and variable partitioning require allocation and selection of PEs and system

memories out of the PE database. Then, behaviors are mapped onto PEs and variables are mapped

into local or global memories. Behavior and variable partitioning insert an additional layer of hi-

erarchy in the form of PE and memory behaviors into the design. Original behaviors and variables

are then grouped under those PEs and memories according to the selected mapping, additional

synchronization and communication is inserted to preserve execution semantics and to exchange

updated variable values via message passing, and timing is refined by annotating behaviors with

estimated execution delays on their target PEs. In the resulting partitioned design model, the system

is represented as a set of non-terminating, concurrent components that communicate at an abstract

message-passing level.

After partitioning, scheduling is performed. Due to the inherently sequential nature of

PEs, processes mapped to the same PE need to be serialized. Processes are scheduled statically

or dynamically depending on the nature of the PE and on the level of data inter-dependencies.

During static scheduling, a fixed child order is defined for a subset of concurrent behaviors inside

PEs. In the design, the selected behaviors are serialized and statically ordered in time. After static

scheduling, each remaining group of concurrent behaviors is dynamically scheduled. Behaviors are

converted into tasks on top of an operating system and dynamic scheduling parameters like priorities

are assigned to each task.

CHAPTER 4. COMPUTATION DESIGN 54

In case of dynamic scheduling, a representation of the dynamic scheduling implementa-

tion is required. In the real system, dynamic scheduling will be handled by a real-time operating

system (RTOS). Therefore, a high level model of the underlying RTOS is needed for inclusion into

the system model during computation design. Corresponding RTOS models are stored inside an OS

database. RTOS models provide an abstraction of the key features that define a dynamic scheduling

behavior independent of any specific RTOS implementation.

The scheduling step refines the unscheduled, partitioned system model into the final ar-

chitecture model. Statically scheduled behaviors inside PEs are sequentialized and their children are

rearranged in the selected order. In general, for each PE in the system, an RTOS model correspond-

ing to the selected dynamic scheduling strategy is taken out of the database and instantiated in the

PE. Concurrent processes remaining inside the PEs after static scheduling are converted into tasks

with assigned priorities. Synchronization as part of communication between processes is refined

into OS-based task synchronization.

The resulting architecture model consists of multiple PEs communicating via abstract

message-passing channels. Each PE runs one or more tasks on top of its local RTOS model instance.

Therefore, the architecture model can be validated through simulation or verification to evaluate

different system partitions and different scheduling approaches (e.g. in terms of timing) as part of

system design space exploration.

4.2 Partitioning

System partitioning consists of two steps: behavior partitioning and variable partitioning.

Behavior partitioning introduces the processing element (PE) layer into the design model which

describes the mapping of specification behaviors onto PEs. Variable partitioning, on the other hand,

introduces the memory layer which describes the mapping of storage represented by variables into

local and global system memories.

4.2.1 Processing Element Layer

The PE layer is inserted into the design model as the result of behavior partitioning. Be-

havior partitioning is the process of determining on which physical component each piece of spec-

ification functionality will be implemented. Behavior partitioning requires allocation of a set of

processing elements (PEs) and mapping of specification behaviors onto the allocated PEs. This

CHAPTER 4. COMPUTATION DESIGN 55

Vocoder

HandleData

Quantization

EncodeStripeReceiveData

JPEGEncode

HfmDc HfmDC

DefaultHuffman

JPEGStart

JPEGHeader

JPEGInit

DCT

Huffman

JPEGEnd

JPEG

stripe[]

SpchIn

SerOut

Pre_Process

Subframes

Coder

Lp_Analysis Open_Loop

Closed_Loop

Codebook

Update

Post_Process

Ctrl

SerIn

SpchOut

Pre_Decoder

Decoder

Decode_Lsp

Decoder_
Subframe

Post_Decoder

Post_Filter

DMA

DCT_IP

ColdFire

HW

DSP

BI

SO BO

SI

Figure 4.2: Behavior partitioning.

process determines the groups of behaviors that will define the functionality to be implemented by

each PE.

A processing element in general is a system component that can perform computation

or data processing operations. As such, PEs can be general-purpose programmable software pro-

cessors, synthesizable custom-hardware processors, or intellectual property (IP) components with

fixed functionality. PEs are allocated and selected out of a PE database. At this stage, the design

process is only concerned with aspects of the computational functionality of PEs. Therefore, the PE

database contains behavioral PE models for allocation and import into the design during behavior

partitioning [44]1. Behavioral PE models define basic characteristics like attributes and parameters

of PEs. Furthermore, in case all or part of a PE’s computation functionality is pre-defined or fixed

(i.e. IP components), its behavioral model will contain code that describes the high-level functional

aspects of the PE (see Section 4.2.1.2).

In the design model, PE allocation and behavior mapping is modeled by inserting an

additional level of hierarchy—the PE layer—at the top of the behavior hierarchy. At the top level,

a set of concurrent behaviors representing the PEs of the system architecture are introduced by

importing PE behavioral models out of the database. The leaf behaviors are grouped under those

newly added PE behaviors according to the selected mapping, replicating the original behavior

1The PE database contains additional models for each PE at lower levels for later stages in the design process, e.g.
bus-functional models describing PE interfaces for communication design (see Chapter 5)

CHAPTER 4. COMPUTATION DESIGN 56

Subframes

Closed_Lp

Codebook

Update

ci

co

(a) specification model

Subframes

Closed_Lp

Update

Codebook

ci

co

HW
DSP

(b) grouped model

Subframes

Closed_Lp

Cdbk_Start

Update

Codebook

Cdbk_Done

Cdbk_Start

Cdbk_Done

ci

co

DSP

HW

(c) PE model

Figure 4.3: Behavior partitioning refinement.

hierarchy in each PE as necessary. In order to preserve the execution semantics of the original

specification, synchronization is added between PEs for each pair of sequential behaviors mapped to

concurrent PEs. Finally, in the process of regrouping behaviors, communication between behaviors

mapped to different PEs becomes system-global communication and is moved to the top-level that

contains the PE behaviors.

Figure 4.2 shows the chosen behavior partitioning for our system design example from

Chapter 3, Section 3.3. On the JPEG side, a (Motorola) ColdFire PE is allocated and the majority

of the JPEG encoding behaviors are mapped onto this PE for execution in software. The ColdFire

processor is assisted by a custom hardware DMA PE which handles receiving of incoming pixel data

in parallel to software execution in the ColdFire processor. Furthermore, to accelerate encoding, the

DCT pipeline stage is mapped onto a predesigned DCT IP intellectual property (IP) hardware PE.

On the vocoder side, a digital signal processor DSP is allocated to run encoding and decoding of

speech in software. The DSP is assisted by a custom hardware coprocessor HW for acceleration of

the codebook search on the encoding side. Furthermore, four custom I/O processors, BI, SI, SO, and

BO handle framing, buffering, and processing of incoming and outgoing bit and speech streams.

In the following sections, we will describe PE refinement of design models, modeling of

IP components and the PE design model as the result of the behavior partitioning process.

4.2.1.1 Model Refinement

Model refinement for behavior partitioning is illustrated in Figure 4.3 using the example

of the Subframes behavior hierarchy inside the vocoder subsystem’s encoder. At the specification

level (Figure 4.3(a) and Listing 4.1), the vocoder’s top-level design (Listing 4.1(b)) directly executes

the vocoder application (Listing 4.1(a)) which executes the Subframes behavior inside the Coder

CHAPTER 4. COMPUTATION DESIGN 57

behavior Subframes ()
{

CI c i ;
CO co ;

5

Closed Lp c l o s e d l p (c d b k i n) ;
Codebook codebook (cdbk in , c d b k o u t) ;
Update u p d a t e (c d b k o u t) ;

10 void main (void) {
c l o s e d l p . main () ;
codebook . main () ;
u p d a t e . main () ;

}
15 } ;

behavior Coder ()
{

. . .
20 Subframes s u b f r a m e s ;

void main (void) {
. . .
s u b f r a m e s . main () ;

25 }
} ;

(a) application

behavior Vocoder ()
{

Coder c o d e r ;
Decoder d e c o d e r ;

5

void main (void) {
par {

c o d e r . main () ;
d e c o d e r . main () ;

10 }
}

} ;

(b) design

Listing 4.1: Specification model.

hierarchy (line 24). The Subframes behavior itself is composed out of Closed Lp, Codebook and

Update subbehavior instances (line 6 through line 8). For simplification, it is assumed that the

behaviors communicate via two variables: ci (line 3) from Closed Lp to Codebook and co (line 4)

from Codebook to Update.

As part of the behavior partitioning process explained previously, it has been decided to

map the Codebook behavior into the custom hardware coprocessor whereas the rest of the vocoder

will run on the DSP in software (see Figure 4.2). As part of refinement, behaviors are grouped

accordingly under a new layer of corresponding DSP and HW PE behaviors (Figure 4.3(b)), syn-

chronization behaviors and channels are inserted to preserve execution semantics (Figure 4.3(c)),

and leaf behaviors are back-annotated with (estimated) timing information. The result of refinement

is the PE model that represents and implements the selected behavior partitioning.

Grouping Grouping inserts the new layer of PE behaviors into the design and replicates the orig-

inal application behavior hierarchy inside each PE according to the selected mapping (Listing 4.2).

At the top level (Listing 4.2(c)), the design is refined into a parallel composition of two newly

instantiated behaviors, DSP and HW, representing the PEs of the system architecture.

CHAPTER 4. COMPUTATION DESIGN 58

behavior Sbfrm DSP (out CI c i , in CO co) {
Closed Lp c l o s e d l p (c i) ;
Update u p d a t e (c i) ;

5 void main (void) {
c l o s e d l p . main () ;
u p d a t e . main () ;

}
} ;

10

behavior Coder DSP (out CI c i , in CO co) {
. . .
Sbfrm DSP s u b f r a m e s (c i , co) ;

15 void main (void) {
. . .
s u b f r a m e s . main () ;

}
} ;

20

behavior DSP (out CI c i , in CO co) {
Coder DSP c o d e r (c i , co) ;
Decoder DSP d e c o d e r ;

25 void main (void) {
par {

c o d e r . main () ;
d e c o d e r . main () ;

}
30 }

} ;

(a) DSP PE

behavior Sbfrm HW (in CI c i , out CO co)
{

Codebook codebook (c i , co) ;

5 void main (void)
{

codebook . main () ;
}

} ;
10

behavior Coder HW (in CI c i , out CO co)
{

Sbfrm HW s u b f r a m e s (c i , co) ;

15 void main (void)
{

s u b f r a m e s . main () ;
}

} ;
20

behavior HW(in CI c i , out CO co)
{

Coder DSP c o d e r (c i , co) ;

25 void main (void)
{

c o d e r . main () ;
}

30 } ;

(b) HW PE

behavior Vocoder () {
CI c i ;
CO co ;

5 DSP dsp (c i , co) ;
HW hw (c i , co) ;

void main (void) {
par {

10 dsp . main () ;
hw . main () ;

}
}

}

(c) design

Listing 4.2: Grouped model.

CHAPTER 4. COMPUTATION DESIGN 59

behavior Sender (i s e n d c) {
void main (void) {

c . send () ;
}

5 } ;

(a) sender

behavior R e c e i v e r (i r e c e i v e c) {
void main (void) {

c . r e c e i v e () ;
}

5 } ;

(b) receiver

Listing 4.3: Handshaking synchronization behaviors.

Inside the DSP behavior (Listing 4.2(a)), the original application behavior hierarchy of the

specification model is replicated. DSP-specific copies of the Subframes (line 1) and Coder (line 11)

behaviors are created. Inside the Sbfrm DSP behavior, however, the instance of the Codebook

behavior has been removed.

Conversely, inside the HW behavior (Listing 4.2(b)), the application behavior hierarchy

is replicated with only the Codebook instance (line 3) inside the Sbfrm HW behavior (line 1). Note

that large parts of the behavior hierarchy inside the HW PE are empty (e.g. the complete decoder

side and other behaviors inside the encoder) and subsequently have been removed.

As a consequence of grouping, variables ci and co that are shared between behaviors

mapped to different PEs become global variables and are now instantiated at the top level (List-

ing 4.2(c), line 2 and line 3). Leaf behaviors inside each PE are connected to the variables via ports

and properly routed port mappings throughout the PE’s behavior hierarchy.

Synchronization As a general rule, synchronization needs to be added during the behavior parti-

tioning process in order to preserve the execution semantics of the original specification. Sequential

behaviors mapped to different PEs will run in parallel on the concurrent components of the ar-

chitecture. In order to maintain the proper execution order of behaviors, pairs of synchronization

behaviors that communicate via a channel are inserted. For each sequential behavior transition that

crosses component boundaries after partitioning, synchronization behaviors are inserted into the

behavior hierarchy in the source and destination PEs.

Each synchronization behavior pair implements the semantics of the original transition

using a channel with handshaking semantics connecting the behaviors (Listing 4.3). On the source

side (Listing 4.3(a)), the behavior sends a handshake over the channel to initiate the transition and to

pass control to the other side (line 3). On the destination side (Listing 4.3(a)), the behavior receives

the handshake over the channel to wait for the sender before continuing execution (line 3).

In the refined design model (Listing 4.4), two synchronization channels and behavior pairs

are inserted for the PE-crossing transition on start and transition on completion of the Codebook

CHAPTER 4. COMPUTATION DESIGN 60

behavior Vocoder () {
CI c i ;
CO co ;
c h a n d s h a k e c s t a r t , c done ;

5

DSP dsp (c s t a r t , c i , co , c done) ;
HW hw (c s t a r t , c i , co , c done) ;

void main (void) {
10 par {

dsp . main () ;
hw . main () ;

}
}

15 }

(a) design

Listing 4.4: PE model.

behavior. Behavior instances cdbk start on the Sbfrm DSP and Sbfrm HW side (Listing 4.4(b),

line 5 and Listing 4.4(c), line 5, respectively) implement the transition from Closed Lp to Codebook.

Similarly, behavior instances cdbk done (line 6 and line 7) implement the transition from Codebook

back to Update on the DSP side.

Handshaking is routed through ports of the behavior hierarchy on each PE up to the top

level (Listing 4.4(a)) where the corresponding handshaking channels c start and c done connect-

ing the two PEs are instantiated (line 4). Note that channels implementing one-way handshaking

semantics are taken out of the standard SpecC channel library.

Timing After behaviors have been partitioned onto PEs, the concept of time is introduced into the

model. The computation represented by the behaviors is refined to include execution times on the

target components. As a result, behavior executions are further ordered beyond the pure causality

of the specification.

Behavior execution delays can be based on estimated execution times derived from a

model of the target component. Alternatively, execution delays can describe a timing budget al-

located to each behavior. These budgets will later serve as timing constraints for the behavior

implementation on the target PEs.

Execution times can be specified on different levels of granularity, ranging from the state-

ment level to the behavior level. Execution delays at the behavior level are used to model average

or worst-case execution times of the corresponding behavior. On the other hand, execution times at

the basic-block level can accurately model even data-dependent delays.

CHAPTER 4. COMPUTATION DESIGN 61

behavior Sbfrm DSP (i s e n d c s t a r t ,
out CI c i , in CO co ,
i r e c e i v e c done) {

Closed Lp c l o s e d l p (c i) ;
5 Sender c d b k s t a r t (c s t a r t) ;

R e c e i v e r cdbk done (c done) ;
Update u p d a t e (co) ;

void main (void) {
10 c l o s e d l p . main () ;

c d b k s t a r t . main () ;
cdbk done . main () ;
u p d a t e . main () ;

}
15 } ;

behavior Coder DSP (i s e n d c s t a r t ,
out CI c i , in CO co ,
i r e c e i v e c done) {

20 . . .
Sbfrm DSP s u b f r a m e s (c s t a r t , c i ,

co , c done) ;

void main (void) {
25 . . .

s u b f r a m e s . main () ;
}

} ;

30 behavior DSP (i s e n d c s t a r t ,
out CI c i , in CO co ,
i r e c e i v e c done) {

Coder DSP c o d e r (c s t a r t , c i ,
co , c done) ;

35 Decoder DSP d e c o d e r ;

void main (void) {
par {

c o d e r . main () ;
40 d e c o d e r . main () ;

}
}

} ;

(b) DSP PE

behavior Sbfrm HW (i r e c e i v e c s t a r t ,
in CI c i , out CO co ,
i s e n d c done)

{
5 R e c e i v e r c d b k s t a r t (c s t a r t) ;

Codebook codebook (c i , co) ;
Sender cdbk done (c done) ;

void main (void)
10 {

c d b k s t a r t . main () ;
codebook . main () ;
cdbk done . main () ;

}
15 } ;

behavior Coder HW (i r e c e i v e c s t a r t ,
in CI c i , out CO co ,
i s e n d c done)

20 {
Sbfrm HW s u b f r a m e s (c s t a r t , c i ,

co , c done) ;

void main (void)
25 {

s u b f r a m e s . main () ;
}

} ;

30 behavior HW(i r e c e i v e c s t a r t ,
in CI c i , out CO co ,
i s e n d c done)

{
Coder HW c o d e r (c s t a r t , c i ,

35 co , c done) ;

void main (void)
{

c o d e r . main () ;
40 }

} ;

(c) HW PE

Listing 4.4: PE model (continued).

CHAPTER 4. COMPUTATION DESIGN 62

behavior Update (in CO co) {
void main (void) {

. . .

5 i f (co . x) {
. . .

}
. . .

10

}
} ;

(a) specification model

behavior Update (in CO co) {
void main (void) {

. . .
w a i t f o r (UPDATE BB1 DELAY) ;

5 i f (co . x) {
. . .
w a i t f o r (UPDATE BB2 DELAY) ;

}
. . .

10 w a i t f o r (UPDATE BB3 DELAY) ;
}

} ;

(b) PE model

Listing 4.5: Timing refinement.

Execution time is introduced into the refined model by annotating the behaviors with

waitfor statements (Listing 4.5, line 4, line 7, and line 10). In addition to providing feedback

about timing during simulation, the waitfor statements serve as input to other validation, verifi-

cation or analysis tools, e.g. as specification of execution delays for static timing analysis.

4.2.1.2 IP Components

As part of the behavior partitioning process, intellectual property (IP) PEs with pre-

designed, fixed functionality can be included in the design. IP components are allocated and se-

lected together with other PEs out of the IP database. Out of the list of specification behaviors with

matching functionality, a behavior can then be mapped onto the IP for implementation. At mini-

mum, the interface of a matching behavior has to be compatible with the IP interface in terms of

data and transitions going in and out of the behavior via its ports.

For each IP component, the PE database contains a behavioral IP model that acts as a

black-box simulation model for inclusion into the design during computation synthesis. The be-

havioral IP model simulates the high-level, data-accurate computational functionality of the IP in-

cluding estimated or abstracted timing as observed at its external interface. On the other hand,

the behavioral IP model should exclude unnecessary implementation details in order to achieve the

fastest possible simulation speeds. The IP model is a black-box model used for simulation. There-

fore, it only needs to be functionally correct in terms of the input and output values that can be

observed at its ports.

Ports of behavioral IP models are of abstract variable or channel type. Behavioral IP

models in the database have to have ports on the same level as ports of PE behaviors in the design

created during refinement. To validate a behavior-to-IP mapping, the list of ports of a behavioral

CHAPTER 4. COMPUTATION DESIGN 63

IP model is matched against the list of ports that would have been created for a corresponding PE

behavior during regular refinement. As part of refinement, the behavioral IP model can then simply

be plugged into the design replacing its regularly refined PE behavior.

In general, at each step of the refinement process either a behavioral model out of the

database or a PE behavior created during refinement can be inserted into the design to represent an

IP. For practical reasons, the IP database usually contains the behavioral model needed for the final

partitioned model only (see Section 4.2.2.3). Any intermediate models are generated by refinement.

4.2.1.3 PE Model

The PE model for the given design example at the output of the behavior partitioning

process is shown in Figure 4.4. An additional processing element (PE) layer of hierarchy has been

inserted. At the top level the design is composed out of PE behaviors running concurrently: Cold-

Fire, DMA and DCT IP for the ColdFire subsystem running JPEG encoding, and DSP, HW, BI, SI,

BO and SO for the DSP subsystem running voice encoding/decoding. Original specification behav-

iors are grouped under their respective PEs according to the selected mapping. Variables shared

between behaviors mapped to different PEs have become global variables connecting PEs. Finally,

additional synchronization behaviors (not shown in all cases due to space reasons) and global hand-

shaking channels have been inserted for each PE-crossing behavior transition.

4.2.2 Memory Layer

The memory layer is inserted into the system design model as a result of variable parti-

tioning. Variable partitioning is the process of determining the physical memory in which system

variables are stored. Specifically, global variables shared between PEs that have been created during

behavior partitioning represent global storage that has to be mapped to actual memories in the sys-

tem architecture. In addition, local variables inside the PE behavior hierarchies have to be assigned

to physical storage.

In general, variables can be mapped to local memories that are part of the PEs or to dedi-

cated global, shared memory components that are allocated as part of variable partitioning2. Unless

specifically mapped to global memories, local variables inside the PEs are assigned to the local

memory of the PE they are instantiated in. For global variables, on the other hand, a mapping has to

2Note that in special cases, regular PEs can be implemented to act as shared memories. However, due to the resulting
inefficiencies, such implementations are usually not preferred.

C
H

A
PT

E
R

4.
C

O
M

PU
TAT

IO
N

D
E

SIG
N

64

Codebook

DCT

st
ri

pe
[]

Pre_Decoder

Dec_Lsp

Decoder_
Subframe

Post_Decoder

Post_Filter

im
gS

iz
e

DCEHuffACEHuff

JPEGEnd

JPEGEncode

SndRcvPara

HandleData

Quantization

EncodeStripe

Huffman

SendHData

RecvDData

JPEGInit

st
ri

pe
Le

n

Pre_Process

Subframes

Lp_Anal

Open_Lp

Closed_Lp

Update

Post_Process

Cdbk_Start
Cdbk_Done

Cdbk_Start

Cdbk_Done

exc[40]

T0

prm[10]

gain

DMA

HW

DCT_IP

ReceiveData

RcvPara

SndPara

Ctrl

ColdFire

H
D

at
a

D
D

at
a

SpchIn

SerIn

DSP

BI

SI

Decoder

Coder

SpchOut

SerOut
BO

SO

DCT_Start

DCT_Done

inparm

inframe

outparm

txdtx_ctrl

outframe

Figure
4.4:PE

m
odel.

CHAPTER 4. COMPUTATION DESIGN 65

be chosen in any case. If mapped to a global memory, all PEs accessing the shared variable will be

connected to the memory. If mapped to local memory in a so-called distributed variable partition-

ing, a local copy of the variable is created in each PE accessing the variable. Then, communication

is inserted to keep local copies inside the PEs in sync3.

Memories are allocated and selected out of the PE database where they are stored as

special PEs. In general, each PE can contain a local memory as part of its microarchitecture. Be-

havioral models of PEs in the database define the amount of local memory available in a PE, if any.

Therefore, PE behaviors for regular PEs inserted during behavior partitioning double as memory

behaviors representing the PE local storage. All variables inside the PE behavior hierarchy will be

implemented inside the PE’s local memory. For memory components, behavioral models out of the

database are imported and instantiated as system memory behaviors during variable partitioning. A

behavioral memory model turns the component into a server providing global storage. By exporting

its local storage through an interface, other PEs can access the variables inside [44].

In the design model, variable partitioning is modeled by inserting a memory layer into the

system architecture. Memory behaviors representing memory components are added to the system

architecture at the top level of the design. Memory behaviors act as containers for variables, and

variables are grouped under the memory behaviors according to their selected mapping to physical

storage. A memory behavior acts a storage server and other PEs are connected to the memory

behavior to access variables stored within. In case of a distributed scheme, variables are moved into

local PE memories and existing synchronization channels and behaviors are refined to exchanged

updated variable values.

In the following sections, we will illustrate distributed and shared memory variable re-

finement processes followed by a description of the final partitioned design model at the output of

the variable partitioning process.

4.2.2.1 Distributed Variable Refinement

Model refinement for distributed variable partitioning is illustrated in Figure 4.5 using

the example of the inframe array variable shared between the DSP and SI PEs. In the PE model

(Figure 4.5(a)), as result of behavior partitioning, the SpeechIn and Pre Process behaviors have

been mapped onto the SI and DSP PEs, respectively. In the process, the inframe variable shared

between the two behaviors has become a global variable connecting the two PEs. In addition,

3Note that in the case of local variables, the default behavior of mapping them to local memory is equivalent to a
distributed variable partitioning scheme. As there is only one PE accessing the variable, no synchronization is necessary.

CHAPTER 4. COMPUTATION DESIGN 66

inframe[160] SpeechIn

Pre_Process

DSP

SI

SpchIn_DoneSpchIn_Done

(a) PE model

inframe[160]

SpchIn_Donec_inframeSpchIn_Done

inframe[160]

DSP

SI
Pre_Process

SpeechIn

(b) partitioned model

Figure 4.5: Distributed variable partitioning.

synchronization behaviors SpchIn Done that are handshaking via a corresponding channel between

the PEs have been inserted.

In the refined model after distributed variable partitioning (Figure 4.5(b)), local copies

of the inframe array variable are instantiated inside both DSP and SI PEs. In order to preserve

the shared semantics of the variable and to keep local instances in sync, updated data values have

to be exchanged between PEs at synchronization points. Therefore, the existing synchronization

behaviors and the existing synchronization channel are refined to communicate updated values of

inframe together with transferring control over a single message-passing channel c inframe from SI

to DSP.

Mapping During distributed variable partitioning, variables are mapped into local memories of

all PEs accessing the variable. A local copy of the variable is created inside each PE connecting

to the shared variable. As mentioned previously, behavioral PE models for regular PEs double as

containers for variables representing the data stored in the PE’s local memory. Therefore, during

distributed variable refinement local instances of mapped variables are created inside the connected

PE behaviors. Behaviors inside the PEs then operate on the data in the local memory instead of

accessing a global variable.

Listing 4.6 and Listing 4.7 show the refinement of the models for the DSP and SI PEs,

respectively. In both cases, a local instance of the inframe array is created in the PE behavior

(Listing 4.6(b), line 4 and Listing 4.7(b), line 4), replacing the PE behavior port of the same name

(Listing 4.6(a), line 2 and Listing 4.7(a), line 2). As a result, subbehaviors inside the PE auto-

matically connect to the newly created local copy of the variable instead of accessing it via the

corresponding port. In addition, as will be explained later, synchronization behaviors are replaced

with refined versions that connect to the new local variable and communicate updated data values

over the external PE interfaces (Listing 4.6, line 5 and Listing 4.7, line 6).

CHAPTER 4. COMPUTATION DESIGN 67

behavior DSP (i r e c e i v e s i d o n e ,
in s h o r t i n f r a m e [1 6 0] ,
. . .)

{
5 R e c e i v e r s p c h i n d o n e (s i d o n e) ;

P r e P r o c e s s p r e p r o c e s s (i n f r a m e) ;
. . .

void main (void)
10 {

s p c h i n d o n e . main () ;
p r e p r o c e s s . main () ;
. . .

}
15 } ;

(a) PE model

behavior DSP (i s h o r t 1 6 0 r e c e i v e c i n f r a m e ,
. . .)

{
s h o r t i n f r a m e [1 6 0] ;

5 R e c e i v e r s p c h i n d o n e (c i n f r a m e ,
i n f r a m e) ;

P r e P r o c e s s p r e p r o c e s s (i n f r a m e) ;
. . .

10 void main (void) {
s p c h i n d o n e . main () ;
p r e p r o c e s s . main () ;
. . .

}
15 } ;

(b) partitioned model

Listing 4.6: DSP PE distributed variable refinement.

behavior SI (i s e n d s i d o n e ,
out s h o r t i n f r a m e [1 6 0] ,
. . .)

{
5 SpeechIn s p e e c h i n (i n f r a m e) ;

Sender s p c h i n d o n e (s i d o n e) ;

void main (void)
{

10 s p e e c h i n . main () ;
s p c h i n d o n e . main () ;

}
} ;

(a) PE model

behavior SI (i s h o r t 1 6 0 s e n d c i n f r a m e ,
. . .)

{
s h o r t i n f r a m e [1 6 0] ;

5 SpeechIn s p e e c h i n (i n f r a m e) ;
Sender s p c h i n d o n e (in f r ame ,

c i n f r a m e) ;

void main (void) {
10 s p e e c h i n . main () ;

s p c h i n d o n e . main () ;
}

} ;

(b) partitioned model

Listing 4.7: SI PE distributed variable refinement.

CHAPTER 4. COMPUTATION DESIGN 68

behavior Vocoder () {
s h o r t i n f r a m e [1 6 0] ;
c h a n d s h a k e s i d o n e ;
. . .

5

SI s i (s i d o n e , in f r ame , . . .) ;
DSP dsp (s i d o n e , in f r ame , . . .) ;
. . .

10 void main (void) {
par {

s i . main () ;
dsp . main () ;
. . .

15 }
}

}

(a) PE model

behavior Vocoder ()
{

c s h o r t 1 6 0 h a n d s h a k e c i n f r a m e ;
. . .

5

SI s i (c i n f r a m e , . . .) ;
DSP dsp (c i n f r a m e , . . .) ;
. . .

10 void main (void) {
par {

s i . main () ;
dsp . main () ;
. . .

15 }
}

}

(b) partitioned model

Listing 4.8: Top-level distributed variable refinement.

At the top level of the design hierarchy (Listing 4.8), the global inframe variable and the

synchronization channel si done (Listing 4.8(a), line 2 and line 3) are replaced with a message-

passing channel c inframe of appropriate type (short integer array of size 160) that handles syn-

chronization and communication of update variable values in the refined model after partitioning

(Listing 4.8(b), line 3). In addition, connectivity of PEs is refined accordingly. As a result, in the

partitioned model PEs communicate via channels only and there are no more global variables.

Message Passing In general, the implementation of global variables in a distributed variable par-

titioning scheme is characterized by moving global variables into local PE memories where the

behaviors then operate on those local copies. In order to preserve the original, shared semantics

of the global variable, communication to exchange updated data values at synchronization points

becomes necessary. Adding communication ensures that guarantees about the state of variables at

ports of behaviors are preserved during refinement.

In order to keep local copies in sync, the existing synchronization behavior pairs are

modified to include shared variable updates. For each inter-component transition, the corresponding

behavior pair will transfer both control and data from the source to the destination end. As part of

the message passed over the channel, all the data shared between the behaviors along that transition

is included in the transfer.

As shown in the updated code for the synchronization behaviors (Listing 4.9(b)), the re-

fined synchronization behaviors are connected to the local copies of the shared variable through

CHAPTER 4. COMPUTATION DESIGN 69

behavior Sender (i s e n d c)
{

void main (void) {
c . send () ;

5 }
} ;

behavior R e c e i v e r (i r e c e i v e c)
{

10 void main (void) {
c . r e c e i v e () ;

}
} ;

(a) PE model

behavior Sender (s h o r t i n f r a m e [1 6 0] ,
i s h o r t 1 6 0 s e n d c) {

void main (void) {
c . send (i n f r a m e) ;

5 }
} ;

behavior R e c e i v e r (i s h o r t 1 6 0 r e c e i v e c ,
s h o r t i n f r a m e [1 6 0]) {

10 void main (void) {
c . r e c e i v e (i n f r a m e) ;

}
} ;

(b) partitioned model

Listing 4.9: Message-passing refinement.

their ports (line 1 and line 9). They assemble and disassemble variable updates into/from the mes-

sage passed over the channel between them. The source side reads the value of the variable from

its input port and sends it over the corresponding channel interface (line 4). On the other end, the

destination waits for reception of the message and writes the updated value into the variable through

its output port (line 11).

4.2.2.2 Shared Memory Refinement

Figure 4.6 shows model refinement for a shared memory variable partitioning scheme

using the example of the stripe array variable shared between DMA and ColdFire PEs in the JPEG

subsystem. In the PE model after behavior partitioning (Figure 4.6(a)), the RecvData behavior on

the DMA PE and the HandleData behavior on the ColdFire PE communicate by accessing the same

global stripe variable. Note that necessary synchronization for access to the shared resource (either

as part of the specification or automatically inserted in the form of synchronization behaviors and

channels during behavior partitioning) is not shown here.

During variable partitioning it has been decided to map the stripe variable into a dedicated

shared memory component that becomes part of the system architecture. As a result, the stripe

variable—together with other variables mapped to the system memory—is grouped under a newly

inserted layer of memory behavior representing the memory component Mem (Figure 4.6(b)). The

memory behavior acts as a storage server. It exports methods for accessing variables stored inside

the memory through an interface. Consequently, variable reads and writes inside the PE’s leaf

behaviors are refined to access the variable through the memory interface instead.

CHAPTER 4. COMPUTATION DESIGN 70

stripe[]RecvData HandleData

DMA ColdFire

(a) PE model

stripe[]

RecvData HandleData

DMA ColdFire

Mem

(b) partitioned

Figure 4.6: Shared memory variable partitioning.

Grouping During shared memory refinement, a new layer of memory behaviors is inserted into

the system and global variables between PEs are grouped and encapsulated under these behaviors

according to the selected mapping. Listing 4.10 shows the shared memory refinement of the top

level of the design hierarchy from the PE model to the partitioned model. Global variables (List-

ing 4.10(a), line 2) are replaced by instances of system memory behaviors which hold the mapped

variables (Listing 4.10(b), line 3) The memory components are inserted into the system architecture

next to the other PEs. Instead of accessing global variables, PEs are connected to the shared memory

as needed in order to access the variables within (line 4 and line 5).

Memory Behaviors During variable partitioning, behavioral models of dedicated system mem-

ory components are allocated and imported out of the PE database. Memory behaviors describe a

memory’s computational functionality needed at this stage in the design process. A shared memory

behavioral model (Listing 4.11) acts as a container and server for variables stored in the memory.

Global variables are moved into memories. Iside the memory behavior (Listing 4.11(b)), instances

of all variables mapped to the memory are created (line 4).

In order for other PEs to access the variables stored in the memory, the memory behavior

exports access methods through a corresponding interface. The interface (Listing 4.11(a)) provides

methods for read and write accesses to all data stored in the memory (line 2 and line 3). In general,

methods have to be created to allow access to variable data on all possible levels. For example, in

case of complex, composite variables (structs, arrays, or unions), access to individual data elements

and to whole data blocks (e.g. for struct or array assignments) has to be provided.

The memory behavior implements the interface and its methods by simply mapping each

read or write call to a read or write access of the corresponding variable or variable element available

in the memory (Listing 4.11(b), line 7 and line 8). Note that a dedicated memory component does

not provide any computational functionality. Hence, its PE behavior does not have any ports and its

main method is empty (line 11).

CHAPTER 4. COMPUTATION DESIGN 71

behavior JPEG () {
char s t r i p e [STRIPESIZE] ;

DMA dma (s t r i p e) ;
5 C o l d F i r e c f (s t r i p e) ;

. . .

void main (void) {
par

10 {
dma . main () ;
c f . main () ;
. . .

}
15 }

}

(a) PE model

behavior JPEG ()
{

Mem mem ;
DMA dma (mem) ;

5 C o l d F i r e c f (mem) ;
. . .

void main (void) {
par {

10 mem. main () ;
dma . main () ;
c f . main () ;
. . .

}
15 }

}

(b) partitioned model

Listing 4.10: Top-level shared memory refinement.

i n t e r f a c e i mem {
char r e a d s t r i p e (i n t i n d e x) ;
void w r i t e s t r i p e (i n t index , char v a l) ;
. . .

5 } ;

(a) memory interface

behavior Mem()
implements i mem

{
char s t r i p e [9 6 0] ;

5 . . .

char r e a d s t r i p e (i n t i n d e x) { re turn s t r i p e [i n d e x] ; }
void w r i t e s t r i p e (i n t index , char v a l) { s t r i p e [i n d e x] = v a l ; }
. . .

10

void main (void) { }
} ;

(b) memory behavior

Listing 4.11: Shared memory behavioral model.

CHAPTER 4. COMPUTATION DESIGN 72

behavior RecvData (char s t r i p e [9 6 0]) {
void main (void) {

. . .
s t r i p e [i] = d ;

5 . . .
}

} ;

behavior DMA(char s t r i p e [9 6 0] ,
10 . . .) {

. . .
RecvData r c v d a t a (s t r i p e) ;
. . .

15 void main (void) {
. . .
r c v d a t a . main () ;
. . .

}
20 } ;

(a) PE model

behavior RecvData (i mem mem) {
void main (void) {

. . .
mem . w r i t e s t r i p e (i , d) ;

5 . . .
}

} ;

behavior DMA(i mem mem ,
10 . . .) {

. . .
RecvData r c v d a t a (mem) ;
. . .

15 void main (void) {
. . .
r c v d a t a . main () ;
. . .

}
20 } ;

(b) partitioned model

Listing 4.12: DMA PE shared memory refinement.

behavior HandleData (char s t r i p e [9 6 0]) {
void main (void) {

. . .
x = s t r i p e [n] ;

5 . . .
}

} ;

behavior C o l d F i r e (char s t r i p e [9 6 0] ,
10 . . .) {

{
. . .
HandleData h d l d a t a (s t r i p e) ;
. . .

15

void main (void) {
. . .
h d l d a t a . main () ;
. . .

20 }
} ;

(a) PE model

behavior HandleData (i mem mem) {
void main (void) {

. . .
x = mem. r e a d s t r i p e (n) ;

5 . . .
}

} ;

behavior C o l d F i r e (i mem mem,
10 . . .) {

{
. . .
HandleData h d l d a t a (mem) ;
. . .

15

void main (void) {
. . .
h d l d a t a . main () ;
. . .

20 }
} ;

(b) partitioned model

Listing 4.13: ColdFire PE shared memory refinement.

CHAPTER 4. COMPUTATION DESIGN 73

Memory Access After grouping global variables into shared memory components, variable ac-

cesses inside the PEs have to be refined to access the corresponding memory interface instead.

Inside the leaf behaviors of the PEs (Listing 4.12 and Listing 4.13), each access to a global variable

in the C code is refined into calls to corresponding read and write methods of the memory inter-

face (line 4). In the process, connectivity of leaf behaviors to global variables through ports of the

PE behavior hierarchy is replaced with ports of memory interface type that ultimately connect leaf

behaviors to the global system memory where the variables are stored (line 1, line 12 and line 9).

4.2.2.3 Partitioned Model

The resulting partitioned model for the given design example at the output of the variable

partitioning process is shown in Figure 4.7. With the exception of the stripe variable shared be-

tween DMA and ColdFire PEs on the JPEG side, a distributed variable partitioning scheme has been

chosen for all variables in the system. Local variable copies are created inside the PEs and synchro-

nization channels between PEs are replaced by message-passing channels. For the stripe variable,

a dedicated memory component Mem that holds the variable is part of the JPEG subsystem. DMA

and ColdFire PEs connect to the memory interface such that behaviors inside can access the shared

data.

For the DCT IP component, a behavioral IP model is imported and inserted out of the

IP database. Note that the IP model is based on a distributed partitioning of variables needed for

communication with the IP. As described in Section 4.2.1.2, the behavioral model in the database is a

black-box simulation model of the IP that is plugged into the system architecture from the database.

Based on the distributed variable IP requirements, local copies of variables previously shared with

the IP are created inside the connecting ColdFire PE. Furthermore, synchronization behaviors are

upgraded to full message-passing IP communication.

As a result of variable partitioning, the partitioned model represents the output of the par-

titioning process in general. Behaviors are partitioned into PEs and variables are partitioned into

local and global memories. At the top level of the design, the system is a netlist of PEs connected

by stateless channels. Specifically, there are no system-level variables or buffers (i.e. state carried

across transactions inside channels). All storage has been mapped into physical memory for imple-

mentation. Note that the Ctrl channel between subsystems and the channels between the DSP PE

and its I/O processors were specified to be of stateless message-passing type from the beginning

and subsequently did not have to be refined.

C
H

A
PT

E
R

4.
C

O
M

PU
TAT

IO
N

D
E

SIG
N

74

Codebook

DCT

stripe[]

Pre_Decoder

Dec_Lsp

Decoder_
Subframe

Post_Decoder

Post_Filter

im
gS

iz
e

DCEHuffACEHuff

JPEGEnd

JPEGEncode

SndRcvPara

HandleData

Quantization

EncodeStripe

Huffman

SendHData

RecvDData

JPEGInit

st
ri

pe
Le

n

Pre_Process

Subframes

Lp_Anal

Open_Lp

Closed_Lp

Update

Post_Process

Cdbk_Start
Cdbk_Done

Cdbk_Start

Cdbk_Done

exc[40]

T0

prm[10]

gain

Mem

DMA

HW

DCT_IP

ReceiveData

RcvPara

SndPara

Ctrl

ColdFire

HData

DData

inframe SpchIn

SerIninparm

DSP

BI

SI

Decoder

Coder

SpchOut

SerOut
BO

SO

outframe

outparm

txdtx_ctrl

Figure
4.7:Partitioned

m
odel.

CHAPTER 4. COMPUTATION DESIGN 75

4.3 Scheduling

After partitioning of behaviors and variables onto PEs and memories, system scheduling

has to be performed in order to determine the order of behavior execution on the inherently sequen-

tial PEs. PEs are defined to have a single thread of control and true parallelism is available through

the concurrent execution of PE components only. Therefore, behaviors inside each PE have to be

scheduled to serialize their execution.

Behaviors can be scheduled statically or dynamically. For static scheduling, the order

of behaviors is fixed and the design is refined to execute behaviors according to the given order.

For dynamic scheduling, the order of behaviors will be determined at runtime under the control of

a scheduling algorithm running on the PE. The scheduler will later become part of the embedded

real-time operating system (RTOS). As part of dynamic scheduling refinement an RTOS layer is

introduced into the design which controls behavior execution and contains an abstracted model of

the underlying RTOS scheduling policy.

In the design flow, scheduling is performed in two steps: first, static scheduling of selected

parts of the behavior hierarchy in each PE is performed. Then, an RTOS layer is inserted for each

supported PE in order to dynamically schedule all remaining concurrent behaviors inside.

4.3.1 Static scheduling

In a static scheduling approach, behaviors are executed in a fixed and predetermined order.

Static scheduling requires the definition of the execution order for a given concurrent composition

of behaviors. Any two behaviors running in parallel (i.e. for which their order of execution is

undefined) can be statically scheduled. In the process, multiple nested levels of concurrency in the

behavior hierarchy can be flattened and behaviors can be scheduled across hierarchical boundaries.

The design model is refined to represent static scheduling decisions by arranging behaviors in the

selected execution order, possibly removing parts of the behavior hierarchy.

In the following sections, we will illustrate the model refinement process for static

scheduling followed by a description of the scheduled design model at the output of the process.

4.3.1.1 Model Refinement

Model refinement for static scheduling is illustrated in Figure 4.8 (Listing 4.14) using the

example of the main JPEG encoding block JPEGEncode. In the partitioned model before schedul-

CHAPTER 4. COMPUTATION DESIGN 76

JPEGEncode

SndRcvPara
HandleData

Quantization

EncodeStripe

Huffman

DCT

(a) partitioned model

JPEGEncode

SndRcvPara

HandleData

Quantization

EncodeStripe

Huffman

DCT

(b) scheduled model

Figure 4.8: Static scheduling refinement.

behavior E n c o d e S t r i p e (. . .) {
piped i n t b [6 4] ;
. . .
HandleData hnd l (. . . , b) ;

5 DCT d c t (b , . . .) ;
Q u a n t i z a t i o n q u a n t (. . .) ;
Huffmann h u f f (. . .) ;

void main (void)
10 {

i n t i ;
pipe (i = 0 ; i < W; i + +)
{

h d l d a t a . main () ;
15 d c t . main () ;

q u a n t . main () ;
h u f f . main () ;

}
}

20 } ;

behavior JPEGEncode (. . .) {
. . .
SndRcvData s n d r c v D a t a (. . .) ;

25 E n c o d e S t r i p e e n c S t r i p e (. . .) ;

void main (void) {
par {

s n d r c v d a t a . main () ;
30 e n c S t r i p . main () ;

}
}

} ;

(a) partitioned model

behavior E n c o d e S t r i p e (. . .) {
i n t b [6 4] ;
. . .
HandleData hnd l (. . . , b) ;

5 DCT d c t (b , . . .) ;
Q u a n t i z a t i o n q u a n t (. . .) ;
Huffmann h u f f (. . .) ;

void main (void) {
10 i n t i = 0 ;

fsm {
hnd l :
d c t :
q u a n t :

15 h u f f : {
i f (++ i < W) goto hnd l ;

}
}

}
20 } ;

behavior JPEGEncode (. . .) {
. . .
SndRcvData s n d r c v D a t a (. . .) ;

25 E n c o d e S t r i p e e n c S t r i p e (. . .) ;

void main (void)
{

s n d r c v d a t a . main () ;
30 e n c S t r i p . main () ;

}

} ;

(b) scheduled model

Listing 4.14: Static scheduling refinement.

CHAPTER 4. COMPUTATION DESIGN 77

ing (Figure 4.8(a), Listing 4.14(a)), encoding is performed in two nested levels of concurrent sub-

behaviors. The inner EncodeStripe behavior (line 1) encodes a stripe of W 8× 8 pixel blocks in a

4-stage pipeline (line 12). The outer JPEG encoder behavior (line 22) then runs encoding of stripes

in parallel with receiving pixel data from the outside (line 28).

During the design process, it has been decided to statically schedule the complete JPEG

encoding block. In the scheduled model after refinement (Figure 4.8(b), Listing 4.14(b)), the

pipelined and parallel behavior compositions are replaced with corresponding sequential execution

of subbehaviors in the selected (default) order. The pipeline is converted into a simple loop, using

an FSM composition to model looping (line 11). Note that in the process, pipelined variables used

for communication between stages are converted into regular variables (line 2). The outer parallel

composition is simply replaced by an analogous sequential composition (line 28).

4.3.1.2 Scheduled Model

The refined design model for the given system design example after static scheduling is

shown in Figure 4.9. As explained in the previous sections, the main JPEG encoding block inside

the ColdFire processor has been statically scheduled with the result that all behaviors inside the

ColdFire PE execute sequentially.

On the DSP side, however, no static scheduling has been performed and encoding and

decoding blocks still execute concurrently. Therefore, they will be dynamically scheduled as part

of the RTOS refinement step that follows static scheduling.

Apart from scheduling behavior executions inside PEs, the design at the top level remains

unchanged from the previous partitioned model as a set of concurrent PEs communicating via ab-

stract channels on the message-passing level.

4.3.2 RTOS Layer

As mentioned in the chapter overview, any concurrent processes remaining after static

scheduling require dynamic scheduling via an underlying RTOS. At this early design phase, how-

ever, using a detailed, real RTOS implementation would negate the purpose of an abstract system

model. Furthermore, at higher levels, not enough information might be available to target a spe-

cific RTOS. Therefore, an RTOS layer which captures and models the abstracted RTOS behavior is

inserted into the system model at this stage [49, 50].

C
H

A
PT

E
R

4.
C

O
M

PU
TAT

IO
N

D
E

SIG
N

78

Codebook

DCT

stripe[]

Pre_Decoder

Dec_Lsp

Decoder_
Subframe

Post_Decoder

Post_Filter

im
gS

iz
e

DCEHuffACEHuff

JPEGEnd

JPEGEncode

SndRcvPara

HandleData

Quantization

EncodeStripe

Huffman

SendHData

RecvDData

JPEGInit

st
ri

pe
Le

n

Pre_Process

Subframes

Lp_Anal

Open_Lp

Closed_Lp

Update

Post_Process

Cdbk_Start
Cdbk_Done

Cdbk_Start

Cdbk_Done

exc[40]

T0

prm[10]

gain

Mem

DMA

HW

DCT_IP

ReceiveData

RcvPara

SndPara

Ctrl

ColdFire

HData

DData

inframe SpchIn

SerIninparm

DSP

BI

SI

Decoder

Coder

SpchOut

SerOutoutframe

outparm

BO

SO

txdtx_ctrl

Figure
4.9:Scheduled

m
odel.

CHAPTER 4. COMPUTATION DESIGN 79

Application

SLDL

Channels

(a) specification model

Application

SLDL

Channels

RTOS Model

(b) architecture model

RTOS

Application

SLDL

Comm. & Sync. API

Instruction Set Simulator (ISS)

(c) implementation model

Figure 4.10: RTOS modeling layers.

The RTOS models is written on top of the existing SpecC SLDL and does not require

any specific language extensions. It supports all the key concepts found in modern RTOS like task

management, real time scheduling, preemption, task synchronization, and interrupt handling [10].

On the other hand, it requires only a minimal modeling effort in terms of refinement and simulation

overhead, thereby allowing to rapidly explore different design alternatives at this early stage in the

design process.

Figure 4.10 shows the modeling layers at different steps of the design flow. At the specifi-

cation level (Figure 4.10(a)), the application is a serial-parallel composition of SLDL processes.

Processes communicate and synchronize through variables and channels. Channels are imple-

mented using primitives provided by the SLDL core and are usually part of the communication

library provided with the SLDL.

In the architecture model (Figure 4.10(b)), the RTOS model is inserted as a layer between

the application and the SLDL core. The SLDL primitives for timing and synchronization used by the

application are replaced with corresponding calls to the RTOS layer. In addition, calls of RTOS task

management services are inserted. The RTOS model implements the original semantics of SLDL

primitives plus additional details of the RTOS behavior on top of the SLDL core, using the existing

services of the underlying SLDL simulation engine to implement concurrency, synchronization,

and time modeling. Existing SLDL channels (e.g. semaphores) from the specification are reused

by refining their internal synchronization primitives to map to corresponding RTOS calls. Using

existing SLDL capabilities for modeling of extended RTOS services, the RTOS library can be kept

small and efficient. Later, as part of software synthesis in the backend, RTOS calls and channels

are implemented by mapping them to an equivalent service of the actual RTOS or by generating

channel code on top of RTOS primitives if the service is not provided natively.

Finally, in the implementation model (Figure 4.10(c)), the compiled application linked

against the real RTOS libraries is running in an instruction set simulator (ISS) as part of the system

co-simulation in the SLDL.

CHAPTER 4. COMPUTATION DESIGN 80

i n t e r f a c e RTOS
{

/∗ OS management ∗ /
void i n i t () ;

5 void s t a r t (i n t s c h e d a l g) ;
void i n t e r r u p t r e t u r n () ;

/∗ Task management ∗ /
Task t a s k c r e a t e (c o n s t char ∗ name , i n t type , s i m t i m e p e r i o d) ;

10 void t a s k t e r m i n a t e () ;
void t a s k s l e e p () ;
void t a s k a c t i v a t e (Task t) ;
void t a s k e n d c y c l e () ;
void t a s k k i l l (Task t) ;

15 Task p a r s t a r t () ;
void p a r e n d (Task t) ;

/∗ Even t h a n d l i n g ∗ /
Task e n t e r w a i t () ;

20 void wakeup wai t (Task t) ;

/∗ Delay mode l ing ∗ /
void t i m e w a i t (s i m t i m e nsec) ;

} ;

Listing 4.15: Interface of the RTOS model.

In the following sections we will discuss the interface between application and the RTOS

model, the refinement of specification into architecture using the RTOS interface, and the imple-

mentation of the RTOS model.

4.3.2.1 RTOS Interface

Listing 4.15 shows the interface of the RTOS model. The RTOS model provides four

categories of services: operating system management, task management, event handling, and time

modeling.

Operating system management mainly deals with initialization of the RTOS during sys-

tem start where init initializes the relevant kernel data structures while start starts the multi-task

scheduling. In addition, interrupt return is provided to notify the RTOS kernel at the end of an

interrupt service routine.

Task management is the most important function in the RTOS model. It includes various

standard routines such as task creation (task create), task termination (task terminate, task kill),

and task suspension and activation (task sleep, task activate). Two special routines are introduced

to model dynamic task forking and joining: par start suspends the calling task and waits for the

child tasks to finish after which par end resumes the calling task’s execution. The RTOS model

CHAPTER 4. COMPUTATION DESIGN 81

B2
c1

B3

Decoder Coder

DSP_Main

DSP

(a) partitioned model

RTOS Model

DSP_OS

B2
c1

T
as

k_
D

ec
o

d
er

T
as

k_
C

od
er

DSP_Main

DSP

(b) architecture model

Figure 4.11: Model refinement example.

supports both periodic hard real time tasks with a critical deadline and non-periodic real time tasks

with a fixed priority. In modeling of periodic tasks, task endcycle notifies the kernel that a periodic

task has finished its execution in the current cycle.

Event handling in the RTOS model sits on top of the basic SLDL synchronization events.

Two system calls, enter wait and wakeup wait, are wrapped around each SpecC wait primitive. This

allows the RTOS model to update its internal task states (and to reschedule) whenever a task is about

to get blocked on and later released from a SpecC event.

During simulation of high-level system models, the logical time advances in discrete

steps. SLDL primitives (such as waitfor in SpecC) are used to model delays. For the RTOS model,

those delay primitives are replaced by time wait calls which model task delays in the RTOS while

enabling support for modeling of task preemption.

4.3.2.2 Model Refinement

In this section, we will illustrate model refinement based on the RTOS interface presented

in the previous section using the example of the DSP PE (Figure 4.11). In general, the same re-

finement steps are applied to all the PEs in a multi-processor system. The unscheduled, partitioned

model (Figure 4.11(a)) executes the parallel composition of Coder and Decoder behaviors in its

main application inside the DSP processor. Behaviors Coder and Decoder communicate via a chan-

nel c1.

The output of the dynamic scheduling refinement process is shown in Figure 4.11(b). As

part of refinement, a new OS layer is inserted around each PE in the system. The RTOS model

implementing the RTOS interface is instantiated inside this DSP OS layer in the form of a SpecC

channel. Behaviors and communication channels use RTOS services by calling the RTOS channel’s

CHAPTER 4. COMPUTATION DESIGN 82

behavior Decoder ()
{

void main (void)
{

5 . . .
/∗ model e x e c u t i o n d e l a y ∗ /
w a i t f o r (BLOCK1 DELAY) ;
. . .
/∗ model e x e c u t i o n d e l a y ∗ /

10 w a i t f o r (BLOCK2 DELAY) ;
. . .

}
} ;

(a) partitioned model

behavior t a s k D e c o d e r (RTOS os) implements I n i t
{

Task h ;

5 void i n i t (void) {
h = os . t a s k c r e a t e (” Decoder ” , APERIODIC , 0) ;

}

void main (void) {
10 os . t a s k a c t i v a t e (h) ;

. . .
/∗ model e x e c u t i o n d e l a y ∗ /
os . t i m e w a i t (BLOCK1 DELAY) ;
. . .

15 /∗ model e x e c u t i o n d e l a y ∗ /
os . t i m e w a i t (BLOCK2 DELAY) ;
. . .
os . t a s k t e r m i n a t e (h) ;

}
20 } ;

(b) architecture model

Listing 4.16: Task modeling.

methods. Behaviors are refined into three tasks. DSP Main is the main task that executes as soon as

the system starts. Immediately after startup, DSP Main spawns concurrent child tasks, Task Coder

and Task Decoder, and waits for their completion.

Task Refinement Task refinement converts parallel processes/behaviors in the specification into

RTOS-based tasks in a two-step process. In the first step (Listing 4.16), behaviors are converted

into tasks, e.g. behavior Decoder (Listing 4.16(a), line 1) is converted into Task Decoder (List-

ing 4.16(b), line 1). A method init is added for construction of the task (line 5). All waitfor

statements within the task’s body are replaced with RTOS time wait calls to model task execu-

tion delays (line 13 and line 16). Finally, the main body of the task is enclosed in a pair of

CHAPTER 4. COMPUTATION DESIGN 83

behavior DSP Main ()
{

Decoder d e c o d e r () ;
Coder c o d e r () ;

5

void main (void)
{

10

par
{

d e c o d e r . main () ;
c o d e r . main () ;

15 }

}

} ;

(a) partitioned model

behavior DSP Main (RTOS os)
{

Task Decoder t a s k d e c o d e r (os) ;
Task Coder t a s k c o d e r (os) ;

5

void main (void) {
Task t ;

t a s k d e c o d e r . i n i t () ;
10 t a s k c o d e r . i n i t () ;

t = os . p a r s t a r t () ;
par {

t a s k d e c o d e r . main () ;
15 t a s k c o d e r . main () ;

}
os . p a r e n d (t) ;

}
} ;

(b) architecture model

Listing 4.17: Task creation.

task activate / task terminate calls so that the RTOS kernel can control the task activation and

termination (line 10 and line 18).

The second step (Listing 4.17) involves dynamic creation of child tasks in a parent task.

Every par statement in the code (Listing 4.17(a)) is refined to dynamically fork and join child

tasks as part of the parent’s execution (Listing 4.17(b)). The init methods of the children are called

to create the child tasks. Then, par start suspends the calling parent task in the RTOS layer before

the children are actually executed in the par statement. After the two child tasks finish execution

and the par exits, par end resumes the execution of the parent task in the RTOS layer.

Synchronization Refinement In the partitioned model, all synchronization in the application or

inside communication channels is implemented using SLDL events. Synchronization refinement

wraps corresponding event handling routines of the RTOS model around the event-related primitives

(Listing 4.18). Each wait statement in the code is enclosed in a pair of enter wait / wakeup wait

calls to notify the RTOS model about corresponding task state changes (line 12). Note that there is

no need to refine notify primitives as the state of the calling task is not influenced by those calls

(line 9).

After model refinement, both task management and synchronization are implemented us-

ing the system calls of the RTOS model. Thus, the dynamic system behavior is completely con-

trolled by the RTOS model layer.

CHAPTER 4. COMPUTATION DESIGN 84

channel C1 ()
{

event eReady ;
event eAck ;

5

void send (. . .)
{

. . .
n o t i f y eRdy ;

10 . . .

wait (eAck) ;
. . .

15 }
} ;

(a) partitioned model

channel C1 (RTOS os)
{

event eReady ;
event eAck ;

5

void send (. . .) {
Task t ;
. . .
n o t i f y eRdy ;

10 . . .
t = os . e n t e r w a i t () ;
wait (eAck) ;
os . wakeup wai t (t) ;
. . .

15 }
} ;

(b) architecture model

Listing 4.18: Synchronization refinement.

4.3.2.3 Model Implementation

The RTOS model library is implemented in approximately 2000 lines of SpecC channel

code [109]. The library contains models for different scheduling strategies typically found in RTOS

implementations, e.g. round-robin or priority-based scheduling [90]. In addition, the models are

parameterizable in terms of task parameters, preemption, and so on.

Task management in the RTOS models is implemented in a customary manner where

tasks transition between different states and a task queue is associated with each state [10]. Task

creation (task create) allocates the RTOS task data structure and task activate inserts the task into

the ready queue. The par start method suspends the task and calls the scheduler to dispatch another

task while par end resumes the calling task’s execution by moving the task back into the ready

queue.

Event management is implemented by associating additional queues with each event.

Event creation (event new) and deletion (event del) allocate and deallocate the corresponding data

structures in the RTOS layer. Blocking on an event (event wait) suspends the task and inserts it into

the event queue whereas event notify moves all tasks in the event queue back into the ready queue.

In order to model the time-sharing nature of dynamic task scheduling in the RTOS, the

execution of tasks needs to be serialized according to the chosen scheduling algorithm. The RTOS

model ensures that at any given time only one task is running on the underlying SLDL simulation

kernel. This is achieved by blocking all but the current task on SLDL events (Figure 4.12). When-

ever task states change inside a RTOS call, the scheduler is invoked and, based on the scheduling

CHAPTER 4. COMPUTATION DESIGN 85

Application

SLDL

RTOS
Model

T1 T2 T3 T4 T5

Figure 4.12: Dynamic scheduling implementation.

algorithm and task priorities, a task from the ready queue is selected and dispatched by releasing its

SLDL event. Note that replacing SLDL synchronization primitives with RTOS calls is necessary to

keep the internal task state of the RTOS model updated.

In high level system models, simulation time advances in discrete steps based on the

granularity of waitfor statements used to model delays (e.g. at behavior or basic block level).

The time-sharing implementation in the RTOS model makes sure that delays of concurrent task are

accumulative as required by any model of serialized task execution. However, additionally replacing

waitfor statements with corresponding RTOS time modeling calls is necessary to accurately

model preemption. The time wait method is a wrapper around the waitfor statement that allows

the RTOS kernel to reschedule and switch tasks whenever time increases, i.e. in between regular

RTOS system calls.

Normally, this would not be an issue since task state changes can not happen outside

of RTOS system calls. However, external interrupts can asynchronously trigger task changes in

between system calls of the current task in which case proper modeling of preemption is important

for the accuracy of the model (e.g. response time results). For example, an interrupt handler can

release a semaphore on which a high priority task for processing of the external event is blocked.

Note that given the nature of high level models, the accuracy of preemption results is limited by the

granularity of task delay models.

Figure 4.13 illustrates the behavior of the RTOS model based on simulation traces ob-

tained for the DSP PE in the design example. For the purpose of illustration, the traces include

aspects of PE-internal interrupt handling and bus driver communication that will be inserted as part

of communication design as described in Chapter 5. Specifically, the simulated DSP PE contains

bus driver channels and interrupt service routines (ISR) for external communication where the ISR

can communicate with the bus driver through a semaphore s1.

Figure 4.13(a) shows the simulation trace of the unscheduled, partitioned model. Behav-

iors Decoder and Coder are executing truly in parallel, i.e. their simulated delays overlap. After

CHAPTER 4. COMPUTATION DESIGN 86

c1

Main

c1.recv()

c1.send()

B
u

sISR

bus.recv()

Decoder Coder

s1

L
og

ic
al

 t
im

e

t0

t1

t2
t3

t5

t8

t6

t4

t7

(a) partitioned model

c1

Main

c1.recv()

c1.send()
B

u
sISR

bus.recv()

time_wait()

Task_Decoder Task_Coder

s1

t0

t1

t2

t3

t4

t5

t6

t7

t8

(b) architecture model

Figure 4.13: RTOS model simulation traces.

executing until time t2, Coder waits until it receives a message from Decoder through the channel

c1. At time t3, Decoder sends a message to Coder through channel c1 which wakes up Coder and

both behavior continue executing in parallel. At time t4, Coder enters the bus driver and waits for

data from another PE. At time t5, an interrupt happens, execution of behaviors is interrupted and

the interrupt service routine is invoked. The ISR wakes up Coder sitting in the bus driver through

semaphore s1 at time t6. Coder, in turn, receives its data through the bus driver and both behaviors

continue until they finish execution.

Figure 4.13(b) shows the simulation result of the architecture model for a priority based

scheduling. It demonstrates that in the refined model Task Decoder and Task Coder execute in

an interleaved way. Since Task Coder has the higher priority, it executes unless it is blocked on

receiving a message from Task Decoder (t2 through t3), it is waiting for an interrupt (t4 through

t6), or it finishes (t7). At those points execution switches to Task Decoder. Note that at time t5,

the interrupt wakes up Task Coder, and Task Decoder is preempted by Task Coder. However, the

actual task switch is delayed until the end of the discrete time step at t6 in Task Decoder based on the

granularity of the task’s delay model. These inaccuracies are unavoidable due to the discrete nature

of system simulations at high levels of abstraction. In summary, however, as required by priority

based dynamic scheduling, at any time only one task, the ready task with the highest priority, is

executing.

CHAPTER 4. COMPUTATION DESIGN 87

4.3.2.4 Architecture Model

Figure 4.14 shows the architecture model as the result of dynamic scheduling refinement.

The architecture model is also the final output of the computation design process as a whole. For

both software PEs, ColdFire and DSP, an additional OS layer (ColdFire OS and DSP OS, respec-

tively) has been inserted around the basic PE behaviors. In case of the ColdFire processor, no

dynamic scheduling is required and the OS layer is empty. However, note that the layer contains

an unused dummy OS model stub (not shown in the figure) that provides services for suspending

and resuming the processor needed for implementation of interrupt handling during communication

design later.

In case of the DSP processor, the OS layer contains an instance of the OS model imple-

menting the selected scheduling strategy. Furthermore, parallel behaviors inside the processor have

been converted into tasks and the application in general uses the services provided by the OS model

for task management, synchronization, and internal and external communication.

4.4 Summary

In this chapter, we presented the computation design flow with well-defined design steps

and design models. Starting from an abstract system specification, a virtual architecture model of the

design consisting of a set of non-terminating, concurrent processing elements (PEs) communicating

through abstract message-passing channels is generated through partitioning and scheduling design

tasks.

The computation design flow supports heterogoeneous multi-processor system architec-

tures with an unlimited number of arbitrary PEs like custom hardware processors, software pro-

cessors, memories, and IPs in a unified manner. Execution of behaviors on PEs can be scheduled

statically and dynamically. In the latter case, an abstract model of the underlying RTOS describes

the dynamic scheduling behavior of the operating system scheduler for feedback during simulation

and validation in general.

The contributions of this chapter include clear definitions of design steps, abstraction

levels, and semantics. For each step, necessary design decisions and model transformations have

been identified (as summarized in Table 4.1). Furthermore, models of designs, target architectures

and implementation details have been developed. As results will show (Chapter 8), intermediate

models break the computation design flow into manageable steps while providing feedback for

C
H

A
PT

E
R

4.
C

O
M

PU
TAT

IO
N

D
E

SIG
N

88

Codebook

DCT

stripe[]

Pre_Decoder

Dec_Lsp

Decoder_
Subframe

Post_Decoder

Post_Filter

im
gS

iz
e

DCEHuffACEHuff

JPEGEnd

JPEGEncode

SndRcvPara

HandleData

Quantization

EncodeStripe

Huffman

SendHData

RecvDData

JPEGInit

st
ri

pe
Le

n

Pre_Process

Subframes

Lp_Anal

Open_Lp

Closed_Lp

Update

Post_Process

Cdbk_Start
Cdbk_Done

Cdbk_Start

Cdbk_Done

exc[40]

T0

prm[10]

gain

CF_OS

Mem

DMA

HW

DCT_IP

ReceiveData

RcvPara

SndPara

Ctrl

ColdFire

HData

DData

inframe SpchIn

SerIninparm

DSP

BI

SI

DSP_OS

Decoder

Coder

SpchOut

OSModel

SerOutoutframe

outparm

BO

SO

txdtx_ctrl

Figure
4.14:A

rchitecture
m

odel.

CHAPTER 4. COMPUTATION DESIGN 89

Design step Design decisions Model transformations
Pa

rt
iti

on
in

g

Behavior
partitioning

(a) PE allocation & selection:
PE = set of (name,type) tuples

(b) Behavior mapping function mb:
set of behaviors B 7→ PE

(a) PE behavior insertion
(b) Behavior grouping
(c) Synchronization insertion
(d) Timing refinement

Variable
partitioning

(a) Memory allocation & selection:
M = set of (name,type) tuples

(b) Variable mapping function:
subset of variables Vg ⊆V 7→ M

(a) Memory behavior insertion
(b) Variable grouping
(c) Message passing insertion
(d) Memory access refinement

Sc
he

du
lin

g

Static
scheduling

(a) Behavior schedules S:
∀b ∈ subset Bs ⊆ B:
Sb = totally ordered set of children

(a) Behavior serialization
(b) Behavior flattening
(c) Behavior ordering

Dynamic
scheduling

(a) Scheduling algorithm selection:
os : PE 7→ set of algorithms OS

(b) Task priority assignment:
p : Bt ⊆ B 7→ Z

+

(a) RTOS model insertion
(b) Task creation
(c) Task refinement
(d) Synchronization refinement

Table 4.1: Computation design steps.

validation and verification of critical design decisions at early stages. Finally, models have been

defined such that they can be automatically generated through successive refinement (see Chapter 7)

while being able to describe a wide range of possible target architectures.

Chapter 5

Communication Design

Communication design is the second step of the system design process. It derives the

system communication model from the intermediate architecture model. Communication design

is a process with multiple stages where the system communication is gradually refined from an

abstract message-passing down to an actual implementation over pins and wires. In the architecture

model, communication is described in purely behavioral or functional manner as synchronous or

asynchronous message-passing channels between PEs. At the end of the communication design

flow is a structural description of the communication architecture in the form of wires connecting

the pins of bus-functional network stations.

In this chapter, we describe and define the different steps of the communication design

process. Starting with an overview of the communication design flow, specific requirements of SoC

communication, layering of communication functionality and application of layers to SoC design

are outlined in Section 5.1. Specific network and link design tasks and their individual steps and

layers are then described in detail in Section 5.2 and Section 5.3, respectively.

5.1 Overview

Analogous to the computation design flow, communication design generally requires the

resolution of space (where) and time (when) issues for communication between components in the

system. Consequently, communication design is separated into two tasks—network design and link

design—that roughly divide the design process along those issues.

Figure 5.1 shows the proposed communication design flow. Communication design starts

with a virtual architecture model of the system in which processing elements (PEs) that per-

90

CHAPTER 5. COMMUNICATION DESIGN 91

Network DesignNetwork Design

Network
protocols

Network
protocols

Architecture modelArchitecture model

Communication modelCommunication model

GUIGUI

Link modelLink model

Comm. Link DesignComm. Link Design

Media
protocols

Media
protocols

Protocol modelProtocol modelMAC modelMAC model

Channel streaming

Network segmenting

Link grouping

Media interfacing

Figure 5.1: Communication design flow.

form computation communicate via abstract channels with synchronous or asynchronous message-

passing semantics. The first task of communication design is network design in which the overall

network topology is defined and end-to-end channels are mapped into point-to-point communication

over multiple subnets. Network design requires conversion and merging of channels into untyped

bytes streams and segmenting of the network into several connected subnets. During network seg-

menting, additional transducer components are allocated to bridge and connect subnets. End-to-end

streams are then routed over the network of point-to-point links connecting PEs and transducers

within each segment. The result of the network design step is a refined link model of the system.

In the link model, PEs and other network stations communicate via logical link channels that carry

streams of packets between directly connected components.

After network design, link design is performed for all links within each network segment

where each segment can be designed separately. Within each segment, link design implements

packet transfers over actual pins and wires of a selected bus or other communication structure.

First, logical links within each segment are grouped into physical links and packet transfers for each

link are implemented over the common, shared communication medium. Then, media interfaces of

each PE and transducer are implemented down to the media access, protocol and finally wire level.

In the process, additonal arbiter and interrupt controller components are inserted and connected as

necessary.

As a result of the communication design process, a physical model of the system is gen-

erated automatically. The physical model is a fully structural model at the system level in which

CHAPTER 5. COMMUNICATION DESIGN 92

PEs and other network components communicate and are connected via pins and wires. Apart from

the physical model, the communication design process can produce intermediate transaction-level

models (TLMs) at the output of the link grouping process. Transaction-level models abstract the

pin-level communication in the physical model to the level of media access or individual protocol

word/frame transactions. Depending on the parameters of the implementation, automatically gener-

ated TLMs of the physical model can be used to trade off accuracy and model complexity in order

to accelerate validation through simulation, for example.

5.1.1 SoC Communication

In the architecture model at the input of communication design, reliable, synchronous and

asynchronous message-passing communication between entities (PEs) is required. In synchronous

communication, both sender and receiver are provided with information about the completion of the

transaction, i.e. of delivery of data from sending to receiving entity. Usually, this means that calls on

both sides block until it is guaranteed that data has arrived at/from the other end1. Around the actual

data transfer, this requires synchronization to ensure that both sides have completed the transaction.

Note that synchronous communication precludes loss of data but does not guarantee protection

against data errors, for example. Synchronous communication is often chosen because it minimizes

storage and by default, any lossless communication without buffering has to be synchronous and

blocking.

Asynchronous communication, on the other hand, is less restricted in that no feedback

about completion of transfers is provided or required. In the general case, communication calls

on both sides do not block on successful data delivery, i.e. communication partners are decoupled

and do not need to be synchronized. Asynchronous communication enables and is a consequence

of buffering of data without overall synchronization. Asynchronous communication therefore acts

like a FIFO queue where the queue depth depends on the amount of buffering in the actual imple-

mentation2. Note that independent of the blocking and non-blocking nature of communication in

the synchronous and asynchronous case, calls itself may be blocking or non-blocking depending on

how overflow of any available local buffers is handled. For example, if data is simply discarded

when buffers are full, asynchronous sends are non-blocking but lossy.

1Calls might not block on delivery if data is buffered and some other mechanism (e.g. callbacks) is available to provide
feedback about completion.

2If the implementation does not make any guarantees at all, queues of depth zero are possible which, if lossless, are
equivalent to synchronous communication.

CHAPTER 5. COMMUNICATION DESIGN 93

In both cases, reliable communication has to be lossless and error-free, i.e. it is guaranteed

that the same data that is put in on the sender side will be received at the other end. Reliability is

achieved through flow control and/or error correction. Flow control is error prevention in that it

ensures that communication partners can not overrun each other, thus avoiding data loss during the

actual data transfer. By matching data rates on both ends (including local delays for processing of

data) it guarantees that both sides are free to send and receive. During a transfer, therefore, flow

control needs to delay the faster end until it can be made sure that the other side is ready. At the

lowest level, flow control requires some appropriate timing guarantees in the implementation, for

example by inserting delays or wait states to communicate at a lowest common, fixed data rate. On

top of that, information about the state of data processing needs to be exchanged. In order to match

data rates and delay the faster end by appropriately blocking callers, it has to be ensured that data

is available for sending (ready messages) or that the receiver can accept data and has space to store

it (acknowledgments). Note that synchronization for synchronous communication and flow control

are related. The implementation of one can ease or even replace the implementation of the other.

For example, state information provided by flow control can be used for synchronization. In fact,

flow control is a less restricted version of synchronization of individual data elements. If there is no

buffering they are equivalent.

Error correction is necessary to deal with unreliable underlying communication structures.

Possible errors can include data (bit) errors or complete loss of data. Typically, error correction

requires detection of errors together with retransmission of data. Error detection is usually based on

(negative or lack of) acknowledgments from receiver to sender together with error checking at the

receiving side. Note that error correction can compensate for data loss due to lack of or incomplete

flow control. Therefore, if error corrections is necessary for other reasons and if the performance

hit can be tolerated (e.g. if the likelihood of overflows is small), it can possibly replace flow control

completely.

Both flow control and error correction can profit from intermediate buffering of outstand-

ing data in order to increase performance and throughput by hiding and compensating for communi-

cation delays and latencies (e.g. to inject more data while waiting for replies or acknowledgments).

Also, intermediate buffers are unavoidable in multi-hop communication architectures that require

store-and-forward configurations. However, buffering affects synchronization and flow control, and

it requires special handling for their implementation. For example, buffering without additional

synchronization results in asynchronous communication, even though communication from buffer

to buffer (or between application and buffer) is synchronous. Pairwise synchronization on each leg

CHAPTER 5. COMMUNICATION DESIGN 94

does not provide end-to-end synchronous communication unless it can be guaranteed that legs are

synchronized overall by intermediate way-stations.

Buffers can be used to even out data rate variations in general and for flow control in

particular. Given large enough buffers, explicit flow control can possibly be avoided all together as

long as burst of data are guaranteed to fit into the buffers. Otherwise, information about buffer fill

states needs to be exchanged. In any case, however, flow control at lower levels needs to ensure

that communication between buffers matches the rate at which data is read from one buffer with

the rate at which it can be stored in the next. Note that in contrast to synchronization, reliability of

communication between buffers implies overall end-to-end reliability. However, cross-influences

between different communication streams due to sharing of resources (e.g. buffers) usually requires

end-to-end flow control. Flow control prevents that one stream can saturate shared resources. Thus,

it avoids unnecessary blocking of others and, in the worst case, the possibility of deadlocks,

All in all, a communication design flow needs to take all these issues into account in order

to allow designing an optimal communication architecture for a given SoC application.

5.1.2 Communication Layers

The communication design flow is structured along a layering of communication function-

ality within each task of the design flow. The implementation of SoC communication is divided into

several layers based on separation of concerns, grouping of common functionality, dependencies

across layers, and early validation of critical issues for rapid and efficient design space exploration

through humans or automated tools.

Layers are stacked on top of each other. A layer provides services to the next higher

layer by building upon and using the services provided by the next lower layer. In general, at its

interface to higher layers, each layer provides services for establishing communication channels

and for performing transactions over those channels. Semantics of transactions and channels vary

from layer to layer. Therefore, each layer corresponds to a certain level of abstraction. As design

progresses, layers are successively inserted into the design and with each step a refined design model

at the next lower level of abstraction is generated.

Table 5.1 summarizes the layers for SoC communication. For each layer, its interface

to higher layers, its functionality, and its level of implementation in the backend tools (software,

operating system kernel, device driver, hardware abstraction layer (HAL), hardware) is listed. Lay-

ering is based on the ISO OSI reference model [62]. However, due to the unique features and

C
H

A
PT

E
R

5.
C

O
M

M
U

N
IC

AT
IO

N
D

E
SIG

N
95

Layer Interface semantics Functionality Impl. OSI
Application N/A • Computation Application 7

Presentation
PE-to-PE, typed, named messages

• v1.send(struct myData)
• Data formatting Application 6

Session
PE-to-PE, untyped, named messages

• v1.send(void*, unsigned len)
• Synchronization
• Multiplexing

OS kernel 5

Transport
PE-to-PE streams of untyped messages

• strm1.send(void*, unsigned len)

• Packeting
• Flow control
• Error correction

OS kernel 4

Network
PE-to-PE streams of packets

• strm1.send(struct Packet)
• Routing OS kernel 3

Link
Station-to-station logical links

• link1.send(void*, unsigned len)
• Station typing
• Synchronization

Driver 2b

Stream
Station-to-station control and data streams

• ctrl1.receive()
• data1.write(void*, unsigned len)

• Multiplexing
• Addressing

Driver 2b

Media Access
Shared medium byte streams

• bus.write(int addr, void*, unsigned len)
• Data slicing
• Arbitration

HAL 2a

Protocol
Unregulated word/frame media transmission

• bus.writeWord(bit[] addr, bit[] data)
• Protocol timing Hardware 2a

Physical
Pins, wires

• A.drive(0)
• D.sample()

• Driving, sampling Interconnect 1

Table
5.1:C

om
m

unication
layers.

CHAPTER 5. COMMUNICATION DESIGN 96

characteristics of SoC communication, layers have been tailored specifically to these requirements.

Furthermore, note that layers only serve as a specification of the desired implementation. As part of

synthesis of communication within each tool, layers are possibly merged for optimizations across

layer boundaries.

5.1.2.1 SoC Layer Stacks

Layers provide a general framework for communication design. However, when synthe-

sizing a specific SoC design, customized implementations of layer stacks are generated. Based on

specifics of SoC communication, only part of a layer’s functionality is implemented or layers are

not needed at all. For example, in traditional architectures, low-latency, reliable busses are used and

error correction, flow control, buffering or dynamic routing are not required. Therefore, network

and transport layers are empty or largely simplified.

In addition, application and target architecture specific optimizations are applied. Layer

functionalities and hardware resources like bus widths, number of interrupt lines, etc. are adjusted

to requirements. For example, end-to-end synchronization in the session layer is implemented only

if synchronous communication is required by the application and not supplied by underlying links.

Packet lengths in the transport layer are determined based on message sizes such that overhead is

minimized. At the media access level, arbiters are inserted and customized depending on the number

of masters on a medium.

Finally, multiple layers generated within each design task are inlined into PEs together.

In the process, layers are merged and optimizations across layer boundaries are applied.

An example of communication layers for a typical SoC communication architecture is

shown in Figure 5.2. The example shows a part of a system with two processing elements PE0

and PE1. At the application level, PE0 communicates with PE1 through two message channels, c1

and c2. Furthermore, PE1 exchanges data with another remote PE in the system through a channel

c3. In the presentation layer, abstract data types in the messages are converted into canonical byte

format in both PEs. In the session layer, messages from c1 and c2 are merged into a single data

stream between PE0 and PE1. The transport layer splits large messages into streams of packets

in order to have uniform, smaller message sizes for buffering at lower layers. In the network layer,

PE0 and PE1 are directly connected via a single logical link whereas PE1 exchanges data with other

PEs via a logical link connected to a network interface which in turn will route the data packets via

its outgoing logical link(s).

CHAPTER 5. COMMUNICATION DESIGN 97

Interrupt0 Interrupt1Interrupt0

Bus1Bus0
Arbitration bus Medium

PE0 PE1 InterfaceRepeater

Network

Transport

Session

Presentation

Application

Link

Stream

Media Access

Protocol

c1
c2 c3

Figure 5.2: Communication architecture example.

For both links between PE0 and PE1 and between PE1 and the interface, bus-based com-

munication is used. PE1 is declared as the master whereas PE0 and the interface act as slaves.

Correspondingly, control streams in the link layer perform handshaking from slave to master and

data streams perform transfers under the control of the master. In the stream layer, the two data

streams in PE1 are then multiplexed over the single medium the PE is connected to. In the media

access layer, data stream packets are sliced into bus words. Furthermore, inside the media access

layer of bus master PE1, arbitration calls to request and release the bus are inserted around each

bus transfer. For the link between PE0 and PE1, the bus is split into two segments. A repeater is

inserted as part of the media access layer. The repeater connects incompatible bus protocols and

passes bus words and handshake events transparently between them. Finally, the protocol layer im-

plements the protocols for driving and sampling the wires of Bus0 connecting PE0 and repeater, and

of Bus1 connecting repeater, PE1, and the interface. The protocol layer also implements protocols

for handshaking via interrupts and for bus requests over the arbitration bus.

The links to other PEs in the system going in and out of the interface are implemented

over a shared, long-latency, error-prone network medium. The link layer implements buffering,

error correction and flow control to provide high-performance, reliable link communication by in-

terleaving data and control over a single mixed byte stream supported by the medium. The stream

layer assigns medium addresses to each link. The media access layer then splits packets into media

frames while participating in the arbitration protocol on the medium (e.g. through collision detec-

tion). Finally, the protocol layer converts the media frames into bit streams on the physical wires,

including any special services required for arbitration (e.g. listen-while-send).

CHAPTER 5. COMMUNICATION DESIGN 98

App

Layer 1

Layer n-1

App

Layer 1

Layer n-1
Channel n

n+1

PE PE

(a) input model n

Channel n+1

App

Layer 1

Layer n

PE

Layer n-1

App

Layer 1

Layer n

PE

Layer n-1

(b) output model n+1

Figure 5.3: Communication model refinement.

behavior PE (i l a y e r n l a y e r n)
{

Layer n −1 l a y e r n −1(l a y e r n) ;
Layer n −2 l a y e r n −2(l a y e r n −1);

5 . . .
L a y e r 1 l a y e r 1 (l a y e r 2) ;

App app (l a y e r 1) ;

10 void main (void)
{

app . main () ;
}

} ;

(a) input model n

behavior PE (i l a y e r n +1 l a y e r n +1)
{

L a y e r n l a y e r n (l a y e r n + 1) ;
Layer n −1 l a y e r n −1(l a y e r n) ;

5 Layer n −2 l a y e r n −2(l a y e r n −1);
. . .
L a y e r 1 l a y e r 1 (l a y e r 2) ;

App app (l a y e r 1) ;
10

void main (void) {
app . main () ;

}
} ;

(b) output model n+1

Listing 5.1: Communication model PE refinement.

5.1.2.2 Model Refinement

Refinement of design models from architecture to communication models is organized

based on layering of communication functionality. With each step in the design flow, an additional

layer of communication functionality is inlined into the PEs of the design model. By replacing

the communication between PEs (as represented by the channels connecting PEs) with channels

that model the behavior and semantics of transactions at the interface of the next lower layer in an

abstract manner, a new system model at the next lower level of abstraction is generated (Figure 5.3).

For each layer inserted during the design process, a refined design model is therefore generated.

Communication layers are inserted into the PEs of the design model during refinement

in the form of special adapter channels (Listing 5.1). Adapter channels implement the interface of

the layer. They connect to the interface of the next lower layer through a corresponding port. An

adapter then implements the layer’s functionality in the code of its methods on top of calls to the

next lower layer’s methods. As part of model refinement, instances of layer adapters are created

CHAPTER 5. COMMUNICATION DESIGN 99

inside the PEs, linking the PE’s higher layers to the external communication channel interface at the

next lower layer.

5.2 Network Design

The network design task implements end-to-end communication semantics between PEs.

In the architecture model at the input of network design, PEs communicate by passing messages

over synchronous or asynchronous channels. At the output of network design, network stations

in the link model communicate by exchanging packets over point-to-point logical links between

them. Starting with the application layer generated from the initial specification by preceeding

computation design tasks, implementations of presentation and session layers are inserted as part

of channel streaming whereas network segmenting introduces transport and network layers into the

design.

5.2.1 Application Layer

The application layer corresponds to the computation functionality of the system. It de-

fines the behavior of the application implemented by the computation design process. During the

computation design process, the initial specification of the desired system behavior has been mapped

onto a set of PEs. Inside each PE, the parts of the initial specification mapped onto that PE form the

PE’s application layer. Thus, the application layers describe the processing of data in the PEs.

5.2.1.1 Model Refinement

Since the application layer is equivalent to the computation functionality, no specific re-

finement of the architecture model at the output of computation design is required. In the model,

PEs exchange data by passing messages over named channels with synchronous or asynchronous

semantics where channels with different names are used to distinguish among data of different ori-

gin.

The SoC communication design flow supports implementation of reliable synchronous

and asynchronous communication channels found in the application. Implementation of syn-

chronous communication provides the corresponding guarantees about completion of transactions.

For asynchronous communication, no such feedback is made available. In fact, neither are any

guarantees about buffer sizes made in that case. Hence, asynchronous communication might end up

CHAPTER 5. COMMUNICATION DESIGN 100

being implemented in a synchronous form. If a defined amount of buffering is required, queues of

appropriate depth need to be implemented as part of the application.

In case of IP components in the design, the purely behavioral IP component models of the

architecture model are replaced with models required for the communication design flow. IP mod-

els for communication design encapsulate a structural (bus-functional) model of the component in a

wrapper that implements all layers of communication with the IP. Since the IP’s communication pro-

tocols are pre-defined and fixed, its communication can not be designed arbitrarily and the wrapper

provides the necessary functionality to be gradually inserted into the IP’s communication partners

as design progresses. Corresponding IP models with communication wrappers are imported out of

the IP library and inserted into the design model as part of application layer model refinement.

5.2.1.2 Application Model

The application or presentation model for the design example is shown in Figure 5.4. The

application model is the starting point for communication design and is mostly equivalent to the

architecture model that was the result of the computation design process. However, for the DCT IP

component, a bus-functional model plus DCT Adapter wrapper has been plugged into the model.

The application model specifies the communication functionality to implement. For

each data item (variable) communicated between PEs, the model contains a corresponding typed

message-passing channel. Communication and channels at the application level are always reliable.

In this example, all channels between PEs are specified to be asynchronous, i.e. the application does

not require synchronous messages. In general, channels at the application level specify the synchro-

nization requirements but not the amount of buffering for implementation of the channels. Instead,

the amount of buffering in application-level channels will depend on their implementation in lower

layers. In the application model, channels can therefore have any amount of buffering, e.g. some

average, fixed number. On the other hand, if information about the implementation is available,

channels can be annotated with estimated buffer sizes for feedback during simulation.

Similar to the architecture model, the shared memory PE in the application model the is

modeled as a special channel. The memory channel encapsulates all data items (variables) mapped

into the shared memory component. At its interface, the memory channel provides two methods per

data item for reading and writing the item’s value from/to memory.

C
H

A
PT

E
R

5.
C

O
M

M
U

N
IC

AT
IO

N
D

E
SIG

N
101

SpchOut

Codebook

DCT

inframe

stripe[]

Pre_Decoder

Decoder

Dec_Lsp

Decoder_
Subframe

Post_Decoder

Post_Filter

im
gS

iz
e

DCEHuffACEHuff

JPEGEnd

JPEGEncode

SndRcvPara

HandleData

Quantization

EncodeStripe

Huffman

SendHData

RecvDData

JPEGInit

st
ri

pe
Le

n

Pre_Process

Subframes

Coder

Lp_Anal

Open_Lp

Closed_Lp

Update

Post_Process

Cdbk_Start
Cdbk_End

Cdbk_Start

Cdbk_Start

OSModel

SerOut

SpchIn

SerIninparm

exc[40]

T0

prm[10]

gain

DSP
CF_OS

Mem

DMA

HW

DCT_IP

BI

BO

SO

SIReceiveData

RcvPara

SndPara

Ctrl

ColdFire

DSP_OS

dctProtocol

mac

strm

link

intD
C

TA
da

pt
er

outframe

outparm

Figure
5.4:A

pplication
m

odel.

CHAPTER 5. COMMUNICATION DESIGN 102

channel P r e s e n t I n t (i t r a n c e i v e r s e s s i o n)
implements i i n t s e n d , i i n t r e c e i v e

{
void send (i n t v a l) {

5 u i n t 3 2 t d a t a ;
d a t a = h t o n l (v a l) ;
s e s s i o n . send (& da ta , s i z e o f (d a t a)) ;

}

10 void r e c e i v e (i n t ∗ v a l) {
u i n t 3 2 t d a t a ;
s e s s i o n . r e c e i v e (& da ta , s i z e o f (d a t a)) ;
∗ v a l = n t o h l (d a t a) ;

}
15 } ;

Listing 5.2: Presentation layer.

5.2.2 Presentation Layer

The presentation layer provides services to establish named channels between PEs and

to reliably send and receive messages of arbitrary, abstract data types over those channels. Each

presentation layer channel carries messages of a fixed type where a sequence of messages of the

same type can be transfered repeatedly over a named channel. In general, the presentation layer

provides services for both synchronous and asynchronous channels, depending on the application

requirements.

The presentation layer becomes part of the application software and is responsible for data

formatting. It converts abstract data types in the application to blocks of ordered bytes as defined by

the canonical byte layout requirements of the lower (network) layers. For example, the presentation

layer takes care of PE-specific data type conversions and endianess (byte order) issues.

5.2.2.1 Model Refinement

Presentation layer model refinement requires insertion of presentation layer implemen-

tations into the PEs. Presentation layers are inserted in the form of adapter channels that provide

a presentation layer API to the application while connecting to and calling session layer methods

below (Listing 5.2). As outlined previously, the presentation layer performs data formatting for ev-

ery message data type found in the application. For each application layer channel, corresponding

presentation layer adapters are instantiated inside the PEs, converting the abstract data types into

byte blocks based on network byte layout conventions. Since the presentation layer becomes part

of the application, its adapter channels are instantiated inside each PE’s application layer.

CHAPTER 5. COMMUNICATION DESIGN 103

i n t e r f a c e IShm {
void r e a d (unsigned long ofs , void ∗ da ta , unsigned long l e n) ;
void w r i t e (unsigned long ofs , c o n s t vo id ∗ da ta , unsigned long l e n) ;

} ;

(a) memory interface

behavior Mem()
implements IShm

{
char mem[MEM SIZE] ; / / s t o r a g e

5

void r e a d (unsigned long ofs , void ∗ da ta , unsigned long l e n) {
memcpy (da t a , mem + ofs , l e n) ;

}
void w r i t e (unsigned long ofs , c o n s t vo id ∗ da ta , unsigned long l e n) {

10 memcpy (mem + ofs , da t a , l e n) ;
}

void main (void) { }
} ;

(b) memory behavior

Listing 5.3: Shared memory presentation model.

As part of the presentation layer implementation, shared memory models are refined down

to an accurate representation of the byte layout in the memory (Listing 5.3). All variables stored

inside the memory are replaced with and grouped into a single array of bytes (Listing 5.3(b), line 4).

As part of the presentation layer, layout and addressing of variables inside the memory is defined

based on the parameters (e.g. alignment) of the chosen target memory component. Instead of ac-

cesses to individual variables, the refined memory behavior supports read and write accesses to

blocks of bytes at given offsets (see memory interface shown in Listing 5.3(a) and implementation

of access methods in the memory behavior in Listing 5.3(b), line 6 and line 9).

The presentation layers inside the PEs accessing the memory are then responsible for con-

verting application variables into size and offset for shared memory accesses (Listing 5.4). Given

offsets of each variable in memory, the shared memory presentation layer translates variable ac-

cesses into corresponding memory accesses (line 6 and line 11).

5.2.2.2 Session Model

The resulting session model of the design example is shown in Figure 5.5. In the ses-

sion model, PEs are connected through session channels that carry streams of untyped (byte-level)

messages. Channels in the session model are always reliable. Depending on the requirements at

C
H

A
PT

E
R

5.
C

O
M

M
U

N
IC

AT
IO

N
D

E
SIG

N
104

ctrl

imgSize

stripeLen

stripe

HData

DData

CF_OS

ColdFire

stripeLen

imgSize

stripe

DMA

Mem

char[]

DCT

DCT_IP

M

S

DSP_OS

DSP

OSModel

HW

exc[40]

T0

gain

prm[10]

exc[40]
T0

gain
prm[10]

inframe

outparm

inparm

outframe

SI

inframe

BI

inparm

SO

outframe

BO

outparm

M
S

dctProtocol

mac

strm

intD
C

TA
da

pt
er

sesHW1

sesHW7

sesHW8

sesHW11

sesSI

sesBI

sesBO

sesSO

sesCtrl

se
sD

M
A

1

se
sD

M
A

2

Figure
5.5:Session

m
odel.

CHAPTER 5. COMMUNICATION DESIGN 105

channel ShmSt r ipe (IShm shm)
implements i mem

{
char r e a d s t r i p e (i n t i n d e x) {

5 unsigned char v a l ;
shm . r e a d (OFS STRIPE + index , & va l , 1) ;
re turn v a l ;

}

10 void w r i t e s t r i p e (i n t index , char v a l) {
shm . w r i t e (OFS STRIPE + index , & va l , 1) ;

}
} ;

Listing 5.4: Memory access presentation layer.

the application (and hence presentation) level, session model channels are synchronous or asyn-

chronous. In this example, the application requires asynchronous communication only. Therefore,

all channels in the example session model asynchronous.

Inside the PE’s application layers, instances of presentation layer adapters have been cre-

ated for each external communication channel. Note that for the IP component, presentation layer

adapters were part of the IP wrapper and have been inlined into the ColdFire PE communicating

with the IP. Finally, the memory component behavior has been refined down to a byte-accurate

description of its contents.

5.2.3 Session Layer

The session layer provides named channels over which untyped messages can be trans-

fered reliably. Session layer messages are uninterpreted, ordered blocks of bytes. Session layer

channels are used to distinguish among communication end-points in the system application where

each channel can carry an ordered sequence of messages. Channels are synchronous or asyn-

chronous and the session layer generally supports both types of channels.

The session layer is at the interface between application software and operating system.

If the layers below are asynchronous, the session layer will implement end-to-end synchroniza-

tion to provide any synchronous communication required above. Furthermore, it is responsible

for multiplexing messages of different channels into a number of end-to-end sequential message

streams. Messages of different channels at the session layer interface inside a PE are usually stat-

ically or dynamically ordered. If all communicating PEs transmit messages over different session

layer channels in a pre-defined order, messages can be directly merged into a single stream. In gen-

eral, however, the session layer merges channels into multiple concurrent streams or it implements

CHAPTER 5. COMMUNICATION DESIGN 106

name resolution for multiplexing arbitrary messages over a single stream, separating them in space.

The stream layer does not necessarily implement separation in time and messages can enter streams

concurrently.

5.2.3.1 Model Refinement

Session layer refinement generally requires insertion of adapter channels with session

layer implementations inside the PEs. At their interface to higher layers, session layer adapters pro-

vide services to simultaneously handle multiple sessions over a single shared underlying transport

channel that the session layer connects to.

In many cases of traditional bus-based communication architectures, however, the session

layer is empty. If the application only requires asynchronous communication, the session layer does

not need to implement any extra end-to-end synchronization. Furthermore, if all communication

between the same end-points is sequential, complex multiplexing of concurrent communication over

the same transport stream is not necessary. In these cases, each transport will only carry messages

that are already sequentialized (ordered in time) by the application. Since ordered messages going

over the same transport can be multiplexed directly, merging of sessions over transports is resolved

through simple corresponding connectivity in the operating system layer of PEs3.

5.2.3.2 Transport Model

The transport model of the design example after session layer refinement is shown in

Figure 5.6. In the transport model, PEs are connected through transport channels that carry streams

of untyped (byte-level) messages. In general, channels in the transport model are always reliable.

However, the transport model does not specify the amount of synchronization and buffering in its

channels, i.e. channels are generally asynchronous and can have any amount of buffering. On the

other hand, if their implementation is known or can be estimated, semantics of channels in the

transport model can be selected to reflect and abstract the behavior of their implementation.

In this example, session layers are empty since no extra synchronization or merging of

communication is necessary. Therefore, session layer functionality is implemented through simple

direct connectivity of presentation layer adapters to external transport channels inside the PEs.

3For hardware PEs that don’t have an OS layer, an extra hardware layer that will absorb all further communication
implementation is inserted.

C
H

A
PT

E
R

5.
C

O
M

M
U

N
IC

AT
IO

N
D

E
SIG

N
107

ctrl

stripeLen

imgSize

stripe

HData

DData

CF_OS

ColdFire

stripeLen

imgSize

stripe

DMA

DMA_HW

Mem

char[]

DCT

DCT_IP

M

S

DSP_OS

DSP

OSModel

HW

exc[40]

T0

gain

prm[10]

exc[40]
T0

gain
prm[10]

inframe

outparm

inparm

outframe

H
W

_H
W

SI

inframe

SI_HW

BI

inparm

BI_HW

SO

outframe

SO_HW

BO

outparm

BO_HW

M
S

dctProtocol

mac

strm

intD
C

TA
da

pt
er

tr
an

sD
M

A

transBri

transBI

transHW

transSI

transBO

transSO

Figure
5.6:Transportm

odel.

CHAPTER 5. COMMUNICATION DESIGN 108

5.2.4 Transport Layer

The transport layer provides services to reliably transmit end-to-end streams of arbitrary,

untyped messages (blocks of bytes). Channels at the transport layer define the communication

pipes between PEs in the system over which individual communication sessions are handled by the

layers above. Transport layer channels are generally asynchronous where the amount of buffering

generally also depends on the layers below. Note that in case of no buffering, transport channels are

effectively synchronous.

The transport layer implements end-to-end data flow as part of the operating system ker-

nel. It splits messages into smaller packets to reduce intermediate minimum buffer sizes, for exam-

ple. Depending on the links and stations in lower layers, the transport layer implements end-to-end

flow control and error correction to guarantee reliable transmission.

5.2.4.1 Model Refinement

Refinement of design models for insertion of transport layers is a straightforward process.

Corresponding layers of adapter channels that implement transport layer functionality are inserted

into the operating system layer of the PEs. For each transport channel required by higher layers, a

transport layer adapter that connects to its corresponding external network interface is instantiated.

5.2.4.2 Network Model

A network model of the design will be generated as a result of implementing the transport

layer and inlining its functionality into the PEs. In the network model, PEs are connected via

channels that carry streams of packets. Depending on the underlying layers, network channels are

generally asynchronous and unreliable.

In the case of the design example, the transport layer is empty because message sizes

are small and deterministic such that extra packeting of messages is not necessary. In addition,

the implementation of lower layers is known to provide reliable communication without sharing

of resources (buffers), i.e. no end-to-end flow control or error correction is needed. Therefore, the

network model of the design example is semantically and syntactically equivalent to its transport

model (Figure 5.6) and not explicitly shown here.

CHAPTER 5. COMMUNICATION DESIGN 109

5.2.5 Network Layer

The network layer provides services for establishing end-to-end paths that can carry

streams of packets. Depending on the layers below, the network layer may or may not guaran-

tee reliable delivery. In the general case, transactions are best-effort only. Furthermore, channels

are asynchronous depending on both the layers below and the amount of buffering introduced in the

network layer itself.

The network layer completes the high-level, end-to-end communication implementation

in the operating system kernel. It is responsible for routing of end-to-end paths over individual

point-to-point links. Assuming reliable stations and links, routing in SoCs is usually done statically,

i.e. all packets of a channel take the same fixed, pre-determined path through the system. In general,

however, the network layer can implement dynamic routing on a connection or packet-by-packet

basis to deal with changing underlying conditions.

In all cases, the network layer is responsible for separating different end-to-end paths

going through the same stations. In a simple implementation, a dedicated logical link is established

between two stations for each channel routed through them, assuming the underlying layers support

a large enough number of simultaneous logical links between all pairs of stations. In the general

case, multiple connections are routed and multiplexed over a single logical link and the network

layer implements additional addressing to distinguish different end-to-end connections.

5.2.5.1 Model Refinement

As part of network layer refinement, network layer adapter channels are inserted into the

operating system layers of PEs. As outlined above, network layer adapters generally multiplex

and route multiple simultaneous end-to-end packet streams over individual incoming and outgoing

point-to-point logical links.

As part of the network layer implementation, additional communication stations (trans-

ducers) with intermediate buffering are introduced as necessary. Transducers create and bridge

subnets, splitting the system of connected PEs into smaller, directly connected groups. Transducers

are inserted into the system architecture as additional system components running in parallel with

other components at the top level of the design. Transducer components in the network layer are

represented by behavioral transducer models (Listing 5.5). A transducer behavior connects to two

or more logical links (line 1). It implements the network layer functionality for bridging subnets

and routing packets between them by receiving packets over an incoming link (line 7) and sending

CHAPTER 5. COMMUNICATION DESIGN 110

behavior B r i d g e (i t r a n c e i v e r c fL ink , i t r a n c e i v e r dspLink)
{

void main (void) {
s t r u c t P a c k e t p a c k e t ;

5

whi le (t rue) {
c f L i n k . r e c e i v e (& packe t , s i z e o f (p a c k e t)) ;
dspLink . send (& packe t , s i z e o f (p a c k e t)) ;

}
10 }

} ;

Listing 5.5: Transducer model.

them over one or more outgoing links (line 8). Transducers are allocated and empty templates or

pre-designed IPs for behavioral transducer models are imported into the design out of the commu-

nication element (CE) database.

5.2.5.2 Link Model

Figure 5.7 shows the link model for the system design example. Generally, the link model

contains additional implementations of the network layer inside each PE. In this example, however,

explicit network layer implementations are not required. Since all data is routed statically in a

pre-determined manner, the routing of the network layer can be modeled through proper static

connectivity of link level channels.

In the link model, end-to-end channels have been replaced with point-to-point logical

links between adjacent stations that will later be physically connected through wires. Since it will

be impossible to directly connect the two processors in this example, an additional Bridge station

has been inserted into the link model, connecting the two subsystems. As a result, the end-to-end

channel between ColdFire and DSP processors has been split into two links. The bridge in between

transparently forwards packets between the two links.

In general, channels representing the logical links between stations in the link model may

or may not be reliable, synchronous, and buffered, i.e. the link model does not specify how links

should be implemented. Again, if, on the other hand, information about their implementation is

available, link channels can be chosen to model their actual, real behavior for feedback during

simulation, for example. In the case of this example, all logical links in the design are known to be

synchronous, reliable, and unbuffered. Therefore, the model contains channels with corresponding

semantics.

C
H

A
PT

E
R

5.
C

O
M

M
U

N
IC

AT
IO

N
D

E
SIG

N
111

ctrl

stripeLen

imgSize

stripe

HData

DData

CF_OS

ColdFire

stripeLen

imgSize

stripe

DMA

DMA_HW

DCT

DCT_IP

M

S

DSP_OS

DSP

OSModel

HW

exc[40]

T0

gain

prm[10]

exc[40]
T0

gain
prm[10]

inframe

outparm

inparm

outframe

H
W

_H
W

SI

inframe

SI_HW

BI

inparm

BI_HW

SO

outframe

SO_HW

BO

outparm

BO_HW

Bridge

M
S

linkBri

dctProtocol

mac

strm

intD
C

TA
da

pt
er

lin
kD

M
A

linkBri

linkBI

linkHW

linkSI

linkBO

linkSO

Mem

char[]

Figure
5.7:L

ink
m

odel.

CHAPTER 5. COMMUNICATION DESIGN 112

5.3 Link Design

The link design task implements point-to-point logical links between stations over actual

communication media. Links within each segment of the system communication network share the

same communication medium. Hence, segments can be implemented separately. As a result of link

design, the final physical model is generated. In the physical model, network stations are connected

through physical pins and wires. Link design consists of link grouping and media interfacing.

During link grouping, implementations for link and stream layers are inserted. Media interfacing,

on the other hand, introduces media access and protocol layers on top of the actual physical layer.

5.3.1 Link Layer

The link layer provides services to establish logical links between adjacent (directly con-

nected) stations and to exchange data packets in the form of uninterpreted byte blocks over those

links. Depending on the lower layers, a number of named logical link channels can be established

between pairs of stations. Furthermore, links may or may not be reliable and synchronous.

The link layer is the highest layer of drivers for external interfaces and peripherals in the

operating system. It provides their interface to the rest of the OS kernel. The link layer defines

the type of a station (e.g. master/slave) for each of its incoming or outgoing links. As a result, it

implements any necessary synchronization between stations, for example by splitting each logical

link into separate control (e.g. interrupt or acknowledgment) and data streams provided by lower

layers.

5.3.1.1 Model Refinement

As part of link layer model refinement, implementations of link layer functionality in the

form of adapter channels are inserted into the components of the system. Since the link layer is part

of the operating system kernel, its implementation channels are inserted into the OS layers of the

PEs (or the communication hardware layer for synthesizable PEs).

The link layer defines the types of each station and splits the packet streams into separate

control and data streams as necessary. In a typical bus-based master/slave arrangement, each logical

link is split into a data stream under the control of the master and a control stream from slave to

master (Listing 5.6). On the master side (Listing 5.6(a)), the link layer implementation waits for

a handshaking signal from the slave (line 5 and line 10) before initiating a write or read transfer

CHAPTER 5. COMMUNICATION DESIGN 113

channel Mas te rL ink (I M a s t e r S t r e a m s t ream , i r e c e i v e hndshk)
implements i t r a n c e i v e r

{
void send (c o n s t vo id ∗ da ta , unsigned long l e n) {

5 hndshk . r e c e i v e () ;
s t r e a m . m a s t e r W r i t e (da t a , l e n) ;

}

void r e c e i v e (void ∗ da ta , unsigned long l e n) {
10 hndshk . r e c e i v e () ;

s t r e a m . mas te rRead (da t a , l e n) ;
}

} ;

(a) master

channel S l a v e L i n k (I S l a v e S t r e a m s t ream , i s e n d hndshk)
implements i t r a n c e i v e r

{
void send (c o n s t vo id ∗ da ta , unsigned long l e n) {

5 hndshk . send () ;
s t r e a m . s l a v e W r i t e (da t a , l e n) ;

}

void r e c e i v e (void ∗ da ta , unsigned long l e n) {
10 hndshk . send () ;

s t r e a m . s l a v e R e a d (da t a , l e n) ;
}

} ;

(b) slave

Listing 5.6: Link layer.

over the data stream (line 6 and line 11). On the slave side (Listing 5.6(b)), the link layer sends

the handshaking signal (line 5 and line 10) and then enters the data stream to wait and answer the

corresponding incoming write or read transfer (line 6 and line 11). By synchronizing master to slave

through the control stream before a packet transfer can be initiated by the master, packet losses are

avoided and reliable, unbuffered, and synchronous links are implemented.

In case of communication with shared memory PEs, memories are assumed to be always

ready and no extra synchronization through control streams is necessary. Instead, a single data

stream for memory slave accesses under the control of bus masters is sufficient. In contrast to

normal message data streams, the memory data stream carries extra information about the offset

of the byte block being accesses in each read or write transaction. Note that on the master side

accessing the memory, the interface to the memory data stream channel is equivalent to the memory

interface at higher levels and no refinement is necessary. In the process of explicitly modeling

memory data streams, however, the memory model is refined into an active component listening

and serving request that come in over its data stream (Listing 5.7). In an endless loop (line 7), the

CHAPTER 5. COMMUNICATION DESIGN 114

behavior Mem(ISlaveShm shm)
{

char mem[MEM SIZE] ; / / s t o r a g e

5 void main (void) {
unsigned long ofs , l e n ;
whi le (t rue) {

o f s = 0 ;
l e n = MEM SIZE ;

10 i f (shm . l i s t e n (& ofs , & l e n)) {
shm . se rveRead (ofs , mem + ofs , l e n) ;

} e l s e {
shm . s e r v e W r i t e (o fs , mem + ofs , l e n) ;

}
15 }

}
} ;

Listing 5.7: Shared memory link model.

memory listens for memory accesses through the memory data stream (line 10) and serves them by

reading or writing the requested data from/to its internal storage (line 11 and line 13, respectively)

5.3.1.2 Stream Model

Figure 5.8 shows the stream model for the design example. Implementations of the link

layer in the form of adapter channels have been inserted into the PEs’ OS layers for each logical link

in the design. In this example, bus-based communication is chosen for implementation. The Cold-

Fire and DSP processors are masters on their respective busses. Furthermore, the DMA component

can act as both a master (for communication with the memory) or slave (for communication with

the processor) on the ColdFire bus. All other PEs are bus slaves. Since communication with the

DCT IP component is compatible with this master/slave arrangement of stations, the corresponding

link layer implementation could simply be taken from the IP wrapper and inlined into the CF OS

model as link layer adapter channel.

Semantics of channels in the stream model depend completely on the chosen implementa-

tion scheme and no general format can be defined. Channels for data streams have special semantics

in the sense that they are synchronous and blocking on the slave side and asynchronous and non-

blocking on the master side. Even though they are error-free, they are not reliable as packet losses

can happen if transactions are not properly synchronized beforehand. Control channels, on the other

hand, are simple handshake channels (queues of depth one for control messages that do not carry

values).

C
H

A
PT

E
R

5.
C

O
M

M
U

N
IC

AT
IO

N
D

E
SIG

N
115

sy
nc

D
M

A

lD
C

T
lD

M
A

lB
ri ctrl

stripeLen

imgSize

stripe

HData

DData

CF_OS

ColdFire

stripeLen

imgSize

stripe

DMA

lin
k

DMA_HW

Mem

Mem_HW

char[]

DCT

DCT_IP

dctProtocol

mac

int

D
C

TA
da

pt
er

st
rm

D
M

A

M

S

shm

DSP_OS

DSP lC
tr

l
lH

W
lB

I
lB

O
lS

O
lS

I

OSModel

HW

exc[40]

T0

gain

prm[10]

exc[40]
T0

gain
prm[10]

inframe

outparm

inparm

outframe

lin
k

H
W

_H
W

SI

inframelin
k

SI_HW

BI

inparmlin
k

BI_HW

SO

outframelin
k

SO_HW

BO

outparmlin
k

BO_HW

lin
k

Bridge

M
S

syncBI

strmBI

M S

syncSI

strmSI

M S

syncHW

strmHW

M S

syncBO

strmBO

M S

syncSO

strmSO

M S

lin
k

syncBri

strmBri

S M

syncBri

strmBri

M S

Figure
5.8:Stream

m
odel.

CHAPTER 5. COMMUNICATION DESIGN 116

5.3.2 Stream Layer

The stream layer provides separate streams for transporting control and data messages

from station to station. Data messages are arbitrary, uninterpreted byte blocks. The format of

supported control messages, if any, is dependent on specific layer implementations (e.g. simple

handshaking in the case of interrupt-driven synchronization). Stream channels are generally asyn-

chronous and unreliable. Reliability of streams may depend on certain assumptions. For example,

streams might guarantee reliability (or at least no data loss) with proper prior outside synchroniza-

tion.

The stream layer is the bottom part of peripheral-specific drivers in the operating system.

It is responsible for merging and implementing multiple control and data streams over a common,

shared medium. As such, it multiplexes and de-multiplexes streams by separating them in space

(but not time) through addressing, for example. Note that since control streams might require very

specific access formats, merging them through simple appending of addresses to control messages

might not be possible. Other schemes like polling might be required, for example in the case of

interrupt sharing.

5.3.2.1 Model Refinement

Stream layer model refinement generally requires insertion of stream layer implementa-

tions for both control and data streams inside each station of the system.

Data Streams For each data stream, adapter channels with implementations of its stream layer

are inserted into the corresponding PEs. The data stream layers implement multiplexing of data

streams over a shared medium.

An example of an adapter channel for data streams is shown in Listing 5.8. For a typical

bus based communication, the bus medium will generally support multiple concurrent and overlap-

ping virtual connections through addressing. For each transaction, the bus address of the virtual

connection it belongs to needs to be supplied to the bus medium by the data stream adapter (line 5

and line 9). In this case, multiple data streams over the same medium are separated through proper

bus addressing where bus addresses are supplied as hardcoded parameters when instantiating the

data stream adapters (line 1).

For shared memory communication, a base address and a corresponding range of ad-

dresses (base address plus size of memory) is assigned to each shared memory component. Data

CHAPTER 5. COMMUNICATION DESIGN 117

channel Mas te rS t r eam (I M a s t e r A c c e s s medium , in c o n s t i n t add r)
implements I M a s t e r S t r e a m

{
void m a s t e r W r i t e (c o n s t vo id ∗ da ta , unsigned long l e n) {

5 medium . m a s t e r W r i t e (addr , da t a , l e n) ;
}

void maste rRead (void ∗ da ta , unsigned long l e n) {
l i n k . mas te rRead (addr , da t a , l e n) ;

10 }
} ;

(a) master

channel S l a v e S t r e a m (I S l a v e A c c e s s medium , in c o n s t i n t add r)
implements I S l a v e S t r e a m

{
void s l a v e W r i t e (c o n s t vo id ∗ da ta , unsigned long l e n) {

5 medium . s l a v e W r i t e (addr , da t a , l e n) ;
}

void s l a v e R e a d (void ∗ da ta , unsigned long l e n) {
medium . s l a v e R e a d (addr , da t a , l e n) ;

10 }
} ;

(b) slave

Listing 5.8: Data stream layer.

stream adapters inserted into master PEs accessing the memory (Listing 5.9(a)) translate each mem-

ory access into an appropriate media access by converting memory offsets into corresponding bus

addresses (line 5 and line 9). Inside the memory, similar adapters are inserted (Listing 5.9(b)).

The adapters implement listening of the memory to its assigned range of addresses on the medium

(line 7) in addition to translation of memory offsets into memory addresses for each access (line 13

and line 16).

Control Streams Implementation of the stream layer of control streams in the media access model

generally depends on the underlying medium. For example, control streams can be implemented

through normal or specialized media channel transactions. In a typical bus-based communication,

control streams are implemented through processor interrupts. For each control stream coming into

the master processor, the processor’s OS layer exports a method that implements the corresponding

handshaking control transaction. Control channel calls inside the slave PEs are translated into calls

to the corresponding master method through equivalent adapters (as shown in Listing 5.10 for the

example of an adapter that translates send calls in the DMA slave to calls of the DMAHandler

method exported by the ColdFire processor).

CHAPTER 5. COMMUNICATION DESIGN 118

channel MasterShm (IMasterMemAccess medium , in c o n s t i n t add r)
implements IShm

{
void r e a d (unsigned long ofs , void ∗ da ta , unsigned long l e n) {

5 medium . masterMemRead (add r + ofs , da t a , l e n) ;
}

void w r i t e (unsigned long ofs , c o n s t vo id ∗ da ta , unsigned long l e n) {
medium . masterMemWrite (add r + ofs , da t a , l e n) ;

10 }
} ;

(a) master access

channel SlaveMbusShm (ISlaveMemAccess medium , in c o n s t i n t b a s e a d d r)
implements ISlaveShm

{
bool l i s t e n (unsigned long ∗ ofs , unsigned long ∗ l e n) {

5 bool t y p e ;
unsigned long add r = b a s e a d d r ;
t y p e = medium . l i s t e n (& addr , l e n) ;
o f s = add r − b a s e a d d r ;
re turn t y p e ;

10 }

void se rveRead (unsigned long ofs , c o n s t vo id ∗ da ta , unsigned long l e n) {
medium . se rveRead (b a s e a d d r + ofs , da t a , l e n) ;

}
15 void s e r v e W r i t e (unsigned long ofs , void ∗ da ta , unsigned long l e n) {

medium . s e r v e W r i t e (b a s e a d d r + ofs , da t a , l e n) ;
}

} ;

(b) slave memory

Listing 5.9: Memory stream layer.

Inside the processors, control handlers implement the handshaking through semaphores

that connect to and signal the processor’s link layer, replacing the previous control channel. In case

the processor is not running an operating system (e.g. the ColdFire processor, Listing 5.11), the

OS layer of the processor (Listing 5.11(c)) instantiates a minimal kernel as part of the processor’s

runtime environment (line 3) in addition to instances of data and memory stream adapters (line 5

through line 7 and line 9), link layer implementations (line 13 through line 15) and the instance of

the actual software application layer (line 17). For implementation of handshaking, interrupt han-

dlers (line 19, line 22 and line 25) communicate with link layer adapters via instances of special

semaphores (line 11). Through send methods of handshaking semaphores (Listing 5.11(b)), inter-

rupt handlers set a corresponding flag (line 13) in the runtime environment whenever an interrupt

occurs. Receiving of control messages by the link layers is then implemented by polling the re-

spective flag (line 7). In between polling cycles, the main application is suspended through a call

CHAPTER 5. COMMUNICATION DESIGN 119

channel IntDMA (I C F I n t S e r v i c e c f) implements i s e n d {
void send (void) {

c f . DMAHandler () ;
}

5 } ;

Listing 5.10: Control stream translator.

to the processor’s runtime kernel (line 8). On top of the processor’s instruction set, the runtime

kernel (Listing 5.11(a)) in turn blocks the application until the next interrupt is received (line 7).

In order to model resuming of processor execution whenever an interrupt occurs, interrupt handlers

call a corresponding method of the runtime kernel (line 13) at which point another polling cycle is

triggered to check whether the flag has been updated by the interrupt handler. Note that in the actual

implementation created during the backend design process, the runtime kernel will be translated

into instructions that suspend and resume the processor accordingly4.

In case the processor is running an operating system (DSP processor, Listing 5.12), hand-

shaking through semaphores has to be under the control of the operating system. In addition to data

stream implementations (line 5 through line 9) and link layer adapters (line 19), the processor’s OS

layer instantiates the OS model (line 3) introduced during dynamic scheduling (see Section 4.3.2,

Chapter 4). For implementation of handshaking, control handlers (line 24 through line 28) spawn

special interrupt handling tasks (line 13 through line 17) that communicate with link layer adapters

through regular operating system semaphores (line 11). Interrupt handling tasks serve as the bottom

halves of the control handlers and run on top of the operating system next to regular computation

tasks (line 30 through line 45). Interrupt handling tasks are modeled (Listing 5.13), as high-priority,

aperiodic tasks (line 11) that can be externally triggered by the interrupt handlers (line 15) and in

each iteration implement the actual signaling of the semaphores on top of the OS model (line 23)

before suspending themselves again (line 22).

5.3.2.2 Media Access Model

The media access model for the design example is shown in Figure 5.9. In the media

access model, stations are connected through channels representing the underlying shared commu-

nication media. Media channels support transactions for exchanging data packets in the form of

uninterpreted blocks of bytes. Due to the shared nature of normal media, media channels usually al-

4For example, most processors support an instruction that puts the processor into a sleep state. If the processor
automatically leaves the sleep state and wakes up on every interrupt, the wait int method will be translated into a single
sleep instruction and the ireturn method will be empty.

CHAPTER 5. COMMUNICATION DESIGN 120

channel OSNone
implements IOSNone

{
event i n t r ;

5

void w a i t i n t (void) {
wait (i n t r) ;

}

10 void i e n t e r (void) { }

void i r e t u r n (void) {
n o t i f y i n t r ;

}
15 } ;

(a) runtime kernel

channel OSNoneSema (IOSNone os)
implements i s e n d , i r e c e i v e

{
bool f = f a l s e ;

5

void r e c e i v e (void) {
whi le (! f)

os . w a i t i n t () ;
f = f a l s e ;

10 }

void send (void) {
f = t rue ;

}
15 } ;

(b) semaphore

behavior CF OS (I M a s t e r A c c e s s medium) implements I C F I n t S e r v i c e
{

OSNone os ; / / r u n t i m e k e r n e l

5 Mas te rS t r eam DMA(medium , ADDR DMA) ; / / da ta s t r e a m s
Mas te rS t r eam DCT(medium , ADDR DCT) ;
Mas te rS t r eam B r i (medium , ADDR BRI) ;

MasterShm shm (medium , ADDR MEM) ; / / memory s t r e a m s
10

OSNoneSema s B r i (os) , sDMA(os) , sDCT (os) ; / / semaphores

Mas te rL ink lDMA(DMA, sDMA) ; / / l i n k l a y e r
Mas te rL ink lDCT (DCT , sDCT) ;

15 Mas te rL ink l B r i (Bri , s B r i) ;

C o l d F i r e c f (lDMA , lDCT , l B r i , shm) ; / / a p p l i c a t i o n

void DMAHandler (void) { / / i n t e r r u p t h a n d l e r s
20 os . i e n t e r () ; sDMA. send () ; os . i r e t u r n () ;

}
void DCTHandler (void) {

os . i e n t e r () ; sDCT . send () ; os . i r e t u r n () ;
}

25 void B r i H a n d l e r (void) {
os . i e n t e r () ; s B r i . send () ; os . i r e t u r n () ;

}

void main (void) { c f . main () ; }
30 } ;

(c) PE OS layer

Listing 5.11: Stream layer for non-OS processor.

CHAPTER 5. COMMUNICATION DESIGN 121

behavior DSP OS (I M a s t e r A c c e s s medium) implements I D S P I n t H a n d l e r s
{

OS os ; / / OS model

5 Mas te rS t r eam SI (medium , ADDR SPCHIN) ; / / da ta s t r e a m s
Mas te rS t r eam SO(medium , ADDR SPCHOUT) ;
Mas te rS t r eam BO(medium , ADDR SEROUT) ;
Mas te rS t r eam BI (medium , ADDR SERIN) ;
Mas t e rS t r eam HW(medium , ADDR HW) ;

10

OSSema s S I (os) , sSO (os) , sHW(os) , sBI (os) , sBO (os) ; / / semaphores

I n t H a n d l e r T a s k SIHand le rTask (os , s S I) ; / / i n t e r r u p t t a s k s
I n t H a n d l e r T a s k SOHandlerTask (os , sSO) ;

15 I n t H a n d l e r T a s k BIHandle rTask (os , sBI) ;
I n t H a n d l e r T a s k BOHandlerTask (os , sBO) ;
I n t H a n d l e r T a s k HWHandlerTask (os , sHW) ;

/ / l i n k l a y e r
Mas te rL ink l S I (SI , s S I) , lSO (SO , sSO) , l B I (BI , sBI) , lHW(HW, sHW) ;

20

DSP dsp (os , l S I , lBI , lHW , lSO , lBO) ; / / a p p l i c a t i o n

/ / i n t e r r u p t h a n d l e r s
void s p c h I n H a n d l e r (void) { s p c h I n H a n d l e r T a s k . s t a r t () ; }

25 void s e r O u t H a n d l e r (void) { s e r O u t H a n d l e r T a s k . s t a r t () ; }
void s e r I n H a n d l e r (void) { s e r I n H a n d l e r T a s k . s t a r t () ; }
void spchOutHand le r (void) { spchOutHand le rTask . s t a r t () ; }
void hwHandler (void) { hwHandlerTask . s t a r t () ; }

30 void main (void) {
dsp . i n i t () ;
s p c h I n H a n d l e r T a s k . i n i t () ;
spchOutHand le rTask . i n i t () ;
s e r I n H a n d l e r T a s k . i n i t () ;

35 s e r O u t H a n d l e r T a s k . i n i t () ;
hwHandlerTask . i n i t () ;
par {

dsp . main () ;
s p c h I n H a n d l e r T a s k . main () ;

40 spchOutHand le rTask . main () ;
s e r I n H a n d l e r T a s k . main () ;
s e r O u t H a n d l e r T a s k . main () ;
hwHandlerTask . main () ;

}
45 }

} ;

Listing 5.12: Stream layer for processor with OS.

C
H

A
PT

E
R

5.
C

O
M

M
U

N
IC

AT
IO

N
D

E
SIG

N
122

D
C

T

sB
ri

sD
M

A
sD

C
T

lD
C

T

D
M

A

lD
M

A

B
ri

lB
ri

sh
m

ctrl

stripeLen

imgSize

stripe

HData

DData

CF_OS

A
D

D
R ColdFire

stripeLen

imgSize

stripe

DMA

st
rm

lin
k

sh
m

DMA_HW

A
D

D
R

Mem

sh
m

Mem_HW

A
D

D
R

char[]

DCT

DCT_IP

cfBusMaster

cfBusSlave

cf
B

us

T_
H

W

d
ct

P
ro

to
co

l
in

t

dctBus

DSP_OS

DSP lC
tr

l
lH

W
lB

I
lB

O
lS

O
lS

I

C
tr

l
B

I
S

I
H

W
B

O
S

O

sC
tr

l
sB

I
sS

I
sH

W
sB

O
sS

O

iS
I A

D
D

R

iH
W

iB
O

iS
O

iB
I

iC
tr

l

OSModel

HW

exc[40]

T0

gain

prm[10]

exc[40]
T0

gain
prm[10]

inframe

outparm

inparm

outframe

lin
k

st
rm

A
D

D
R

H
W

_H
W

SI

inframelin
k

st
rm

A
D

D
R

SI_HW

BI

inparmlin
k

st
rm

A
D

D
R

BI_HW

SO

outframelin
k

st
rm

A
D

D
R

SO_HW

BO

outparmlin
k

st
rm

A
D

D
R

BO_HW

st
rm

lin
k

ADDR

Bridge

d
sp

B
u

sM
aster

d
sp

B
u

sS
lave

dspBus
st

rm

lin
k

ADDR

Figure
5.9:M

edia
access

m
odel.

CHAPTER 5. COMMUNICATION DESIGN 123

i n t e r f a c e I I n t H a n d l e r T a s k {
void s t a r t (void) ;

} ;

5 behavior I n t H a n d l e r T a s k (RTOS os , i s e n d s)
implements I n i t

{
Task h ;

10 void i n i t (void) {
h = os . t a s k c r e a t e (” I n t ” , APERIODIC , 0) ;

}

void s t a r t (void) {
15 os . t a s k r e s u m e (h) ;

}

void main (void)
{

20 os . t a s k a c t i v a t e (h) ;
whi le (t rue) {

os . t a s k s l e e p () ;
s . send () ;

}
25 }

} ;

Listing 5.13: Interrupt handler task for control streams.

low multiple virtual multi-point connections over them that can occur concurrently, simultaneously

and overlapping in time. In general, media channels are asynchronous and they may or may not be

reliable and buffered. However, media channels reflect and model the underlying communication

medium. Therefore, the semantics and exact format of the transactions they support depend on the

behavior and capabilities of the chosen medium.

As defined previously, the example containts two busses, cfBus for the ColdFire subsys-

tem and dspBus for the DSP subsystem. Mirroring the master/slave behavior of bus-based commu-

nication, both media channels are unbuffered, error-free, and asynchronous on the master side and

synchronous on the slave side. Note that bus media channels are not reliable as packets can be lost

if the slave is not waiting when the master initiates a transaction. For communication with shared

memory components, the interfaces of the media channels supports special split transactions that

allow the memory component to listen on the medium for a range of addresses and then serve the

transaction request after proper address decoding.

Since both in general and in this example, the medium for communication with an IP com-

ponent is proprietary and not 100% compatible with other general media in the system (as signified

by different semantics and/or different media interfaces), additional transducer stations that translate

CHAPTER 5. COMMUNICATION DESIGN 124

between different media interfaces have to be inserted in front of each IP in the media access model.

In this example, transducer T DCT performs the necessary address translations between cfBus and

dctBus.

5.3.3 Media Access Layer

The media access layer provides services to transfer blocks of bytes over channels rep-

resenting shared media between stations. Depending on the type of medium, different categories

of transactions or different categories of information within a transaction might be supported by

a channel (e.g. distinction of address, control, and data). In general, a medium is asynchronous

and unreliable. It usually requires prior outside synchronization to avoid data loss. Furthermore, a

medium may or may not be error-free.

The media access layer is responsible for slicing blocks of bytes into unit transfers avail-

able at the interface. In the process, it’s implementation has to guarantee that the rates of successive

transfers within a block match for all communication partners. Furthermore, the media access layer

regulates and separates simultaneous accesses in time (e.g. through arbitration). Depending on the

scheme chosen, additional arbitration stations are introduced into the system as part of the media

access layer.

For programmable PEs, the media access layer is part of the PE’s hardware abstraction

layer (HAL). Through the media access layer, the HAL provides a canonical interface for access-

ing the PE’s hardware communication features from the programmable computation inside. At its

external interface, the HAL defines the boundary between hardware and software. Hence, it is the

lowest layer of software in programmable PEs.

For each programmable PE, a HAL model is stored in the PE database and imported

during refinement. HAL models in the database provide canonical communication services for

stream I/O, memory I/O and interrupt handling. HAL services abstract the underlying PE hardware

and define the PE’s corresponding capabilities (number and type of external interfaces, amount and

level of interrupts, etc.) [44]. During media access layer refinement, HAL models are inserted as an

additional layer around programmable PEs. Database HAL models act as templates on top of which

computation and communication of higher PE layers is implemented during refinement.

CHAPTER 5. COMMUNICATION DESIGN 125

5.3.3.1 Model Refinement

The media access layer implements a medium’s data, memory, control, and arbitration

transactions on top of the medium’s actual protocol. Therefore, media access layer refinement

requires insertion of corresponding implementations inside the stations of the system network, gen-

erally in the form of corresponding media access adapters.

Media access adapters are usually imported out of the media database. For each commu-

nication medium in the database, the database contains models of all types of required media access

adapters [44]. During refinement, adapter models are imported out of the database and instanti-

ated and connected as needed (depending on the type of access and the type of media connection).

In the case of programmable PEs, adapters are part of, pre-instantiated in, and imported into the

design together with the PE’s HAL model. In order to be able to support any type of transaction,

database HAL models for programmable PEs contain instances of all types of media access adapters

associated with the PE’s interfaces.

Data Transactions For each data stream going in and out of a station, media access layer im-

plementations are inserted in the form of media access layer adapters. Adapters slice abstract byte

blocks of data packets at the interface of the media access layer into individual, bit-accurate data

words or data frames supported by the underlying media protocol.

An example of a media access layer adapter for normal message-passing type data trans-

actions over a typical bus medium is shown in Listing 5.14 (shown for the master side; the slave

side is implemented in a similar manner). The data adapter slices the arbitrary-length packets of

data supplied to the read and write methods into bus words. Using protocol primitives for byte and

long word transfers, the methods loop over the data, transmitting as much data as possible in each

bus cycle. In case of regular message-passing transfers, virtual connections at the protocol level are

only needed to distinguish among different message streams. Hence, the same bus address is used

for all successive transfers in a message packet.

Memory Transactions Similar to regular data transactions, memory access streams require inser-

tion of corresponding media access adapters (Listing 5.15). Adapters perform slicing of high-level

data blocks into individual data words supported by the medium and the memory.

In case of memory accesses, however, random access has to be supported and data bytes

in all memories attached to the bus have to be individually distinguishable. Therefore, protocol

CHAPTER 5. COMMUNICATION DESIGN 126

channel Mas te rAcces s (I M a s t e r p r o t o c o l) implements I M a s t e r A c c e s s
{

void m a s t e r W r i t e (unsigned long addr , c o n s t vo id ∗ da ta , unsigned long l e n) {
unsigned char ∗ p ;

5

f o r (p = (unsigned char ∗) d a t a ; l e n >= 4 ; l e n −= 4 , p + = 4)
p r o t o c o l . mas t e rWr i t eLong (add r [3 1 : 2] , (∗ p) [7 : 0] @ (∗ (p + 1)) [7 : 0] @

(∗ (p + 2)) [7 : 0] @ (∗ (p + 3)) [7 : 0]) ;
f o r (; l e n ; l en −− , p ++)

10 p r o t o c o l . m a s t e r W r i t e B y t e (addr , ∗ p) ;
}

void maste rRead (unsigned long addr , void ∗ da ta , unsigned long l e n) {
unsigned char ∗ p ;

15 b i t [3 1 : 0] l ;
b i t [7 : 0] b ;

f o r (p = (unsigned char ∗) d a t a ; l e n >= 4 ; l e n −= 4 , p + = 4) {
p r o t o c o l . masterReadLong (add r [3 1 : 2] , & l) ;

20 ∗p = l [3 1 : 2 4] ; ∗ (p + 1) = l [2 3 : 1 6] ; ∗ (p + 2) = l [1 5 : 8] ; ∗ (p + 2) = l [7 : 0] ;
}
f o r (; l e n ; l en −− , p + +) {

p r o t o c o l . mas te rReadByte (addr , & b) ;
∗p = b ;

25 }
}

} ;

Listing 5.14: Media access layer data transactions.

addresses have to be used to distinguish among individual addressable units (characters/words) in

the memory. Each unit holds a certain amount of bytes as defined by the medium and consecu-

tive bytes in memory are accessed as consecutive characters on the medium. Consequently, each

memory access transaction spans a range of addresses. Starting with the base address supplied by

higher layers, addresses are incremented accordingly for successive protocol transfers in a block. In

addition, since base addresses supplied by higher layers can not be assumed to be properly aligned,

the data adapter has to take care of proper alignment of data on the medium. Therefore, misaligned

data at the beginning of the data block has to be transfered via transactions that do not utilize the

full bus capacity.

On the memory side, adapters are inserted that translate abstract addresses and data byte

blocks into actual, bit-accurate protocol addresses and words in a similar manner (Listing 5.16). A

memory listens on the medium for any transfer that accesses its assigned range of addresses (line 7),

and it simply serves the requested access by mapping it into a corresponding sequence of protocol

transfers (line 13 and line 23).

CHAPTER 5. COMMUNICATION DESIGN 127

channel MasterMemAccess (I M a s t e r p r o t o c o l) implements IMasterMemAccess
{

void masterMemWrite (unsigned long addr , c o n s t vo id ∗ da ta , unsigned long l e n) {
unsigned char ∗ p ;

5

f o r (p = (unsigned char ∗) d a t a ; l e n && (add r % 4) ; p + + , len −−)
p r o t o c o l . m a s t e r W r i t e B y t e (add r ++ , ∗ p) ;

f o r (; l e n >= 4 ; p + = 4 , l e n −= 4)
p r o t o c o l . mas t e rWr i t eLong (add r [3 1 : 2] + + , (∗ p) [7 : 0] @ (∗ (p + 1)) [7 : 0] @

10 (∗ (p + 2)) [7 : 0] @ (∗ (p + 3)) [7 : 0]) ;
f o r (; l e n ; p + + , len −−)

p r o t o c o l . m a s t e r W r i t e B y t e (add r ++ , ∗ p) ;
}

15 void masterMemRead (unsigned long addr , void ∗ da ta , unsigned long l e n) {
unsigned char ∗ p ;
b i t [3 1 : 0] l ;
b i t [7 : 0] b ;

20 f o r (p = (unsigned char ∗) d a t a ; l e n && (add r % 4) ; p + + , len −−) {
p r o t o c o l . mas te rReadByte (add r ++ , & b) ;
∗p = b ;

}
f o r (; l e n >= 4 ; p + = 4 , l e n −= 4) {

25 p r o t o c o l . masterReadLong (add r [3 1 : 2] + + , & l) ;
∗p = l [3 1 : 2 4] ; ∗ (p + 1) = l [2 3 : 1 6] ; ∗ (p + 2) = l [1 5 : 8] ; ∗ (p + 2) = l [7 : 0] ;

}
f o r (; l e n ; p + + , len −−) {

p r o t o c o l . mas te rReadByte (add r ++ , & b) ;
30 ∗p = b ;

}
}

} ;

Listing 5.15: Media access layer for memory access in the master.

CHAPTER 5. COMMUNICATION DESIGN 128

channel SlaveMemAccess (I S l a v e p r o t o c o l) implements ISlaveMemAccess
{

bool l i s t e n (unsigned long ∗ addr , unsigned long ∗ l e n) {
unsigned b i t [2] t y p e ;

5 b i t [3 1 : 0] a = ∗ add r ;
b i t [3 1 : 0] mask = (len −1);
t y p e = p r o t o c o l . s l a v e L i s t e n (&a , ˜ mask) ;
∗ add r = a ;
∗ l e n = t y p e [1] ;

10 re turn t y p e [0] = = 0 b ;
}

void se rveRead (unsigned long addr , c o n s t vo id ∗ da ta , unsigned long l e n) {
unsigned char ∗ p ;

15

f o r (p = (unsigned char ∗) d a t a ; l e n >= 4 ; p + = 4 , l e n −= 4)
p r o t o c o l . serveReadLong (add r [3 1 : 2] + + , (∗ p) [7 : 0] @ (∗ (p + 1)) [7 : 0] @

(∗ (p + 2)) [7 : 0] @ (∗ (p + 3)) [7 : 0]) ;
f o r (; l e n ; p + + , len −−)

20 p r o t o c o l . s e rveReadBy te (add r ++ , ∗ p) ;
}

void s e r v e W r i t e (unsigned long addr , void ∗ da ta , unsigned long l e n) {
unsigned char ∗ p ;

25 b i t [3 1 : 0] l ;
b i t [7 : 0] b ;

f o r (p = (unsigned char ∗) d a t a ; l e n >= 4 ; p + = 4 , l e n −= 4) {
p r o t o c o l . s e r v e W r i t e L o n g (add r [3 1 : 2] + + , & l) ;

30 ∗p = l [3 1 : 2 4] ; ∗ (p + 1) = l [2 3 : 1 6] ; ∗ (p + 2) = l [1 5 : 8] ; ∗ (p + 2) = l [7 : 0] ;
f o r (; l e n ; p + + , len −−) {

p r o t o c o l . s e r v e W r i t e B y t e (add r ++ , & b) ;
∗p = b ;

}
35 }

} ;

Listing 5.16: Media access layer for memory slave.

CHAPTER 5. COMMUNICATION DESIGN 129

channel MasterMAC (I M a s t e r p r o t o c o l , i s e m a p h o r e a c c e s s) implements I M a s t e r
{

void mas te rReadByte (b i t [3 1 : 0] addr , b i t [7 : 0] & v a l) {
a c c e s s . a c q u i r e () ;

5 p r o t o c o l . mas te rReadByte (addr , v a l) ;
a c c e s s . r e l e a s e () ;

}

void masterReadLong (b i t [3 1 : 2] addr , b i t [3 1 : 0] & v a l) {
10 a c c e s s . a c q u i r e () ;

v a l = p r o t o c o l . masterReadLong (add r) ;
a c c e s s . r e l e a s e () ;

}

15 void m a s t e r W r i t e B y t e (b i t [3 1 : 0] addr , b i t [7 : 0] v a l) {
a c c e s s . a c q u i r e () ;
p r o t o c o l . m a s t e r W r i t e B y t e (addr , v a l) ;
a c c e s s . r e l e a s e () ;

}
20

void mas te rWr i t eLong (b i t [3 1 : 2] addr , b i t [3 1 : 0] v a l) {
a c c e s s . a c q u i r e () ;
p r o t o c o l . mas t e rWr i t eLong (addr , v a l) ;
a c c e s s . r e l e a s e () ;

25 }
} ;

Listing 5.17: Media access layer arbitration.

Arbitration In contrast to the semantics of media access layer transactions provided for higher

layers, the underlying protocol only supports one active transaction at any given time, even when

coming from different virtual connections. In addition to slicing of data packets into protocol units,

therefore, media access layer implementation requires contention resolution according to the me-

dia’s access protocol in order to regulate conflicting accesses to the underlying protocol.

In case of typical bus-based communication, contention can happen if multiple masters

are accessing the same bus. In this case, contention is usually resolved using a distributed or cen-

tralized arbitration scheme. In both cases, bus masters implement arbitration around each transfer

by requesting and releasing access to the bus through a separate arbitration protocol. As part of the

media access layer, corresponding arbitration adapters are inserted in each master. An arbitration

adapter re-implements protocol transfers by wrapping calls to primitives for acquiring and releas-

ing the medium provided by the arbitration protocol around each data transfer protocol method

(Listing 5.17).

Control Transactions In general, the media access layer can implement specialized control trans-

actions based on control transfers provided by the underlying media protocol. Typical bus-based

CHAPTER 5. COMMUNICATION DESIGN 130

behavior CF HAL (I M a s t e r p r o t o c o l , i s e m a p h o r e a c c e s s) implements I C F I n t V e c t o r s
{

MasterMAC mac (p r o t o c o l , a c c e s s) ; / / a r b i t r a t i o n
Mas te rL inkAcces s l i n k (mac) ; / / da ta t r a n s a c t i o n s

5 MasterMemAccess mem(mac) ; / / memory t r a n s a c t i o n s

CF OS c f o s (l i n k , mem) ; / / OS l a y e r

/ / i n t e r r u p t h a n d l e r s
10 void i n t 0 h a n d l e r (void) { c f o s . DMAHandler () ; }

void i n t 1 h a n d l e r (void) { c f o s . DCTHandler () ; }
void i n t 2 h a n d l e r (void) { c f o s . B r i H a n d l e r () ; }
void i n t 3 h a n d l e r (void) { }
void i n t 4 h a n d l e r (void) { }

15 void i n t 5 h a n d l e r (void) { }
void i n t 6 h a n d l e r (void) { }
void i n t 7 h a n d l e r (void) { }

void main (void) { c f o s . main () ; }
20 } ;

Listing 5.18: PE hardware abstraction layer (HAL).

communication provides a control protocol for handshaking in the form of interrupts from bus

slaves to bus masters. As part of the media access layer implementation, interrupt control handlers

exported by the master are refined down to the level of actual hardware interrupts available in the

processors.

The HAL models imported out of the PE database export empty methods that represent

the processor’s interrupt handlers and that correspond to the actual interrupt vectors and interrupt

sources supported by the processor hardware. As part of media access refinement, interrupt handlers

in the PE HAL models are filled and implemented with code that calls the appropriate slave handler

in the processor’s OS layer.

An example of a resulting processor HAL model is shown in Listing 5.18 for the example

of the ColdFire processor. Apart from the processor’s OS layer (line 7), the HAL model instantiates

adapters for media access layer arbitration (line 3), data transactions (line 4) and memory accesses

(line 5). In a straightforward implementation, each processor interrupt is assigned to one slave.

Slaves call the assigned interrupt handler exported by the PE HAL model through adapters that

translate control calls in the slaves to calls to interrupt handlers in the same manner as in stream

layer refinement (see Listing 5.10). Implementation of interrupt handlers in the HAL then simply

call the control handler for the corresponding slave in the OS layer (line 10 through line 12).

In case of interrupt sharing due to a limited number of interrupt sources in a processor,

interrupt handlers in the HAL implement polling of slaves (shown in Listing 5.19 for the example

CHAPTER 5. COMMUNICATION DESIGN 131

behavior DSP HAL (I M a s t e r p r o t o c o l) implements I D S P I n t V e c t o r s
{

Mas te rAcces s l i n k (p r o t o c o l) ; / / da ta t r a n s a c t i o n s

5 DSP OS d s p o s (l i n k) ; / / OS l a y e r

void i n t A h a n d l e r (void) { / / i n t e r r u p t h a n d l e r s
d s p o s . c t r l H a n d l e r () ;

}
10

void i n t B h a n d l e r (void) {
b i t [7 : 0] spchIn , s e r O u t ;

p r o t o c o l . mas te rReadByte (ADDR POLL SPCHIN , & s p c h I n) ;
15 p r o t o c o l . mas te rReadByte (ADDR POLL SEROUT, & s e r O u t) ;

i f (s p c h I n)
d s p o s . s p c h I n H a n d l e r () ;

i f (s e r O u t)
20 d s p o s . s e r O u t H a n d l e r () ;

}

void i n t C h a n d l e r (void) {
b i t [7 : 0] s e r I n , spchOut ;

25

p r o t o c o l . mas te rReadByte (ADDR POLL SERIN , & s e r I n) ;
p r o t o c o l . mas te rReadByte (ADDR POLL SPCHOUT, & spchOut) ;

i f (s e r I n)
30 d s p o s . s e r I n H a n d l e r () ;

i f (spchOut)
d s p o s . spchOutHand le r () ;

}

35 void i n t D h a n d l e r (void) {
d s p o s . hwHandler () ;

}

void main (void) { d s p o s . main () ; }
40 } ;

Listing 5.19: PE hardware abstraction layer (HAL) with interrupt sharing.

channel S l a v e P o l l e d I n t (I S l a v e p r o t o c o l , i s e n d i n t r , in c o n s t i n t p o l l a d d r)
implements i s e n d

{
void send (void) {

5 i n t r . send () ;
p r o t o c o l . s l a v e W r i t e B y t e (p o l l a d d r , 1) ;

}
} ;

Listing 5.20: Media access layer slave interrupt polling.

CHAPTER 5. COMMUNICATION DESIGN 132

of the DSP PE HAL with shared I/O processor interrupts). Polling determines the actual interrupt

source such that the right OS control handler can be called. Interrupt handlers for shared interrupts

perform polling of slaves over the bus through appropriate media access layer transactions (line 14

and line 26) before calling the appropriate control handler in the OS layer. In the slaves participating

in the polling, polling is implemented through additional adapter channels in the control path. An

extra layer of adapter channels is inserted as part of media access layer refinement (Listing 5.20).

After sending the actual interrupt (line 5), the adapter waits and answers matching polling requrests

that arrive over the protocol (line 6).

5.3.3.2 Protocol Model

The protocol model of the design example is shown in Figure 5.10. The protocol model

includes implementations of the media access layer in the form of adapter channels in all stations

connected to a medium. For each media connection in a station, a corresponding media access

adapter of the right type (e.g. master or slave access) is instantiated. For the software processors,

the media access layer becomes part of the processor’s hardware abstraction layer (HAL). Corre-

sponding processor layers CF HAL and DSP HAL that instantiate the media access layer adapters

are inserted for the ColdFire and DSP processors, respectively.

In the protocol model, media channels have been replaced with shared protocol channels

connecting the stations. Protocol channels model and provide all the possible transactions supported

over the actual physical medium. The media access layers use the different services and transfer

models available in the protocol to efficiently implement media transfers, slicing data packets into

actual data transfer units (words or frames) supported by the protocol on the physical medium. In

the case of the example shown here, bus protocols support transactions for transfers of standard

24-bit bus words with 16-bit addresses in case of the dspProtocol or for byte, word, and long-word

transfers with 32-bit addresses in case of the cfProtocol.

Since the media access layer does not implement any additional functionality, transac-

tion semantics of protocol channels and media channels in the media access model are equivalent.

Generally, protocol channels are asynchronous and may or may not be reliable and buffered. Their

actual semantics and transaction format, however, are directly dependent on and a direct reflection

of the behavior and capabilities of the protocol they represent. In the case of the example, bus proto-

cols are asynchronous on the master side5, synchronous on the slave side, error-free but not reliable

5Specifically, in order to enable polling, methods on the master side must not block even if no corresponding slave is
available to complete the transfer.

C
H

A
PT

E
R

5.
C

O
M

M
U

N
IC

AT
IO

N
D

E
SIG

N
133

D
C

T

sB
ri

sD
M

A
sD

C
T

lD
C

T

D
M

A

lD
M

A

B
ri

lB
ri

sh
m

m
em

m
ac

ctrl

stripeLen

imgSize

stripe

HData

DData

CF_OS

CF_HAL

A
D

D
R ColdFire

stripeLen

imgSize

stripe

DMA

m
ac

st
rm

lin
k

m
em

sh
m

DMA_HW

A
D

D
R

Mem

m
em

sh
m

Mem_HW

A
D

D
R

char[]

DCT

DCT_IP

i_semaphore

Arbiter

cfMaster

cfSlave

cf
Pr

ot
oc

ol

T_
H

W

d
ct

P
ro

to
co

l
in

t

DSP_OS

D
S

P
_H

A
L

DSP lC
tr

l
lH

W
lB

I
lB

O
lS

O
lS

I

C
tr

l
B

I
S

I
H

W
B

O
S

O

sC
tr

l
sB

I
sS

I
sH

W
sB

O
sS

O

iS
I A

D
D

R

iH
W

iB
O

iS
O

iB
I

iC
tr

l

OSModel

m
ac

intA intB intC intD

HW

exc[40]

T0

gain

prm[10]

exc[40]
T0

gain
prm[10]

inframe

outparm

inparm

outframe

lin
k

st
rm

m
ac

A
D

D
R

HW_HW

SI

inframelin
k

st
rm

m
ac

A
D

D
R

SI_HW

BI

inparmlin
k

st
rm

m
ac

A
D

D
R

BI_HW

SO

outframelin
k

st
rm

m
ac

A
D

D
R

SO_HW

BO

outparmlin
k

st
rm

m
ac

A
D

D
R

BO_HW

m
ac

st
rm

lin
k

A
D

D
R

Bridge

d
sp

M
aster

d
sp

S
lave

dspProtocol
m

ac

st
rm

lin
k

A
D

D
R

poll POLL_ADDR

poll POLL_ADDR

poll POLL_ADDR

poll POLL_ADDR

Figure
5.10:Protocolm

odel.

CHAPTER 5. COMMUNICATION DESIGN 134

against data loss (in case of not properly synchronized transfers), and they support multiple vir-

tual connections via bus addressing. Furthermore, for shared memory transfers, protocol channels

provide split transactions that allow the shared memory to listen to and serve incoming accesses.

Since both DMA and ColdFire are masters on the cfProtocol, their media access layer

adapters implement bus arbitration before each transfer by connecting to and communicating via

an additional arbitration protocol channel Arbiter. Arbitration channels in the protocol model are

standard channels with semaphore semantics. They provide an abstraction of the underlying arbitra-

tion protocol transactions for acquiring and releasing access to the medium. Depending on the type

of arbitration protocol (centralized or distributed), arbitration channels represent communication of

media masters among themselves or with additional arbiter components.

5.3.4 Protocol Layer

The protocol layer provides services to transfer words or frames (i.e. groups of bits) over

a physical medium. Depending on the transfer modes supported by the medium, different types of

transactions might be available. A protocol layer channel is asynchronous, unbuffered, lossy, and it

may or may not be error-free. Since there is no buffering, it requires proper outside synchronization

to provide lossless communication or any communication at all.

The protocol layer is responsible for driving and sampling the external pins according

to the protocol timing diagrams and thereby matching the transmission timing on the sender and

receiver sides. As part of the protocol layer, repeater stations are introduced as necessary. Repeaters

connect physical wire segments with matching protocols in order to represent them as one common

medium

The protocol layer is the implementation of the medium’s transfer protocol in the hard-

ware of a station’s interface. As such, it is implemented as part of a station’s hardware layer. For

programmable PEs, an additional layer of hierarchy representing the PE’s hardware is therefore

inserted around the PE’s HAL model. The protocol layer is inserted into this new hardware layer

during refinement.

For all PEs and CEs with fixed, pre-defined interfaces and communication functionality,

a bus-functional model of the component that accurately describes the PE/CE interface at the pin

level and provides a model of the PE’s or CE’s communication aspects has to be stored in the cor-

responding database [44]. For such components, bus-functional models that include protocol layer

implementations are imported out of the database and instantiated around the existing component

CHAPTER 5. COMMUNICATION DESIGN 135

models during protocol layer refinement. In case of programmable PEs, bus-functional models in

the database provide the PE’s pre-defined hardware layer that wraps around and connects to the PE’s

previously imported HAL.

In case of IP components with fixed, pre-defined computation and communication func-

tionality, a bus-functional model provides a timing- and data-accurate description of the complete IP

functionality in terms of signals observed at the IP’s pins. Bus-functional IP models with associated

wrappers are imported at the beginning of the communication design process (see Section 5.2.1).

During protocol layer refinement, the last level of the IP wrapper is inlined into connected stations

and the IP’s bus-functional model is exposed.

5.3.4.1 Model Refinement

During protocol layer refinement, implementations of the protocol layer in the form of

protocol adapters are inserted into the network stations of the system. In general, for each transfer

supported by the protocol, a protocol layer adapter drives and samples the media wires connected

to it according to the corresponding timing diagram. Protocol adapters can be passive (channels) or

active (behaviors). In the latter case, protocol adapters run in parallel to the rest of the component

hardware in order to enable support for protocols that require a component to constantly listen and

participate in the media protocol.

Protocol layer implementations in the form of adapters are stored in the media database

for all protocols supported by each medium. The set of protocol adapters and the set of transfers

supported by each adapter define the capabilities of a medium stored in the database [44]. Dur-

ing protocol layer refinement, appropriate protocol adapters are then imported out of the library,

instantiated inside the stations, and connected as necessary.

A medium in general is associated with different, separate protocols for different types of

transfers. Specifically, a medium can support a data transfer protocol for exchange of data among

components and memories, a control transfer protocol for synchronization and handshaking, and an

arbitration protocol for regulation of media accesses and resolution of media contention.

Data Transfer Protocol The data transfer protocol is the core of any medium. It describes bit-

accurate primitives for transferring native words or frames distinguished by media addresses. A

data transfer protocol provides methods for all atomic cycles available over the medium, including

special types like burst mode, etc.

CHAPTER 5. COMMUNICATION DESIGN 136

channel Maste r (
out s i g n a l b i t [3 1 : 0] Addr ,

s i g n a l b i t [3 1 : 0] Data ,
out s i g n a l b i t [3] C t r l)

5 implements I M a s t e r
{

void masterReadLong (b i t [3 1 : 2] A,
b i t [3 1 : 0] ∗D)

{
10 do {

l 1 : Addr = A @ 0 0 b ;
C t r l = 1 1 1 b ;
w a i t f o r (1 0) ;

l 2 : ∗D = Data ;
15 C t r l = 0 0 0 b ;

} t iming {
range (l 1 ; l 2 ; 1 0 ;) ;

}
}

20

void mas te rWr i t eLong (b i t [3 1 : 2] A,
b i t [3 1 : 0] D)

{
do {

25 l 1 : Addr = A @ 0 0 b ;
Data = D;
C t r l = 0 1 1 b ;
w a i t f o r (1 0) ;

l 2 : C t r l = 0 0 0 b ;
30 } t iming {

range (l 1 ; l 2 ; 1 0 ;) ;
}

}

35 . . .

} ;

(a) master

channel S l a v e (
in s i g n a l b i t [3 1 : 0] Addr ,

s i g n a l b i t [3 1 : 0] Data ,
in s i g n a l b i t [3] C t r l)

5 implements I S l a v e
{

b i t [2] s l a v e L i s t e n (b i t [3 1 : 0] &A ,
b i t [3 1 : 0] M) {

do {
10 wait (r i s i n g C t r l) ;

} whi le ((Addr & M) ! = ∗A) ;
∗A = Addr ;
re turn C t r l [2 : 1] ;

}
15

void serveReadLong (b i t [3 1 : 2] A ,
b i t [3 1 : 0] D) {

do {
l 1 : w a i t f o r (5) ;

20 l 2 : Data = D;
} t iming {

range (l 1 ; l 2 ; ; 1 0) ;
}

}
25

void s e r v e W r i t e L o n g (b i t [3 1 : 2] A ,
b i t [3 1 : 0] ∗D) {

do {
l 1 : w a i t f o r (5) ;

30 l 2 : ∗D = Data ;
} t iming {

range (l 1 ; l 2 ; ; 1 0) ;
}

}
35

. . .
} ;

(b) slave

Listing 5.21: Data transfer protocol layer.

Depending on the type of station, different data transfer protocol implementations might

be available. An example of a typical bus protocol with two separate passive models for master

and slave sides is shown in Listing 5.21. The data transfer protocol provides primitives for reading

and writing data operands of different sizes from/to the bus in one cycle. Since bus addresses have

to be aligned correctly, the slice of addresses accepted by each primitive depends on the size of

the operand. On the slave side (Listing 5.21(b)), the protocol supports split transactions needed

for implementation of memory slaves. Split transactions are separated into listening for a range of

addresses on the bus (line 7) and serving the corresponding transfer (line 16, line 26, etc.).

Inside the body of the adapters, the sequence of statements inside the methods drive and

sample the address, data, and control wires of the bus. Furthermore, the protocol state machines

CHAPTER 5. COMMUNICATION DESIGN 137

channel M a s t e r A r b i t r a t i o n (out s i g n a l b i t [1] r e q u e s t , in s i g n a l b i t [1] g r a n t)
implements i s e m a p h o r e

{
void a c q u i r e (void) {

5 r e q u e s t = 1 ;
whi le (! g r a n t) wait (r i s i n g g r a n t) ;

}

void r e l e a s e (void) {
10 r e q u e s t = 0 ;

}
} ;

Listing 5.22: Arbitration protocol layer.

are enclosed in do-timing constructs to specify the constraints on timing that have to be obeyed

when implementing the protocol.

Arbitration Protocol A medium can support an arbitration protocol to regulate accesses to the

shared medium and resolve any contention among multiple components trying to access the medium

at the same time. During protocol layer refinement, corresponding arbitration protocol adapters are

inserted inside each station participating in the arbitration protocol.

Arbitration adapters with standard semaphore semantics provide primitives for acquiring

and releasing access to the medium (Listing 5.22, line 4 and line 9). Internally, they implement

the arbitration protocol by appropriately driving and sampling the wires of the arbitration bus in

the same manner as the data transfer protocol. In case of a typical bus medium, corresponding

arbitration adapters are inserted next to the data transfer protocol into the hardware layers of each

master connecting to the bus.

Arbitration protocols can be distributed or centralized. In a distributed scheme, (active)

arbitration adapters in each media master regulate media accesses among themselves. In a cen-

tralized scheme, an additional arbiter component that connects to and implements the slave side

of the arbitration bus is inserted into the system architecture as part of protocol layer refinement.

Bus-functional arbiter models allocated and inserted during refinement are imported out of the CE

database (if available as IP) or synthesized using arbitration protocol slave adapters from the media

database. Arbitration slaves describe the arbiter side of the protocol similar to their corresponding

master adapters (see Listing 5.22) [44].

Control Transfer Protocol A data transfer protocol generally only supplies limited inherent syn-

chronization and handshaking functionality (e.g. only one-way synchronization from master to slave

CHAPTER 5. COMMUNICATION DESIGN 138

channel I n t D e t e c t (
in s i g n a l b i t [1] i n t r
)

implements i r e c e i v e
5 {

void r e c e i v e (void)
{

wait (r i s i n g i n t r) ;
}

10

} ;

(a) master

channel I n t G e n e r a t e (
out s i g n a l b i t [1] i n t r
)

implements i s e n d
5 {

void send (void) {
i n t r = 1 ;
w a i t f o r (5) ;
i n t r = 0 ;

10 }
} ;

(b) slave

Listing 5.23: Interrupt protocol layer.

in a bus-based medium). However, in order to implement reliable communication with guaranteed

data delivery, two-way synchronization between communication partners is required. Therefore, a

medium can supply an optional, distinct synchronization protocol to efficiently send events. In a

typical bus medium, this usually means an interrupt protocol and interrupt wires through which a

slave can send interrupts to a master.

Control protocols provide primitives for sending and receiving events. In the case of

an interrupt protocol, the control protocol adapters internally describe the logic required to detect

interrupts on the master side and to generate interrupts on the slave side (Listing 5.23).

As part of protocol layer refinement for control protocols, interrupt handling in pro-

grammable PEs is refined down to a bit-, pin-, and timing-accurate level. Models of hardware

layers for programmable PEs stored in the database and imported during refinement include a de-

scription of the PE’s interrupt behavior of detecting interrupts, suspending regular computation, and

executing the appropriate HAL interrupt handlers. Such hardware models provide a description of

the functionality of the interrupt control logic implemented in the PE’s real hardware.

An example of a processor hardware model for the DSP PE is shown in Listing 5.24.

Inside its hardware layer (Listing 5.24(b)), the processor hardware model instantiates an interrupt

service routine (ISR, line 8) in addition to the protocol layer adapter (line 6) and the processor’s HAL

model (line 7). Interrupt behavior is modeled by executing the HAL (line 12) under the control of

the interrupt service routine (line 15). The ISR gets triggered and interrupts normal computation

whenever an external interrupt condition signal INTR becomes true.

Internally (Listing 5.24(a)), the ISR processes pending interrupts as long as the interrupt

conditions is true and the bus is not busy6. If there is a pending interrupt (line 6), the interrupt logic

6In order to maintain bus protocol timing, normal computation must not be interrupted in the middle of a bus
transaction.

CHAPTER 5. COMMUNICATION DESIGN 139

behavior DSP ISR (I M a s t e r p r o t o c o l , I D S P I n t V e c t o r s v e c t o r s ,
in s i g n a l b i t [1] INTR , in s i g n a l b i t [1] busy)

{
void main (void) {

5 unsigned b i t [7 : 0] vec ;
whi le (INTR && ! busy) / / p r o c e s s pend ing i n t e r r u p t s
{ / / acknowledge i n t e r r u p t , read v e c t o r

p r o t o c o l . mas te rReadByte (ADDR PIC , & vec) ;
s w i t c h (vec) { / / c a l l c o r r e s p o n d i n g i n t e r r u p t h a n d l e r

10 case 0 : re turn h a n d l e r s . i n t A h a n d l e r () ;
case 1 : re turn h a n d l e r s . i n t B h a n d l e r () ;
case 2 : re turn h a n d l e r s . i n t C h a n d l e r () ;
case 3 : re turn h a n d l e r s . i n t D h a n d l e r () ;

}
15 }

}
} ;

(a) interrupt control logic

behavior DSP HW(out s i g n a l b i t [3 1 : 0] Addr ,
s i g n a l b i t [3 1 : 0] Data ,
s i g n a l b i t [3] C t r l ,

in s i g n a l b i t [1] INTR)
5 {

Maste r p r o t o c o l (Addr , Data , C t r l) ; / / da ta t r a n s f e r p r o t o c o l
DSP HAL h a l (p r o t o c o l) ; / / hardware a b s t r a c t i o n l a y e r
DSP ISR i s r (p r o t o c o l , ha l , INTR , C t r l [0]) ; / / i n t e r r u p t l o g i c

10 void main (void) {
t r y {

h a l . main () ;
}
i n t e r r u p t (INTR , C t r l) {

15 i s r . main () ;
}

}
} ;

(b) hardware layer

Listing 5.24: Processor core hardware model.

communicates with the interrupt controller over the PE bus to acknowledge the interrupt and receive

the interrupt vector (line 7). It then subsequently calls the corresponding interrupt handler in the

HAL (line 10 through line 13) before eventually resuming normal processor execution.

In order to support more complex interrupt capabilities with more than one source of

interrupts, different priorities, masking, etc., hardware models for programmable PEs in the PE

database usually include models of interrupt controllers associated with the processor. Interrupt

controllers are system components that sit in front of and are combined with the hardware model

into a bus-functional PE model that encapsulates both through an additional layer of hierarchy

(Listing 5.25).

CHAPTER 5. COMMUNICATION DESIGN 140

behavior DSP BF (s i g n a l b i t [3 1 : 0] Addr , / / bus
s i g n a l b i t [3 1 : 0] Data ,
s i g n a l b i t [3] C t r l ,

in s i g n a l b i t [1] in tA , / / i n t e r r u p t s
5 in s i g n a l b i t [1] in tB ,

in s i g n a l b i t [1] in tC ,
in s i g n a l b i t [1] i n tD)

{
s i g n a l b i t [1] INTR = 0 ; / / i n t e r r u p t l i n e

10

DSP HW hw (Addr , Data , C t r l , INTR) ;
DSP PIC p i c (Addr , Data , C t r l , INTR , intA , in tB , in tC , i n tD) ;

void main (void) {
15 par {

hw . main () ;
p i c . main () ;

}
}

20 } ;

Listing 5.25: Bus-functional processor model.

Bus-functional models of interrupt controllers that are part of the bus-functional PE mod-

els in the database perform interrupt detection on the actual interrupt wires, signal interrupt con-

ditions to the processor hardware model, and deliver interrupt vectors to ISRs over the processor

bus. Interrupt detection in the interrupt controllers is performed through instances of corresponding

interrupt protocol master adapters (see Listing 5.23(a)). On the other hand, interrupt controllers

connect to the processor bus wires as bus slaves through corresponding instances of the bus’ data

transfer protocol slave adapters (see Listing 5.21(b)).

5.3.4.2 Communication Model

The final bus-functional or physical model of the system design example is shown in Fig-

ure 5.11. As the end-result of the communication design flow, it is equivalent to the communication

model in the overall design methodology. In the bus-functional model, components are connected

and communicating through signals representing and modeling the actual physical wires of the cho-

sen medium. Signals provide the associated driving and sampling semantics of wires. In the case of

the example, components are connected through sets of wires forming the busses in the system.

Inside the components of the bus-functional model, implementations of the data transfer

protocol in the form of adapter channels are inserted. For the two programmable processors, ad-

ditional CF HW and DSP HW hardware layers that include protocol adapter instances have been

imported from the database and instantiated around the previously imported HALs.

C
H

A
PT

E
R

5.
C

O
M

M
U

N
IC

AT
IO

N
D

E
SIG

N
141

CF_BF

D
C

T

sB
ri

sD
M

A
sD

C
T

lD
C

T

D
M

A

lD
M

A

B
ri

lB
ri

sh
m

ISR

m
em

m
acm
as

te
rP

ro
to

co
l

ar
b

itr
at

ri
o

n

ctrl

stripeLen

imgSize

stripe

HData

DData

MWData[31:0]
MRData[31:0]
MAddr[31:0]

MTSB
MTAB

MWDataOE
MRWB

PIC

CF_OS
CF_HAL

CF_HW

A
D

D
R ColdFire

MSIZ[1:0]
MTT[1:0]
MTM[2:0]

IPLB[2:0]

stripeLen

imgSize

stripe

DMA

MWData[31:0]
MRData[31:0]
MAddr[31:0]
MTSB
MTAB
MWDataOE
MRWB
MSIZ[1:0]
MTT[1:0]
MTM[2:0]

m
as

te
rP

ro
to

co
l/

 s
la

ve
P

ro
to

co
l

m
ac

st
rm

lin
k

in
t

ar
b

itr
at

ri
o

nm
em

sh
m

DMA_BF

A
D

D
R

A
D

D
R

Mem

MWData[31:0]
MRData[31:0]
MAddr[31:0]
MTSB
MTAB
MWDataOE
MRWB
MSIZ[1:0]
MTT[1:0]
MTM[2:0]

sl
av

eP
ro

to
co

l

m
em

sh
m

Mem_BF

A
D

D
R

char[]

DCT

DCT_IP

DB[31:0]
Addr[31:0]

TSB
TAB

RWB

intDCT

MWData[31:0]
MRData[31:0]
MAddr[31:0]
MTSB
MTAB
MWDataOE
MRWB
MSIZ[1:0]
MTT[1:0]
MTM[2:0]

M
A

P
1

M
D

P
1

M
A

H
1

M
A

P
2

M
D

P
2

M
A

H
2

Arbiter

sl
av

eP
ro

to
co

l

d
ct

P
ro

to
co

l

T_BF

MAP2
MDP2
MAH2

intDCT

sl
av

eP
ro

to
co

l

MWData[31:0]
MRData[31:0]

MAddr[31:0]
MTSB
MTAB

MWDataOE
MRWB

MSIZ[1:0]
MTT[1:0]
MTM[2:0]

in
t

m
ac

st
rm

lin
k

Bridge

A
D

D
R

Figure
5.11:C

om
m

unication
m

odel.

C
H

A
PT

E
R

5.
C

O
M

M
U

N
IC

AT
IO

N
D

E
SIG

N
142

D
S

P
_B

F

PIC

DSP_OS

D
S

P_
H

A
L D
S

P_
H

W

DSP lC
tr

l
lH

W
lB

I
lB

O
lS

O
lS

I

C
tr

l
B

I
S

I
H

W
B

O
S

O

sC
tr

l
sB

I
sS

I
sH

W
sB

O
sS

O

iS
I A

D
D

R

iH
W

iB
O

iS
O

iB
I

iC
tr

l

OSModel

m
ac

intA intB intC intD

m
as

te
rP

ro
to

co
l

ISR

A[15:0]
D[23:0]
MCS
nRD
nWR

HW

exc[40]

T0

gain

prm[10]

exc[40]
T0

gain
prm[10]

inframe

outparm

inparm

outframe

lin
k

st
rm

m
ac

sl
av

eP
ro

to
co

l A
D

D
R

A[15:0]
D[23:0]

MCS
nRD
nWR

in
t

HW_BF

SI

inframelin
k

st
rm

m
ac

sl
av

eP
ro

to
co

lA[15:0]
D[23:0]

MCS
nRD
nWR

SI_BF

BI

inparmlin
k

st
rm

m
ac

sl
av

eP
ro

to
co

l

ADDR,
POLL_ADDRA[15:0]

D[23:0]
MCS
nRD
nWR

p
o

ll

BI_BF

SO

outframelin
k

st
rm

m
ac

sl
av

eP
ro

to
co

lA[15:0]
D[23:0]

MCS
nRD
nWR

in
t

SO_BF

BO

outparmlin
k

st
rm

m
ac

sl
av

eP
ro

to
co

lA[15:0]
D[23:0]

MCS
nRD
nWR

in
t

BO_BF

Bridge
sl

av
eP

ro
to

co
l

m
ac

st
rm

lin
k

in
t

A
D

D
R

A[15:0]
D[23:0]
MCS
nRD
nWR

in
t

ADDR,
POLL_ADDR

p
o

ll

in
t

ADDR,
POLL_ADDR

p
o

ll

ADDR,
POLL_ADDR

p
o

ll

INTR

Figure
5.11:C

om
m

unication
m

odel(continued).

CHAPTER 5. COMMUNICATION DESIGN 143

Hardware layers of processors from the database also include a model of the processor’s

interrupt behavior. Inside the hardware layer, the processor HAL model runs under control of an

interrupt service routine (ISR) that, in connection with external interrupt controllers (PIC), interrupts

normal HAL execution and calls corresponding interrupt handlers in the HAL whenever and external

interrupt signal is triggered. The interrupt controllers are combined with processor hardware models

CF HW and DSP HW into bus-functional models CF BF and DSP BF, respectively.

In the example shown here, a centralized arbitration scheme is defined for the bus on the

ColdFire side. Therefore, the bus-functional model contains a centralized, shared Arbiter compo-

nent that receives requests for bus access from the two masters (DMA BF and CF BF) and grants

them according to the chosen arbitration protocol. Inside the hardware layers of the two bus mas-

ters, corresponding arbitration protocol adapters have been inserted and connected to the arbitration

bus wires.

The bus-functional model is the end result of the communication design process. It is a

structural representation of the complete system architecture including computation and communi-

cation, i.e. it defines the netlist of system components and their connectivity.

5.4 Summary

In this chapter, we presented the communication design flow with well-defined design

steps and design models (as summarized in Table 5.2). Starting from a virtual architecture model

with abstract message-passing communication, a design is brought down to a bus-functional imple-

mentation through network and link design tasks. In between design tasks, the link model defines

the implementation of the end-to-end network on top of point-to-point logical links. Furthermore,

two transaction-level models, namely media access and protocol models, are supported for provid-

ing accurate results above the pin level.

Communication design supports a wide range of target communication architectures with

different media and protocols. It is structured along a layering of communication functionality

where communication layers have been identified, defined and adapted based on specific require-

ments of SoCs. The flow includes customization of layers during synthesis for optimizations across

merged layers and for application-specific optimizations of layers and target communication archi-

tectures.

The contributions of this chapter include the definition of communication layers and cor-

responding abstraction levels for SoC design, the division of the design flow into individual steps

CHAPTER 5. COMMUNICATION DESIGN 144

Design step Design decisions Model transformations

N
et

w
or

k
de

si
gn

Channel
streaming

(a) Network byte layout selection:
∀d ∈ set of data types D,
l : D 7→ Z

∗×Z
∗×{0,1},

l(d) = (size,alignment,endianess)
(b) Channel merging:

S = set of streams,
set of system channels Cs 7→ S

(a) Presentation layer insertion
(b) Memory layout refinement
(c) Session layer insertion

Network
segmenting

(a) Transducer allocation:
T = set of (name,type) tuples

(b) Channel routing & packeting:
∀s ∈ set of stream channels S:
Rs = ordered set of r ∈ (PE ∪T)
p : S 7→ Z

+, p(s) = packet size

(a) Transport layer insertion
(b) Transducer insertion
(c) Network layer insertion

L
in

k
de

si
gn

Link
grouping

(a) Bus allocation:
BUS = set of (name,type) tuples

(b) Connectivity relation:
N ⊆ (PE ∪T)×BUS,
i f : N 7→ set of interface types IF

(c) Link parameterization:
∀l ∈ set of link channels L,
m : L 7→ N ×N ×Z

+×Z
∗,

m(l) = (src,dst,address,interrupt)

(a) Link layer insertion
(b) Memory behavior refinement
(c) Stream layer insertion
(d) Interrupt task creation

Media
interfacing

(a) Arbiter allocation:
A = set of (name,type) tuples,
bus : A 7→ BUS

(b) Arbitration priority assignment:
a : MASTER ⊆ N 7→ Z

∗

(c) Interrupt controller allocation:
IC = set of (name,type) tuples,
pe : IC 7→ PE

(d) Interrupt assignment:
i : SLAVE ⊆ N 7→ set of interrupts

(a) HAL and MAC layer insertion
(b) Arbiter insertion
(c) Interrupt handler creation
(d) HW and protocol insertion
(e) Interrupt controller insertion

Table 5.2: Communication design steps.

CHAPTER 5. COMMUNICATION DESIGN 145

with intermediate design models and the definition of intermediate and target design models. As

experimental results (Chapter 8) using the automated system design environment (Chapter 7) will

show, order and granularity of steps have been defined such that critical design decisions can be

validated at early stages and models can be generated automatically through successive refinement.

Chapter 6

Backend

The backend design process follows the system design process. It derives the implementa-

tion model from the communication model. In the backend process, each component of the system

architecture is separately brought down from its behavioral description of computation blocks and

communication adapters in the communication model to a a cycle-accurate implementation on the

RTL or instruction-set level through hardware and software design, respectively. From there, com-

ponents can then be further sent off to manufacturing through traditional design flows for logic and

physical design.

In this chapter, we will outline the different steps, intermediate design models and model

transformations of the backend design process. In Section 6.1, a description of the design flow for

behavioral or high-level synthesis of custom hardware will be given. Section 6.2, on the other hand,

shows the process of synthesizing target-specific software from the behavioral component models.

6.1 Hardware Design

Custom hardware design derives structural descriptions of components’ microarchitec-

tures from the behavioral specifications of components’ functionalities defined by the component

models in the system communication model. For each custom hardware component in the commu-

nication model, the hierarchy of computation and communication behaviors and channels is grad-

ually synthesized into a structural description in the form of an RTL netlist. For IP components,

bus-functional IP models are replaced with corresponding soft, synthesizable hardware descriptions

or with hard, pre-designed gate-level netlists taken out of the IP database.

146

CHAPTER 6. BACKEND 147

RTL PreprocessingRTL Preprocessing

Communication modelCommunication model

Behavioral RTL modelBehavioral RTL model

GUIGUI

SFSMD modelSFSMD model

RTL SynthesisRTL Synthesis

RT
units

RT
units

Netlist GenerationNetlist Generation

Structural RTL modelStructural RTL model

Figure 6.1: Hardware design flow.

6.1.1 Overview

Custom hardware design follows a standard high-level or behavioral synthesis approach

[34, 76] from C-based input descriptions [57, 100]. High-level synthesis of custom hardware gen-

erally requires allocation of RT units, scheduling of operations into clock cycles, and binding of

operations, variables, and transfers to functional units, registers, and busses, respectively.

An overview of the custom hardware design flow is shown in Figure 6.1 [88, 110]. Hard-

ware design starts from a behavioral description of the component in the communication model.

Behavioral descriptions in the form of straight-line C code annotated with timing (and other) con-

straints are taken from the component’s behaviors and channels.

In a first step, RTL preprocessing is performed. RTL preprocessing separates control and

data flow by translating the C code into a superstate finite state machine with datapath (SFSMD

[36]) model. In the process, some pre-synthesis, source-level optimizations (e.g. common sub-

expression and dead code elimination, constant propagation, etc.) are performed. In the resulting

SFSMD model, C code is broken into superstates along control boundaries. Superstates contain

original statements in the form of three-address code as a basis for the following scheduling and

binding steps.

Following pre-processing, actual RTL synthesis on the SFSMD model is performed. Su-

perstates are scheduled into individual, cycle-accurate states, and operations, variables, and transfers

are bound to functional units, storage units (registers, register files and memories) and busses that

CHAPTER 6. BACKEND 148

HW

HW_BF

(a) communication model

HW_FSMD

HW_BF

(b) (S)FSMD model

HW_RTL
Controller

State

Next
state
logic

Output
logic

Datapath

Register
file

Memory

ALU

Interface control CLK

(c) implementation model

Figure 6.2: Hardware refinement.

are each allocated out of the RT unit database. The result of RTL synthesis is a behavioral RTL

model of the component in the form of a finite state machine with datapath (FSMD [33]) descrip-

tion. In the FSMD model, each state describes the operations to be performed in the corresponding

clock cycle where operations are described as individual register transfers.

In a last step, the behavioral RTL model is converted into an equivalent structural RTL

model through netlist generation. A structural RTL model describes the component’s implementa-

tion on top of its microarchitecture as a netlist of RT units. Models of RT units in the required target

hardware description languages (HDLs) are taken out of the RTL database. In the process of netlist

generation, encoding of states and control words is defined and corresponding optimizations are ap-

plied. The structural RTL description is then the basis for further implementation of the component

through logic and physical design tasks.

6.1.1.1 Model Refinement

With each step of the the custom hardware design flow, the behavior hierarchy represent-

ing the component in the system model is gradually refined from communication model down to

implementation model (Figure 6.2). In the communication model at the input of hardware design

(Figure 6.2(a)), the component is represented as a bus-functional model which accurately describes

the desired component behavior as observed at its external pins. The bus-functional model is a

hierarchy of sequentially composed subbehaviors with straight-line C code in the leaf behaviors.

External communication functionality is described as a stack of adapter channels for different com-

munication layers.

In the (S)FSMD model (Figure 6.2(b)), C code in the leaf behaviors of the component is

refined into corresponding (S)FSMD models describing the leaf’s state machine. Leaf behaviors in

CHAPTER 6. BACKEND 149

the component are replaced with equivalent (S)FSMD models, optionally flatting parts or all of the

behavior hierarchy. In terms of communication functionality, the top-most layers of the protocol

stack are inlined into the caller’s state machine whereas lower layers are refined into bus interface

(S)FSMD behaviors that run in parallel to the computation behavior hierarchy.

Finally, in the implementation model (Figure 6.2(c)), the component is replaced with a

refined model that represents the netlist of its target microarchitecture. The target architecture for

hardware design is a standard RTL processor [3]. In general, the component implementation model

consists of a controller, a datapath, and a bus interface control module. The datapath is composed as

a netlist of storage units—such as registers, register files or memories—and functional units—such

as ALUs, multipliers, shifters or comparators—connected via busses. The controller, on the other

hand, consists of next state logic, state register, and output logic. It drives the datapath via its output

logic and a set of control lines. Furthermore, it implements transitions of the state register through

its next state logic based on a set of status lines received from the datapath.

6.1.1.2 Behavioral Model

A behavior model at the input of custom hardware design is a model that describes the

functionality to be implemented in hardware in an abstract manner, independent of any implementa-

tion details. In the behavior model, functionality is described in the form of straight-line, sequential

C code that specifies computation as operations on abstract data types.

An example of a behavioral hardware model is shown in Listing 6.1 using the example of

the BuildCode leaf inside the custom HW coprocessor of the Vocoder subsystem. At the top level

(Listing 6.1(a)), the coprocessor model is a sequential composition of its leaf behaviors (line 12

through line 14). Leaf behaviors communicate internally through a set of local variables (line 3

through line 4). In addition, leaf behaviors can communicate with other PEs in the system through

calls to the external adapter channel interface (session, line 1). Inside the leaf behaviors (List-

ing 6.1(b)), computation is described in the form of plain C code with typical loops, branches, and

expressions operating on local static and stack variables of standard, abstract types.

6.1.2 Superstate Model

A SFSMD model is a description of hardware functionality in the form of a state machine

with states and transitions. In an SFSMD model, each state is a superstate that can contain any

number of operations executing in any number of clock cycles. As a basis for RTL synthesis, C

CHAPTER 6. BACKEND 150

behavior HW(i t r a n c e i v e r s e s s i o n)
{

long i n t D [4 0] ;
. . .

5

. . .
Bui ldCode bc (D , . . .) ;
. . .

10 void main (void)
{

. . .
bc . main () ;
. . .

15 }
} ;

(a) top level

behavior Bui ldCode (in long i n t D [4 0] , . . .)
{

void main (void) {
long i n t x , y , z ;

5 . . .

. . .
x = y + z ;
i f ((x + D[5]) > 0) {

10 . . .
} e l s e {

. . .
}
. . .

15 }
} ;

(b) leaf

Listing 6.1: Custom hardware behavioral model.

code is converted into a state machine by separating control flow from data flow into a correspond-

ing control-data flow graph (CDFG [34]) representation that is captured in the form of the SFSMD

model. The C code is split into superstates such that the control flow graph is explicitly captured

through state transitions. In each superstate, a data flow graph in the form of three-address code

describes the original C operations executed in that control state. As a result of the preprocessing

step, the superstate model refines leaf behaviors and communication adapters in the custom hard-

ware component behavior hierarchy into corresponding SFSMD descriptions. Optionally, parts or

all of the behavior hierarchy is flattened out and code of channel methods is inlined into the caller’s

code.

In the SFSMD model of a custom hardware component (Listing 6.2), instances of leaf be-

haviors are replaced with instances of behaviors refined into corresponding SFSMD models. Other-

wise, the top level of the component (Listing 6.2(a)) remains as a sequential composition of SFSMD

subbehaviors that communicate via a set of local variables and external adapter channel interfaces.

Inside the refined leaf behaviors (Listing 6.2(b)), the C code is replaced by a fsmd composition

(line 9) with superstates (line 11) that contain the original operations (line 12 through (line 15) on

the original local variables (line 4) and transitions of superstates replicating the original control

flow (line 16, line 17). However, operations inside superstates are transformed into three-address

code that requires additional local stack variables to hold temporary, intermediate values (line 6 and

line 7).

Furthermore, note that the superstate model modifies the timing of the hardware compo-

nent. In the SFSMD model, waitfor() statements in the C code representing estimated execution

CHAPTER 6. BACKEND 151

behavior HW SFSMD(
i t r a n c e i v e r s e s s i o n

)
{

5 long i n t D[4 0] ;
. . .

. . .
BuildCode SFSMD bc (D , . . .) ;

10 . . .

void main (void)
{

. . .
15 bc . main () ;

. . .
}

} ;

(a) top level

behavior BuildCode SFSMD (in long i n t D[4 0] ,
. . .) {

void main (void) {
long i n t x , y , z ;

5 . . .
long i n t tmp 1 , tmp 2 ;
bool s t a t u s ;

fsmd (10 u) {
10 . . .

S i : {
x = y + z ;

tmp 1 = D [5] ;
tmp 2 = x + tmp 1 ;

15 s t a t u s = (tmp 2 > 0) ;
i f (s t a t u s)

goto Sj ;
}
. . .

20 }
}

} ;

(b) leaf

Listing 6.2: Custom hardware SFSMD model.

delays (see Section 4.2.1.1) have been removed and replaced with a unit delay assigned to each su-

perstate in the fsmd composition (line 9). Therefore, in the SFSMD model, each superstate will

take the same amount of time, independent of the actual amount of work performed in the state.

As such, execution timing of superstate models is generally inaccurate. Therefore, SFSMD models

only serve as input to the design process but can not be used for timing validation.

6.1.3 Behavioral RTL

Behavioral RTL models are the result of RTL synthesis of custom hardware components

from their SFSMD models. In a behavioral RTL model, superstate machines in leaf behaviors and

communication adapters are refined into cycle-accurate FSMD models that accurately describe the

operations performed in each state and hence in each clock cycle. A behavioral RTL model repre-

sents splitting of superstates into clock cycles according to the scheduling decisions. Furthermore,

it can represent binding information with the result that abstract C operations and data types are

replaced with bit-accurate storage and functional unit models describing register transfers inside the

states.

As defined by the Accellera RTL standard [3], different styles of behavioral RTL models

are possible (Table 6.1). At a minimum, scheduling of operations into clock cycle has to be per-

CHAPTER 6. BACKEND 152

Level Binding
1 None
2 Storage
3 Functional unit, storage
4 Bus, functional unit, storage
5 Structural RTL

Table 6.1: Accellera RTL styles.

formed. In a style 1 model, superstates are split into individual states but operations inside states

remain at an abstract C level. In models at styles 2 through 4, additional binding information is

gradually introduced and explicitly represented in the FSMD model. In a fully bound model of

style 4, operations and variables in each state are replaced with register transfers over explicity in-

stantiated storage units, functional units, and busses. Finally, Accellera style 5 is defined as a netlist

representation equivalent to the structural RTL model (see Section 6.1.4).

In the FSMD model of custom hardware (Listing 6.3), leaf behaviors are replaced with

instances of behaviors refined into cycle-accurate FSMD models. At the top level (Listing 6.3(a)),

allocated busses (line 3 and line 4), storage units (line 6 and line 7) and functional units (line 9)

are explicitly instantiated where ports of functional units are connected to busses and other wires

according to the selected interconnect structure. Instances of refined FSMD subbehaviors connect to

RT unit instances as needed (line 12). Any local variables have been removed and are stored inside

registers or memories instead. Furthermore, communication with refined adapter channel FSMD

models that run in parallel to the main computation is explicitly represented as bit-accurate control,

data, and status wires (line 1).

Inside the refined leaf behaviors (Listing 6.3(b)), superstates are split into cycle-accurate

states (line 11 and line 17) that accurately represent the operations performed in each cycle. As a

result, execution timing described as clock period delays associated with each each state transition

in the fsmd composition is accurate (line 8). Inside the states, computation is described as transfers

of values from storage units to busses, execution of functional units (that are connected to busses at

the top level), and transfer of results from busses back to storage units.

6.1.4 Structural RTL

A structural RTL view of the PEs in the implementation model accurately reflects the mi-

croarchitecture internal to the system PEs. It is the result of netlist generation from the fully bound

behavioral RTL model for a PE at the output of RTL synthesis. Instead of an implicit representation

CHAPTER 6. BACKEND 153

behavior HW FSMD(b i t [2] i f c t r l , b i t [3 1 : 0] i f d a t a , b i t [1] i f s t a t u s)
{

unsigned b i t [3 1 : 0] bus , bus1 , bus2 ; / / w i r e s
unsigned b i t [1] s t a t u s ;

5

b u f f e r e d [10 u] b i t [3 1 : 0] mem[2 5 6] ; / / s t o r a g e
b u f f e r e d [10 u] b i t [3 1 : 0] r f [3 2] ;

ALU a l u (bus1 , bus2 , bus , s t a t u s) ; / / f u n c t i o n a l u n i t s
10

. . .
BuildCode FSMD bc (bus , bus1 , bus2 , r f , mem , a lu , s t a t u s) ;
. . .

15 void main (void) {
. . .
bc . main () ;
. . .

}
20 } ;

(a) top level

behavior BuildCode FSMD (
unsigned b i t [3 1 : 0] bus , unsigned b i t [3 1 : 0] bus1 , unsigned b i t [3 1 : 0] bus2 ,
b u f f e r e d [10 u] b i t [3 1 : 0] mem[2 5 6] , b u f f e r e d [10 u] b i t [3 1 : 0] r f [3 2] ,
i f u n c t i o n a l u n i t a lu , unsigned b i t [1] s t a t u s)

5 {
void main (void)
{

fsmd (10 u) {
. . .

10

Si : {
bus1 = r f [6] ;
bus2 = r f [7] ;
a l u . main () ;

15 r f [5] = bus ;
}
S i 1 : {

bus1 = r f [5] ;
bus2 = mem [4 0] ;

20 a l u . main () ;
i f (s t a t u s) goto Si + 1 ; e l s e goto Sj ;

}
. . .

}
25 } ;

(b) leaf

Listing 6.3: Custom hardware FSMD model.

CHAPTER 6. BACKEND 154

behavior HW RTL(in s i g n a l b i t [3 1 : 0] Addr , / / bus
s i g n a l b i t [3 1 : 0] Data ,
s i g n a l b i t [3] C t r l ,

out s i g n a l b i t [1] I n t r) / / i n t e r r u p t
5 {

event c l k ; / / c l o c k
s i g n a l b i t [1 5 : 0] s t a t u s ; / / s t a t u s l i n e s
s i g n a l b i t [1 1 7 : 0] c t r l ; / / c o n t r o l l i n e s
s i g n a l b i t [3 2 : 0] d ; / / bus i n t e r f a c e da ta

10

HW ClkGen cg (c l k) ; / / c l o c k g e n e r a t o r
HW Control c t r l r (c lk , s t a t u s , c t r l) ; / / c o n t r o l l e r
HW Datapath dp (c lk , c t r l , s t a t u s , d) ; / / d a t a p a t h
HW IF bus (c lk , c t r l , s t a t u s , d) ; / / bus i n t e r f a c e

15

void main (void) {
par {

cg . main () ;
c t r l . main () ;

20 dp . main () ;
bus . main () ;

}
}

} ;

Listing 6.4: RTL netlist custom hardware model.

of register transfers performed in each state, the structural RTL model explicitly describes the PE as

a netlist of RTL units connected by wires. Structural RTL is the basis for further implementation of

PEs through traditional logic synthesis which in turn will derive a gate-level netlist from the netlist

of units inside each PE. Note that for simulation purposes, behavioral and structural RTL models

are equivalent. Since the structural RTL model does not provide more accuracy but introduces more

overhead, it is usually sufficient to perform effective validation on the behavioral RTL model.

In a structural model, the component is implemented as a purely structural netlist of

subcomponents (Listing 6.4). Subcomponents are represented by subbehaviors (line 11 through

line 14). All subbehaviors operate in parallel (line 17 through line 22) and are connected via busses

and/or wires (line 6 through line 9). In general, subcomponents themselves can be further decom-

posed hierarchically. At each level, however, the same purely structural netlist of behaviors running

concurrently and being connected through wires is repeated. Therefore, if the hierarchy is flattened

all the leaf behaviors will operate in parallel and communicate via busses and wires.

In general, a structural RTL model represents the component’s RTL processor target archi-

tecture. At the top level (Listing 6.4), the component is composed out of clock generator (line 11),

controller (line 12), datapath (line 13), and bus interface (line 14) subcomponents. The clock gen-

erator drives the internal clock event and triggers it periodically according to the component’s clock

CHAPTER 6. BACKEND 155

behavior HW Control (in event c lk ,
in s i g n a l b i t [1 5 : 0] s t a t u s ,
out s i g n a l b i t [1 1 7 : 0] c t r l)

{
5 s i g n a l b i t [2 1 : 0] s t a t e , n e x t s t a t e ;

HW SR s r (c lk , n e x t s t a t e , s t a t e) ; / / s t a t e r e g i s t e r
HW OL o l (s t a t e , c t r l) ; / / o u t p u t l o g i c
HW NSL n s l (s t a t e , s t a t u s , n e x t s t a t e) ; / / n e x t s t a t e l o g i c

10

void main (void) {
par {

s r . main () ; o l . main () ; n s l . main () ;
}

15 }
} ;

Listing 6.5: Custom hardware controller.

period. The bus interface, which runs in parallel to, is controlled by, and communicates with the

main controller and datapath, implements the state machine to execute bus transactions.

The component’s master controller (Listing 6.5) is responsible for implementing the com-

ponent’s data and control flow for computation and communication by driving datapath and bus

interface resources. The main controller is hierarchically decomposed into state register, next-state

logic and output logic (line 7, line 9 and line 8). The state registers stores the current state value and

updates it with the next state value in every clock cycle. The next stage logic generates the next state

value from status and current state inputs. Finally, the output state logic generates the (datapath and

other) control signals from the current state value.

The main component datapath (Listing 6.6) is hierarchically composed as a structural

netlist of the different datapath components (line 8 through line 11) connected through internal

busses (line 6). Similarly, the datapath’s subcomponents are modeled following standard structural

RTL design guidelines as outlined previously. In general, sub-components are register/storage units

driven by the clock event, combinatorial logic blocks or a hierarchical composition thereof.

Leaf behaviors of the structural RTL hierarchy model registers and combinatorial logic

between registers. Leaf behaviors are reactive, i.e. they continuously react to events on their inputs

and create resulting events at their outputs. Registers are driven by a clock signal that is locally

generated inside the component. On every clock event, a register takes over a new value from its

input and updates its output accordingly. Combinatorial logic, on the other hand, reacts to changes

on any of its inputs in order to recalculate its outputs. Structural RTL models describe hardware as

a reactive system with a set of non-terminating processes operating concurrently [6].

CHAPTER 6. BACKEND 156

behavior HW Datapath (in event c lk ,
in s i g n a l b i t [1 1 7 : 0] c t r l ,
out s i g n a l b i t [1 5 : 0] s t a t u s ,

s i g n a l b i t [3 1 : 0] d)
5 {

s i g n a l b i t [3 1 : 0] bus , bus0 , bus1 , bus2 ;

Mux mux (bus0 , d , bus) ;
Mem mem(c lk , c t r l [1 1 7 : 9 4] , bus0) ;

10 RF r f (c lk , c t r l [9 3 : 6 1] , bus0 , bus1 , bus2) ;
ALU a l u (c t r l [6 0 : 0] , bus , bus1 , bus2 , s t a t u s) ;

void main (void) {
par {

15 mux . main () ;
mem. main () ;
r f . main () ;
a l u . main () ;

}
20 }

} ;

Listing 6.6: Custom hardware datapath.

As an example, the behavior hierarchy down to the leaves of the hardware controller is

shown in Listing 6.7. The state register (Listing 6.7(a)) updates the current state value with the

next state value (line 6) on every clock event (line 5). Output (Listing 6.7(b)) and next state (List-

ing 6.7(c)) logic are hierarchically composed out of subbehaviors mirroring the original behavior

hierarchy of the behavioral RTL model. Leaf behavior state machines from the FSMD model are

assigned a dedicated slice of the state register space each and the overall state space is the union

over all leaf behavior states (line 5)1. At the leafs of the hierarchy, output and next stage logic

(Listing 6.7(d) and Listing 6.7(c)) are combinatorial blocks that are senstive to changes on any of

their input ports (line 9 and line 8) and, depending on input values (line 10 and line 9), perform

control word and next state assignments to implement register transfers and state transitions of the

behavioral RTL model (line 13 and line 12).

6.2 Software Design

Software design derives executable object code from behavioral component models of

programmable processors in the system communication model. Object code in the processor’s

instruction set is running on top of a structural description of the processor’s microarchitecture.

1Note that in the process of netlist generation, the state space can be optimized across leaf boundaries by flattening
parts or all of the behavior hierarchy.

CHAPTER 6. BACKEND 157

behavior HW SR(in event c lk , in s i g n a l b i t [2 1 : 0] nex t , out s i g n a l b i t [2 1 : 0] c u r)
{

void main (void) {
whi le (t rue) {

5 wait (c l k) ;
n e x t = c u r ;

}
}

} ;

(a) state register

behavior HW OL(in s i g n a l b i t [2 1 : 0] s t ,
out s i g n a l b i t [9 9 : 0] c t r l)

{
. . .

5 BuildCode OL bc (s t [7 : 3] , c t r l) ;
. . .

void main (void) {
. . .

10 bc . main () ;
. . .

}
} ;

(b) output logic

behavior HW NSL(in s i g n a l b i t [2 1 : 0] s t ,
in s i g n a l b i t [1 5 : 0] s t a t ,
out s i g n a l b i t [2 1 : 0] n x t) {

. . .
5 BuildCode NSL bc (s t [7 : 3] , s t a t , n x t) ;

. . .

void main (void) {
. . .

10 bc . main () ;
. . .

}
} ;

(c) next state logic

behavior Build Code OL (
in s i g n a l b i t [4 : 0] s t a t e ,
out s i g n a l b i t [9 9 : 0] c t r l)

{
5 void main (void)

{
whi le (t rue)
{

wait (s t a t e) ; / / s e n s i t i v i t y
10 s w i t c h (s t a t e) {

. . .
case S i 1 :

c t r l = ” 0 0 0 . . . 1 0 b ” ;
break ;

15 . . .
}

}
}

} ;

(d) output logic leaf

behavior Build Code NSL (
in s i g n a l b i t [4 : 0] s t a t e ,
in s i g n a l b i t [1 5 : 0] s t a t u s ,
out s i g n a l b i t [2 1 : 0] n e x t)

5 {
void main (void) {

whi le (t rue) {
wait (s t a t e , s t a t) ; / / s e n s i t i v i t y
s w i t c h (s t a t e) {

10 . . .
case S i 1 :

n e x t = S i + 1 ;
i f (! s t a t u s [7]) n x t = S j ;
break ;

15 . . .
}

}
}

} ;

(e) next state logic leaf

Listing 6.7: Custom hardware controller behavior hierarchy.

CHAPTER 6. BACKEND 158

Code GenerationCode Generation

Communication modelCommunication model

ISS modelISS model

GUIGUI

C modelC model

RTOS TargetingRTOS Targeting
RTOSRTOS

ISSISS

Figure 6.3: Software design flow.

For each programmable PE in the communication model, hardware and bus-functional component

layers will be replaced with structural descriptions of the actual PE hardware taken out of the PE

database. For simulation purposes, structural descriptions in the form of instruction set simulators

(ISS) are plugged into the system design model. For manufacturing purposes, on the other hand,

a gate-level netlist of the processor will be fed into the physical system design flow. Software in

the form of a final executable targeted towards the PE’s instruction set is then generated from the

HAL and layers above through C code generation, compilation, and linking against target RTOS

and processor libraries.

6.2.1 Overview

Figure 6.3 shows an overview of the software design flow [108, 107]. Software design

starts from a specification of the desired functionality to be implemented on the target processor as

given by the component models of programmable PEs in the communication model.

In a first code generation step, the behavior and channel hierarchy representing the soft-

ware application layer of the PE is converted into an equivalent ANSI C code description. Behaviors

and channels are translated into a corresponding C functional call hierarchy. The generated C code

is then re-imported into the system design model as a refined component model by wrapping the C

code into a behavior that replaces the original application layer model. In the resulting C model of

the PE, the application software is represented by its C code that can thus be validated.

The generated C code is then compiled into the target PE’s instruction set architecture

(ISA) using the standard ANSI C compiler available for the processor. To generate the final exe-

cutable, the compiled code is linked against customized RTOS and target processor HAL libraries.

During this RTOS targeting step, an actual RTOS has to be selected out of the RTOS database to

CHAPTER 6. BACKEND 159

implement necessary OS services on the processor. A customized version of the RTOS libraries is

generated by extending the kernel of the selected target RTOS with necessary drivers for commu-

nication with other PEs in the system. The RTOS kernel binary for the selected target RTOS in the

target processor’s object format is taken out of the RTOS database. Drivers are synthesized by gen-

erating and compiling target-specific driver code from the adapter channel hierarchy representing

the protocol stack in the communication model. Finally, a binary implementation of the hardware

abstraction layer (HAL) for the given target processor is taken out of the PE database and linked

against the code to supply the necessary HAL functionality.

The result of the software design process is the instruction set model of the PE. The spec-

ification of the desired software functionality has been converted into a binary executable running

on the target processor hardware. In the system design model, an instruction set simulation (ISS)

model of the processor is plugged into the system, replacing the behavioral PE model. The ISS

model simulates the execution of the generated executable on top of the PE’s hardware structure.

As such, it describes the processor behavior in a cycle- and bit-accurate manner.

6.2.1.1 Implementation Layers

At the input of the software design flow, processor models as part of the system com-

munication model (see Section 5.3.4.2) at the consist of several layers of functionality. During

software design, different layers and different parts inside each layer are implemented in different

ways depending on their characteristics and requirements.

Figure 6.4 shows the different parts of programmable processor models and their imple-

mentation on the target processor. At the bottom, a processor’s bus-functional and hardware layers

(HW) are implemented directly by the target processor’s hardware description. Hardware models

for processors taken out of the PE database come in the form of an ISS model for simulation and

a synthesizable or hard-coded netlist for manufacturing. A processor’s hardware implements its

instruction set architecture (ISA), its I/O interfaces and its interrupt handling capabilities.

The hardware abstraction layer (HAL) is then implemented in software on top of the

processor’s hardware model. It provides a canonical abstraction of the processor hardware at its

interface to higher software layers. A binary implementation of the HAL in the form of object

code for the target processor is stored together with the processor in the PE database. The targeted,

binary HAL implementation in the database is equivalent in its functionality and API to the abstract

HAL model imported out of the database during communication design (see Section 5.3.3.1). As

CHAPTER 6. BACKEND 160

HW Interrupts I/O ISA

HAL Media Access Runtime environmentInterrupt handlers

RTOS kernel

IPC

Network protocols

Interrupt tasks DriversOS

Channels
Task

Mgmt.

ComputationApplication

PE
database

RTOS libraries
(vendor)

RTOS
database

Code
(generated)

Figure 6.4: Software implementation layers.

such, it implements the assembly code for the media access layer and for the runtime environment

to initialize the processor. Furthermore, the HAL implementation provides templates for setting up

interrupt handlers. These templates are used and filled during RTOS targeting as part of generating

code for implementation of communication drivers.

At the core of the RTOS targeting task is the implementation of the OS layer in the pro-

cessor model. A binary kernel of the selected RTOS for the target processor is taken out of the

RTOS vendor database. The RTOS kernel implements basic multitasking and synchronization func-

tionality corresponding to the services provided by the abstract OS model inserted during system

scheduling (see Section 4.3.2). On top of the RTOS kernel, a compatibility layer implements the

exact interface of the abstract OS model for use by higher layers. Specifically, a library that is stored

together with the target RTOS in the RTOS database translates the API of the abstract OS model

(task management) into the API of the target RTOS kernel. Furthermore, functionality of standard

communication and synchronization channels is implemented through a library that maps channels

down to inter-process communication (IPC) mechanisms that are part of the RTOS kernel.

On top of the media access layer provided by the HAL implementation, higher layers of

the communication protocol stack are implemented by translating the adapter channels into C code

and by compiling the code into the target processor instruction set. The RTOS database contains

templates for setting up interrupt handling tasks on top of the target RTOS kernel. Together with

interrupt handler templates in the HAL implementation, task templates are used to implement the

necessary interrupt service functionality as part of communication driver synthesis.

Finally, as outlined previously, the application layer for the software in the processor

model is implemented through code generation and compilation on top of the services provided

CHAPTER 6. BACKEND 161

D
S

P
_B

F

PIC

D
S

P_
O

S

D
S

P_
H

A
L

D
S

P_
H

W

DSP

OSModel

ISR

(a) communication model

D
S

P
_B

F

PIC

D
S

P_
O

S

D
S

P_
H

A
L

D
S

P_
H

W

DSP_C

OSModel

ISR

DSP.c

(b) C model

D
S

P
_I

S
S

PIC

DSP.c

iss.h

Dsp.exe

HAL.o RTOS.a

drv.c

CLK

(c) implementation model

Figure 6.5: Software refinement.

by the OS layer implementation and on top of the processor’s ISA. In the final linking stage, the

compiled code is then hooked into the runtime environment provided by the HAL and RTOS imple-

mentations to start execution of the main() routine after processor and OS initialization.

6.2.1.2 Model Refinement

Gradual, stepwise refinement of PE component models during software design is shown

in Figure 6.5. As described previously, in the system communication model (Figure 6.5(a)),

programmable PEs are represented by application, OS, hardware abstraction, hardware and bus-

functional layers. The application layer contains the behavior and channel hierarchy describing the

tasks of the application software and their interaction. The OS layer contains the abstract OS model

managing and scheduling tasks, protocol adapter channels representing external interface drivers,

and interrupt handling tasks that communicate with protocol adapters through OS semaphores as

part of the bus drivers. The HAL contains low-level software for bus communication and interrupt

handlers for servicing incoming synchronization exceptions. The hardware layer contains a model

of the processor’s interrupt control logic together with adapter channels that model bus interface

protocol implementations in the processor’s hardware. Finally, the bus-functional layer contains

models of any additional, external interrupt controllers that are part of the processor.

During code generation, the SpecC behavior and channel hierarchy for the application

layer in the communication model is converted into an equivalent C description. In the refined C

model after code generation (Figure 6.5(b)), the generated C code is re-imported into the design,

replacing the original SpecC application layer model. A refined application layer is created by

wrapping and encapsulating the generated C code into a compatible SpecC behavior for re-import

CHAPTER 6. BACKEND 162

into the C design model. Inside the C model of the design, the generated C code then executes

on top of OS and outer layers using their services for task management, inter-task communication,

synchronization, and external bus communication.

In the final implementation model (Figure 6.5(c)), the component model of a pro-

grammable processor is replaced with an instruction set simulation model of the target processor.

The ISS runs the executable generated during RTOS targeting. The executable is generated by com-

pilation of application and driver C code and linking against HAL and RTOS libraries. The ISS

simulates execution of object code in a cycle-accurate manner on top of a structural model of the

processor’s microarchitecture. External instruction set simulators that provide a C level API are

wrapped into component behaviors in order to plug them into the system design model. The wrap-

per implements proper cycle timing and translation of I/O instructions into simulated bus cycles via

instances of adapter channels modeling bus protocols. Finally, the wrapper contains any necessary

models of external interrupt controllers that are not part of the ISS itself.

6.2.2 C Model

The C model is the result of translating the application software behavior and channel

hierarchy in the component model into an equivalent C description. In the generated application C

code (Listing 6.8), behavior and channel class definitions are converted into C struct definitions.

The behavior hierarchy is converted into a struct hierarchy (line 4 through line 19), child behavior

(line 17, line 18) and variable (line 15) instances are represented as struct members, and ports

are converted into struct pointer members (line 5 and line 10) [108, 107]. Methods of behaviors

and channels are converted into global C functions that accept a pointer to the instance struct to

operate on as their first parameter (line 21, line 27 and line 33). Finally, the corresponding instance

hierarchy is created through appropriate initialization of the top-level struct where pointers are

initialized to represent proper port mappings (line 40 through line 44).

In the C model, the generated C code is then plugged back into the system design model

by wrapping it into a component behavior model (Listing 6.9). The wrapper imports the C code by

including the generated C source file (line 2). Finally, it provides implementations of the external

bus driver functions (line 4 and line 7) that are declared as prototypes in the C code (Listing 6.8,

line 1 and line 2) by mapping them to calls of the corresponding adapter channel methods.

CHAPTER 6. BACKEND 163

void s e s s i o n s e n d (c o n s t vo id ∗ da ta , unsigned long l e n) ; / / d r i v e r method
void s e s s i o n r e c e i v e (void ∗ da ta , unsigned long l e n) ; / / d e c l a r a t i o n s

s t r u c t Coder { / / b e h a v i o r Coder
5 i n t ∗ v1 ; / / (o u t i n t v1)

. . . / / { . . . }
}

s t r u c t Decoder { / / b e h a v i o r Decoder
10 i n t ∗ v1 ; / / (i n i n t v1)

. . . / / { . . . }
}

s t r u c t DSP { / / b e h a v i o r DSP () {
15 i n t v1 ; / / i n t v1 ;

/ /
s t r u c t Coder c o d e r ; / / Coder coder (v1) ;
s t r u c t Decoder d e c o d e r ; / / Decoder decoder (v1) ;

}
20

void Coder main (s t r u c t Coder ∗ s e l f) { / / v o i d Coder . main (v o i d)
. . .
∗ (s e l f −>v1) = . . . ; / / p o r t a c c e s s
. . .

25 }

void Decoder main (s t r u c t Decoder ∗ s e l f) { / / v o i d Decoder . main (v o i d)
. . .
. . . = ∗ (s e l f −>v1) ; / / p o r t a c c e s s

30 . . .
}

void DSP main (s t r u c t DSP ∗ s e l f) { / / v o i d DSP . main (v o i d)
Coder main (&(s e l f −>c o d e r)) ;

35 Decoder main (&(s e l f −>d e c o d e r)) ;
}

void main (void)
{

40 s t r u c t DSP dsp = { / / I n s t a n t i a t i o n :
0 , / / v a r i a b l e i n i t i a l i z a t i o n
{ &(dsp . v1) , . . . } , / / Coder p o r t mapping , i n i t
{ &(dsp . v1) , . . . } / / Decoder p o r t mapping , i n i t

} ;
45

DSP main(& dsp) ;
}

Listing 6.8: Application software C code.

CHAPTER 6. BACKEND 164

behavior DSP C (i t r a n c e i v e r s e s s i o n) {
i n c l u d e ”DSP . c ”

void s e s s i o n s e n d (c o n s t vo id ∗ da ta , unsigned long l e n) {
5 s e s s i o n . send (da t a , l e n) ;

}
void s e s s i o n r e c e i v e (void ∗ da ta , unsigned long l e n) {

s e s s i o n . r e c e i v e (da t a , l e n) ;
}

10 } ;

Listing 6.9: Software C model.

6.2.3 Instruction Set Simulation Model

After compilation of application and driver C code into the processor’s instruction set, the

final executable for the target processor is generated during RTOS targeting by linking against target

processor and RTOS libraries. As a result, the system model is refined to insert an instruction set

simulation model of the processor running the generated executable.

Different levels of instruction set simulation of the executable are possible. In a compiled

instruction set simulation, each assembly instruction is translated into a set of C statements that

perform updates of a simulated processor state cycle by cycle [112]. This C code is then wrapped

into a behavior and plugged into the implementation model as a component model of the processor.

On the other hand, for interpreted instruction set simulation, the ISS model of the

programmable PE consists of a behavior that reads and interprets the instruction stream. Any

instruction-set simulator that supports a C-based API can be hooked into the simulation model

(Listing 6.10). The external ISS is wrapped into a behavior (line 5) that calls the ISS routines via

the ISS’s API (line 2). The core of the processor behavior is a loop which simulates one clock

cycle per iteration (line 20). The ISS’s exec() function fetches and decodes instructions, performs

the corresponding operations in each clock cycle, and updates the simulated processor state accord-

ingly (line 25). In a normal cycle, time in the simulator advances by one clock period and the

wrapper behavior synchronizes the ISS with the rest of the system by advancing SpecC logical time

accordingly (line 34).

In both cases of compiled or interpreted simulation, the simulation model of the processor

drives and samples the ports of the PE behavior based on the instruction stream executed. For each

I/O instruction, the PE ports are updated from the processor state and vice versa. For example,

interrupt input lines of the processor are updated in each cycle by sampling the corresponding input

port of the PE behavior (line 22 and line 23).

CHAPTER 6. BACKEND 165

/ / ISS C / C++ i n t e r f a c e
i n c l u d e ” i s s . h ”

/ / I n s t r u c t i o n S e t S i m u l a t o r (ISS)
5 behavior Dsp ISS (s i g n a l b i t [3 1 : 0] Addr , / / bus

s i g n a l b i t [3 1 : 0] Data ,
s i g n a l b i t [3] C t r l ,

in s i g n a l b i t [1] in tA , / / i n t e r r u p t s
in s i g n a l b i t [1] in tB ,

10 in s i g n a l b i t [1] in tC ,
in s i g n a l b i t [1] i n tD)

{
Maste r p r o t o c o l (Addr , Data , C t r l) ; / / bus i n t e r f a c e p r o t o c o l

15 void main (void)
{

i s s . s t a r t u p () ; / / i n i t i a l i z e ISS , l oad program
i s s . l o a d (” a . o u t ”) ;

20 whi le (t rue) / / run s i m u l a t i o n
{

i s s . i n tA = in tA ; i s s . i n t B = i n t B ; / / d r i v e ISS i n p u t s
i s s . i n t C = i n t C ; i s s . i n tD = in tD ;

25 i s s . exec () ; / / run DSP c y c l e

i f (i s s . IR = = MOVEM RD) { / / s i m u l a t e bus c y c l e
p r o t o c o l . mas te rRead (i s s . Addr , & i s s . Data) ;

}
30 e l s e i f (i s s . IR = = MOVEM WR) {

p r o t o c o l . m a s t e r W r i t e (i s s . Addr , i s s . Data) ;
}
e l s e { / / advance t i m e

w a i t f o r (DSP CLOCK PERIOD) ;
35 }

}
}

} ;

Listing 6.10: Instruction set simulation (ISS) model.

Any special bus interface hardware of the processor is simulated through corresponding

protocol adapters. The ISS model instantiates the necessary protocol adapter channels to simulate

the processor’s bus transactions (line 13). For every I/O instruction encountered in the instruction

stream (line 27 and line 30), the corresponding method in the bus adapter is called (line 28 and

line 31). For that I/O instruction, the protocol adapter simulates the timing-accurate driving and

sampling of bus wires by the processor hardware. Note that protocol adapters are equivalent to the

protocol layer in the the communication model.

CHAPTER 6. BACKEND 166

Design step Design decisions Model transformations
RTL

preprocessing
None

(a) Source-level optimization
(b) SFSMD generation

H
ar

dw
ar

e
de

si
gn

RTL
synthesis

(a) RT unit allocation:
RT = set of (name,type) tuples

(b) Scheduling function φ:
set of statements E 7→ Z

∗,φ(e) = step
(c) Operation binding function β:

E 7→ RT,β(e) = functional unit FU
(d) Storage binding function γ:

E 7→ RT ×RT ×RT ,
γ(e) = (dst,src1,src2)

(e) Bus binding function δ:
E ×{0,1,2} 7→ Z

∗×RT ×Z
∗,

δ(e, trans f er) = (outport,bus,inport)

(a) State splitting
(b) FU insertion
(c) RF & memory insertion
(d) Bus insertion
(e) Netlist generation

So
ft

w
ar

e
de

si
gn Code

generation
None

(a) C code generation
(b) C code wrapping

RTOS
targeting

(a) RTOS selection:
rtos : PE 7→ set of targets RTOS

(a) Driver code generation
(b) HAL customization
(c) Compilation & linking

Table 6.2: Backend design steps.

6.3 Summary

In this chapter, an overview and description of the backend design process has been given.

Starting from behavioral component models in the system communication model, cycle-accurate,

structural implementations of components on the register-transfer and instruction-set level are de-

rived through hardware and software design. In the final implementation model, components are

then ready for further implementation down to manufacturing through traditional logical and phys-

ical design processes.

The contributions of this chapter include a definition of steps and models for backend

design, providing a path to implementation and connecting the system design flow to physical design

and manufacturing. For each aspect of components and for each part of their models, clear design

flow mapping desired functionality down to an implementation has been shown. Design steps,

design decisions and model transformations (summarized in Table 6.2) have been defined to provide

a flow that supports both automated and interactive design for rapid and efficient design space

exploration under the control of the designer. Furthermore, software and hardware backend design

CHAPTER 6. BACKEND 167

flows have been broken into individual steps and corresponding intermediate design models that

enable early validation of critical issues, transparency of the design process, and automation of

model generation and decision making.

Chapter 7

Design Environment

The system design flow and methodology presented in the previous chapters has been im-

plemented in the form of the SoC Design Environment (SCE) that integrates a set of tools under a

common framework and user interface. With the environment, the design flow has been automated

to a large extent and aids have been provided that steer and guide the user through the design pro-

cess. As part of developing the design flow within the scope of this work, we defined the overall

framework of the design environment including architecture, organization, tool flow, design model

management, interfaces, and databases. Furthermore, we developed textual and graphical user in-

terfaces for model visualization and decision entry. As a result, the design environment proves the

feasibility and effectiveness of a seamless, automated design flow from abstract specification down

to implementation.

In the rest of this chapter, we will described the details of the implementation of the de-

sign environment framework, including its architecture, infrastructure, tool flow, and user interface.

Following an overview of the design environment in Section 7.1, implementation of specification

capture, profiling and estimation, computation design, communication design and backend design

tasks will be shown in Section 7.2 through Section 7.7.

7.1 Overview

Figure 7.1 shows the overall architecture and tool flow of the SoC Design Environment

(SCE) [1, 46]. The design environment integrates a set of tools under a common framework and

user interface. Furthermore, SCE includes a set of databases that contain models and attributes of

different components needed throughout the design flow.

168

CHAPTER 7. DESIGN ENVIRONMENT 169

Validation
User Interface (VUI)

Specification Model

Arch. Refinement

Capture

Partitioning decisions
PE Allocation

Beh./Var. Mapping

Refinement
User Interface (RUI)

Source Editing

Visualization

Analysis

Compilation

ProfilingPE SimulationArch. Synthesis

Partitioned Model

Sched. Refinement

Scheduling decisions
Beh. Scheduling

OS Selection

Visualization

Analysis
ProfilingOS SimulationSched. Synthesis

Architecture Model

Net. Refinement

Network decisions
Network Topology

Channel Routing

Visualization

Analysis
ProfilingCE SimulationNet. Synthesis

Link Model

Comm. Refinement

Link decisions
Bus Selection

Link Parameters

Visualization

Analysis
ProfilingBus SimulationComm. Synthesis

Communication Model Visualization

AnalysisProfiling Simulation

RTL Preprocessing C Code Generation

SFSMD Model C Model
RTL decisions

RTL Allocation

Sched. & Binding RTL
RTL Synthesis

RTL Refinement ISS Refinement

Implementation Model

Simulation

Analysis

VisualizationRTOS Selection

RTOS

Figure 7.1: SCE tool flow and architecture.

Individual tools inside SCE are command line tools that are invoked by the framework

under the control of the user. All tools operate on and exchange data solely by reading and writing

system design models stored in the framework’s model database, i.e. all design data is exchanged

between tools inside SCE exclusively in the form of design models. Design models hold all the

information available about a design at a certain stage of the design process. Inside SCE, design

models are stored and exchanged in SIR (SpecC Internal Representation [24]) format as binary SIR

files on disk. SIR files of different design models that are part of a common project are organized

and managed through SCE’s model database. Apart from the actual design models, tools exchange

all necessary meta-data through persistent annotations attached to the design entities in the SIR files.

With support of the SpecC compiler [25, 26] integrated into the environment, SpecC

source code for design models is translated into SIR files and back. Therefore, at any point of

CHAPTER 7. DESIGN ENVIRONMENT 170

the design flow source code can be imported into and exported out of SCE to allow source capture,

browsing and modifications by the user. Specifically, at the specification level, source code captured

by the designer is compiled into a specification model as the start of the design process.

7.1.1 Simulation

Through the SpecC compiler (scc), design models are compiled into executables for

validation through simulation at any stage of the design process. The SpecC compiler translates

SIR files into C++ code for simulation, compiles the code using a standard C++ compiler, and links

the binaries against the SpecC simulation kernel [25, 26, 113]. In the environment, the compiled

code is then executed on the host machine for simulation of design models.

7.1.2 Profiling

For feedback about design quality metrics, the environment integrates a system profiling

and estimation tool (scprof, see Section 7.3). By combining dynamic profiling data obtained

during simulation, abstract estimation models of target components taken out of the databases, and

static analysis of design models, the profiler computes a variety of design quality metrics at ev-

ery stage in the design process. Furthermore, to aid the designer in the design process, profiling

and estimation derive both implementation-independent specification metrics and target-dependent

implementation metrics. Within the environment, data and metrics obtained during profiling are

back-annotated into and stored together with the design models. From there, selected metrics are

extracted and prepared for visualization through the environment’s user interface as requested by

the designer.

7.1.3 Refinement

For automatic refinement of design models following the set of design steps described

in the previous chapters, the environment integrates tools for architecture refinement (scar [82])

and RTOS refinement (scos [50, 109]), network and communication refinement (scnr and sccr

[42, 2]), and hardware (scrtl [88]) and software (sc2c [108]) refinement. Within the environ-

ment, design decisions are stored and passed to the refinement tools as design model annotations.

The refinement tools then read a design model including annotated design decisions, import the

necessary component models out of the database and implement the given decisions to generate the

refined system design model at the next lower level.

CHAPTER 7. DESIGN ENVIRONMENT 171

7.1.4 Synthesis

Via a plugin mechanism, an unlimited number of external synthesis tools can be integrated

into the environment. The environment supports synthesis tools for automatic decision making at all

stages of the design process. Through plugins, synthesis tools are dynamically loaded and integrated

into the framework at runtime. Under the control of the user, synthesis plugins can be applied to all

or parts of a design. The environment will then execute the synthesis tool on the chosen design and

the tool will annotate the design decisions back into the design model. By plugging in additional

new synthesis algorithms, the environment can easily be extended at any time, giving anybody the

flexibility to adapt the environment to new technologies.

7.1.5 User Interface

The design environment integrates the different tools and databases under a common

framework through both a textual (scsh) and graphical (sce) user interface. In both cases, de-

signers can manipulate design models, make design decisions, browse databases, view simulation,

profiling and estimation results, and finally apply refinement, exploration, and synthesis tools.

For scripting of the design process through a textual interface, the environment provides

an interactive shell. The SCE shell reads and executes commands from a terminal or a script. Syntax

and semantics of SCE shell commands are based on the the Python scripting language [97, 31]. At

the core of the shell is a Python interpreter that has been extended with an API that provides access

to the core functionality of the design environment. Therefore, the SCE shell allows full control

of the core framework via an object-oriented Python API with the full power and flexibility of the

Python language.

Finally, the design environment provides a unified graphical user interface (GUI) for re-

finement and validation. The goal of the GUI is to provide effective visualization of design data and

decision entry to guide, steer, and aid the designer in rapid design space exploration [83, 5]. The

GUI has been implemented in Python using the PyQt [85, 73] Python wrapper for the Qt toolkit and

widget library [8, 61].

A screenshot of the core SCE GUI is shown in Figure 7.2. Apart from menubar, toolbar

and statusbar, the basic GUI area is divided into three parts: a project window on the left, an output

window at the bottom, and a main workspace. The project window shows and manages all the design

models, imports, and source files in the current project. The output window logs diagnostic and error

output from running the various external compilation, simulation, analysis, and refinement tools,

CHAPTER 7. DESIGN ENVIRONMENT 172

Figure 7.2: SCE graphical user interface (GUI).

and it provides access to an interactive SCE shell for issuing commands. Finally, the workspace

acts as a container for design windows of various design models that are open at the same time.

As shown in the screenshot, a design window provides a basic representation of the entities in a

design for browsing and access. It is split into a sidebar and a viewpane. The sidebar shows the

instance hierarchy of behaviors (and optionally variables and channels) plus a list of behavior and

channel classes in the design. The viewpane then shows additional information about the currently

selected design entity and its members (list of subbehavior, channel, and variable instances, ports,

and methods).

In the following sections, additional aspects and screenshots of the SCE graphical user

interface will be shown as they apply to the implementation of the various design tasks.

CHAPTER 7. DESIGN ENVIRONMENT 173

7.2 Specification Capture

Specification capture is the first task in the design process. At the input of the design

flow, a specification model has to be developed and entered by the designer [45]. As the golden

model for the whole system design, a specification has to describe the desired system behavior in

a functionally correct manner. Furthermore, as design quality can depend to a large part on the

characteristics of the specification (see Chapter 3), a specification has to optimized to balance and

evaluate possible trade-offs in an iterative process.

The design environment supports the designer in this process by providing user interfaces

for modeling of design functionality and for validation through simulation. Note that even though

these parts of the environment are most important at the specification level, modeling and simulation

features will be used for visualization and validation of all design models throughout the flow.

7.2.1 Modeling

The design environment supports design modeling by providing capabilities for editing of

source code, manipulation of design entities, and visualization of design hierarchies. To that effect,

the environment provides a variety of different views of data in a design model. As introduced in

Section 7.1.5, the core view of a design model for basic browsing and manipulation is its design

window with sidebar and viewpane. The design window allows browsing of the design hierarchy

and access to information about all entities in the design. Furthermore, the design window supports

editing of design models through (context or main) menu actions and drag-and-drop to instantiate,

delete, rename, move, flatten, isolate, wrap, or change type (plug-and-play) of design entities and

whole design hierarchies.

In addition to basic design windows, the environment integrates source code and graphical

views of design models (Figure 7.3). Through the SpecC editor, source code of design models can

be browsed and manipulated at any time. With the help of the SpecC compiler, the environment

automatically translates the internal SIR format of design models into SpecC source code and back.

Furthermore, whole design models can be read (opened) from or stored (saved) in SpecC source

format for import or export of externally developed and exchanged designs, allowing specification

capture outside of the environment or facilitating easy exchange of design models in a canonical

format. In addition, parts or all of a design can be imported and exported in binary format for model

reuse and IP exchange.

CHAPTER 7. DESIGN ENVIRONMENT 174

Figure 7.3: Model capture and browsing.

A graphical representation of design models is available in the environment in the form of

SpecC hierarchy charts. SpecC charts show the behavioral hierarchy of a design, i.e. composition

of a behavior in time out of subbehaviors and transitions between them (see Figure 7.3 on the left).

Starting from a top behavior, chart views can show multiple levels of hierarchy where the user can

selectively add or remove levels of nesting. In addition, charts can optionally display the structural

hierarchy of behaviors, i.e. connectivity of subbehaviors and their ports via channels, variables,

and ports of the parent (Figure 7.3 on the right). In summary, chart views can provide a complete

graphical visualization of SpecC models which aid the designer in understanding and optimization

of designs.

7.2.2 Simulation

After capture or refinement of designs, models need to be validated in order to ensure

functional (and timing) correctness. The environment supports validation through simulation via

CHAPTER 7. DESIGN ENVIRONMENT 175

Figure 7.4: Simulation output and traces.

the SpecC compiler and simulator. At any time, design models can be compiled into simulation

executables that can then be executed for simulation. As shown in Figure 7.4 on the left, executables

can be run in an interactive terminal that captures simulation input and output. In addition, the

environment supports background execution of simulation with optional logging of output in a file

and log file viewer.

The SpecC simulator allows generation of traces of simulation runs during execution. In-

side the environment, simulation traces can then be visualized (see Figure 7.4 on the right) to show

the order of behavior and channel executions, values of variables and signals, and other simulation

events over (logical) time. With the help of simulation traces, specifications and refined low-level

design models can be debugged and analyzed to isolate problems and to optimize the design hier-

archy. For example, to minimize slack and maximize utilization during scheduling, balancing of

parallel behavior executions is easily achieved with the help of graphical trace views.

CHAPTER 7. DESIGN ENVIRONMENT 176

7.3 Profiling and Estimation

A critical aspect of any design process is the feedback about design quality metrics based

on which designers can make decisions. In order to enable rapid design space exploration, estima-

tion of metrics must be fast while providing accurate results in the sense that they are relevant and

useful for evaluating and comparing alternatives. At high levels of abstraction, however, absolute

accuracy is not of utmost importance but relative accuracy, so-called fidelity [68], is sufficient to

prune the initial design space of infeasible alternatives.

Profiling that is part of the SoC design environment is based on a unique combination of

dynamic profiling and static retargeting [12, 13, 11]. Initial profiling derives the characteristics of

the application through simulation of the design specification. By then coupling application profiles

with target characteristics based on the designer’s application-architecture mapping, profiling is

retargetable for static co-estimation of complete system designs in linear time without the need for

time consuming re-simulation or re-profiling.

7.3.1 Profiling Flow

Figure 7.5 shows the flow of the profiling and estimation methodology in the design en-

vironment [12, 13, 11]. As design progress the design space is gradually trimmed and pruned of

unsuitable design alternatives through profiling, retargeting, and simulation/estimation stages, until

a final solution is reached.

In the dynamic profiling stage, the specification is instrumented and simulated to collect

execution counts that capture the dynamic behavior of the application at the basic block level (NBB).

Using the counters collected during simulation together with a static analysis of the code, a profiling

of the specification then computes the specification characteristics. Specification characteristics

are implementation-independent and provide information about the inherent characteristics of the

application. Based on these specification characteristics, the design space can be reduced to a large

part. For example, if the specification does not contain any floating point operations, allocating

dedicated floating point processors is counterproductive.

In the retargeting stage, designers allocate a target architecture of processing elements

(PEs) connected via busses and map the computation and communication in the specification onto

PEs and busses by matching specification characteristics and component attributes. A static retar-

geting of the specification then computes the implementation characteristics for computation and

communication by coupling the design decisions and specification characteristics. These character-

CHAPTER 7. DESIGN ENVIRONMENT 177

Specification

Refined
model

Back
annotation

Refining

Instrumenting

Profiling

Retargeting

Simulation

Instrumented
model

Simulation

Specification
characteristics

Cntr

Implementation
characteristics

Implementation
estimates

Comp.
library

GUIEstimationRefinement

Design
decisions

P
r o

fil
i n

g
R

et
ar

ge
t in

g
S

im
ul

at
i o

n-
es

tim
at

io
n

Estimation

Figure 7.5: Profiling and estimation flow.

istics are implementation-dependent and represent the characteristics of the system design reflecting

the designer’s decisions. In an iterative process, the retargeting stage is executed repeatedly for dif-

ferent decisions in order to prune the design space of unpromising design alternatives. Because

retargeting is a fast, purely static analysis, it enables designers to explore many alternatives and trim

a large part of the design space in a short amount of time.

Finally, the most promising design alternatives remaining after the retargeting stage are

then evaluated further in the simulation/estimation stage. Implementation characteristics are back-

annotated into the design models created through refinement. Accurate implementation estimates

for the design alternatives can then be obtained by simulating refined design models or through

traditional estimation approaches. Implementation estimates provide the accuracy of traditional

simulation- or estimation-based approaches at the expense of time-consuming simulation or analysis

of each design alternative. However, as the design space has been reduced down to a few alternatives

through profiling and retargeting, exhaustive simulation and analysis becomes feasible.

7.3.2 Metrics

The design environment compiles the raw data delivered by the profiler into a variety of

quality metrics that allow evaluation of different aspects at different stages of the design process.

CHAPTER 7. DESIGN ENVIRONMENT 178

7.3.2.1 Profiling Data

The profiler computes the specification characteristics for each computation and commu-

nication entity in the specification. Raw profiling data from the profiler is a matrix of values ri,d over

item types i and (standard and user-defined) data types d attached to each behavior, variable, and

channel in the design. Characteristics are computed hierarchically by summation over the character-

istics of an entity’s children. Profiling supports three categories of data with different item types and

with static and dynamic types in each category where static characteristics are derived directly from

the code of the model whereas dynamic characteristics depend on data collected during simulation:

Operation Profiles Operation characteristics represent the complexity of the computation in the

specification. They are attached to behaviors as the computational units of the system. Item

types for operation profiles are standard and custom operators in the code where global func-

tions can be designated as custom operations by the user. Data types for operation profiles

are determined by the result type of the operation. Static operation data (code profile) relates

to code size whereas dynamic data (computation profile) represents the amount of operations

executed during simulation and is hence related to performance.

Traffic Profiles Traffic characteristics represent the complexity of the communication in the speci-

fication. They are attached to shared variables and channels connecting to ports of behaviors.

Traffic profiles distinguish direction of traffic via corresponding input and output item types.

Static traffic data (connection profile) relates to the static connectivity of entities whereas

dynamic traffic data (traffic profile) represents the amount of data transfered during runtime.

Storage Profiles Storage characteristics represent the amount of memory required to hold the sys-

tem’s data. They are attached to variables and behaviors acting as containers for variables.

Item types for storage profiles distinguish between local and global storage. Static storage

data (data profile) represents memory allocated over the whole lifetime of the system whereas

dynamic storage data (heap profile) relates to dynamically allocated stack and heap memory.

During retargeting, the profiler combines raw specification characteristics with target component

attributes to derive implementation characteristics. Implementation characteristics

ei,d = ri,d ×wt
i,d

are computed by multiplying specification characteristics ri,d with weights wt
i,d for a mapping of the

design entity to target component t. Weight tables are defined for each component in the database.

CHAPTER 7. DESIGN ENVIRONMENT 179

Figure 7.6: Weight table editor.

Depending on the component, they can be derived from the component’s data sheet or from accurate

simulations of selected, typical code kernels on the target component. In addition to the standard

weights for basic data and item types stored in the database, the designer can manually tune weights

for retargeting through a corresponding user interface (Figure 7.6). Furthermore, the designer can

specify weights for custom data and item types collected during profiling instead of mapping them

down to the basic data and item types they are composed of.

Similar to specification characteristics, implementation characteristics are computed hier-

archically by adding implementation characteristics of children at each level. Retargeting supports

two modes for hierarchical computation: analysis mode and estimation mode. The analysis mode

provides mapping-independent results. It computes characteristics for each entity on each allocated

component assuming that the whole entity (including children) is mapped to the target component.

Results can be used by designers after allocation to select the most appropriate component to map

each entity to. Estimation mode, on the other hand, computes characteristics based on both allo-

cation and mapping decisions. For each entity, it generates characteristics on each target for those

parts of the entity that are mapped onto this component. Results can therefore be used to evaluate

mapping decisions.

CHAPTER 7. DESIGN ENVIRONMENT 180

7.3.2.2 Design Metrics

Given the raw profiling data, the design environment computes a set of design quality

metrics for each category and type of data. Metrics are organized hierarchically where a hierarchical

metric

M = ∑
n

cn

is computed as the sum over its child elements cn. For a hierarchical metric, the metric is defined

by the set of its child metrics. For metrics at the leaves of the hierarchy, the set of child elements is

defined as a subset of specification or implementation characteristics. Leaf metrics

M = ∑
i

∑
d

(mi,d × ei,d)

are computed as sums over subsets of characteristics ri,d or ei,d (resulting in specification or im-

plementation metrics, respectively). Subsets and hence metrics are defined via masks mi,d ∈ 0,1

applied during summation.

The design environment defines a hierarchy of standard metrics that cover all types and

categories of profiling data. Standard metrics hierarchically organize metrics into useful and stan-

dard subcategories and subtypes. For example, computation is divided into ALU, memory access,

and control operations where ALU operations are further subdivided according to data type (inte-

ger, floating point) and for each data type into arithmetic, logic, shift, and comparison operations.

In addition to standard metrics, user-defined metrics are supported through a user interface that al-

lows the designer to define custom masks for leaf metrics or custom sets of children for hierarchical

metrics.

7.3.3 Visualization

In order to organize and present profiling and estimation data in an easily comprehensible

manner, the design environment supports several different ways of displaying design data that can

be used at different stages of the design process. Basic displays of individual design metrics are used

throughout the design flow whereas special displays for connectivity and design quality provide a

focused summary of critical information for selected steps in the design flow.

7.3.3.1 Design Metrics

The design environment provides a variety of ways to visualize individual design quality

metrics (Figure 7.7). At the basic level, the viewpane of the design window shows metrics for the

CHAPTER 7. DESIGN ENVIRONMENT 181

Figure 7.7: Visualization of design metrics.

currently selected design entitity and its members. The viewpane has columns for all currently ac-

tive metrics where the user can customize the display by activating/deactivating metrics, reordering

columns, and sorting viewpane rows by columns. If implementation characteristics are available

after retargeting in either analysis or evaluation mode, the viewpane will have tabs for raw specifi-

cation metrics and for all allocated target components. Target component tabs show implementation

metrics for the currently selected entity on the respective target.

As shown in the screenshot, the environment supports visualization of metrics in the form

of bar graphs for static and dynamic operation, traffic, and storage profiles. Bar graphs show the

profile of metrics for the set of currently selected design entities where the user can select multiple

design entities in the sidebar of the design window. A bar graph can chart either raw specifica-

tion metrics or, if available, implementation metrics for selected design entities on all possible

(allocated) target components. Hence, the graphs facilitate comparison between entities and their

implementation on different targets.

CHAPTER 7. DESIGN ENVIRONMENT 182

Figure 7.8: Connectivity display.

For hierarchical metrics, the environment can display the composition of the metric out

of its children in the form of a pie chart. A pie chart shows the contribution of a child metric to

its overall parent metric as either percentages, fractions, or actual values. The user can graphically

navigate the metric hierarchy and open new pie chart windows by double-clicking on individual

bars or pies in an already visible graph or chart.

7.3.3.2 Connectivity

The user interface of the design environment includes a connectivity display that focuses

on showing data related to communication between different entities inside one level of hierarchy

in the design (Figure 7.8). The connectivity display is arranged as a matrix of computational objects

(behaviors) over communication objects (variables or channels). The matrix shows either simple

connectivity information or raw or targeted traffic results from design profiling or estimation. In both

cases, the connectivity display highlights the direction of data flow through appropriate coloring. In

addition, the display can compress the data into a simplified matrix that only shows a summary of

connectivity or traffic between behaviors.

CHAPTER 7. DESIGN ENVIRONMENT 183

Figure 7.9: Design quality dialog.

7.3.3.3 Design Quality

A summary of the most important metrics for a whole design is available through the

design quality dialog in the environment’s user interface (Figure 7.9). The design quality dialog

shows overall attributes like utilization, size, delay, power, or cost for implementation of the system

design on the chosen target architecture consisting of PEs and busses. Using the quality dialog, the

designer can quickly evaluate the effect of design decisions on the overall quality of the design.

7.4 Databases

Part of the design environment are mandatory databases for processing elements (hard-

ware and software processors, memories, IPs), communication elements (transducers, bridges, ar-

biters), busses (communication media in general) and RT units (register files, functional units, mem-

ories, interconnect) that are needed for partitioning, network, communication link and hardware

design tasks throughout the design flow [43]. All databases inside SCE are based on a common,

general, canonical format. Furthermore, a common, standard user interface for allocation and selec-

tion of components out of the databases is used throughout the design flow.

7.4.1 Database Format

SCE databases are stored as SIR files on disk. Therefore, the format of the databases is

based on the SpecC syntax. The SpecC source code for each database must be compiled into SIR

files using the SpecC compiler such that it can be used by SCE.

CHAPTER 7. DESIGN ENVIRONMENT 184

7.4.1.1 Database Organization

For each database, there is exactly one top-level SIR file. The top-level database SIR acts

as a container for all components stored in the database. The database SIR includes components

through import of individual component SIR files where component SIR files are stored in the same

directory as or a sub-directory of the directory the database SIR is located in.

Each component in the database is stored in a separate SIR file. Component SIRs will

be imported by SCE as needed throughout the design flow. Therefore, component SIRs must be

self-contained. Furthermore, in case of parameterizable components, the component source code

must be made available as part of the database, too.

In case of components with multiple models at different levels of abstraction, each model

can be stored in a separate SIR file as long as the top-level database SIR contains all component

models through direct or indirect import. In those cases, the basic component model used during

allocation will contain pointers to other models (in the form of annotations) and SCE will import

those models when needed in the design flow. The advantage of separate component files is that at

any stage of the design flow, the system design will not contain any yet unused component models.

7.4.1.2 Component Format

Components are described by SpecC objects (behaviors or channels) in the SCE

databases. Depending on the database, part or all of the functionality of a component is described

through the SpecC code of the component object. As needed, component objects can be hierarchi-

cally composed out of other SpecC objects stored together with the top-level object in the database.

On top of SpecC code to describe functionality, additional meta-information about each

component is stored in the database in the form of SpecC annotations attached to the component

object. Apart from general annotations for database management, components generally have at-

tributes, parameters, and profiling weight tables.

Attributes Component attributes describe characteristics or metrics for a component. Attributes

of a component are stored as annotations attached to the component object under different keys or

names as defined by the database. An attribute is either a simple annotation giving a fixed attribute

value or a complex annotation describing a range of possible values for an adjustable attribute.

For an adjustable attribute, the system designer will be allowed to tune the attribute value during

allocation inside SCE within the range defined by the annotation.

CHAPTER 7. DESIGN ENVIRONMENT 185

Parameters All components in the SCE databases can be parameterizable. Components are made

parameterizable by attaching a special annotation to them. The annotation specifies a list of param-

eters where each parameter is defined by its name, default value, range of possible values, unit and

description. For a parameterized component, the system designer selects values for each of the

component’s parameters during allocation. The design environment will then supply the param-

eter values to the SpecC design generator to generate application-specific implementations of the

component for use in the design as needed.

Weight Tables Component weight tables describe the special characteristics of a component

which are used during the retargeting stage of profiling and estimation (see Section 7.3.2.1). Weight

tables are attached to component objects as sets of annotations that define the rows and columns of

the component’s weight matrix. In general, a component can have static and dynamic operation,

traffic, and storage weight tables corresponding to the calculation of respective implementation

characteristics in the profiler. In all cases, a weight table is a matrix of weighting factors over data

and item types as defined by the profiling data category they apply to.

In the case of storage weights, weight tables can be automatically calculated by the de-

sign environment from appropriate memory component attributes. If no storage weight tables are

supplied by the database, the environment will compute storage weights based on size and align-

ment tables attached to the memory. Size and alignment tables in the database define the layout of

standard data types in the given memory. Given the size and alignment information, storage require-

ments for all standard and custom data types in the design are computed as input to the profiler.

7.4.2 Allocation and Selection

The design environment supports interactive component allocation and selection by the

designer via textual and graphical user interfaces. For the textual user interface, the environment

provides corresponding APIs as part of the SCE shell. In addition, a pre-coded script that imple-

ments a comprehensive command line interface for allocation and selection is available.

Allocation and selection of components out of the databases through the environment’s

graphical user interface is performed via corresponding component allocation and database browser

dialogs (Figure 7.10). An allocation dialog shows the list of currently allocated components. In the

dialog, designers can rename components and change values of adjustable component attributes.

Components can be added, copied, or removed via respective buttons.

CHAPTER 7. DESIGN ENVIRONMENT 186

Figure 7.10: Database browser and component allocation.

Adding a component opens the database browser dialog. The database browser shows a

list of all components in the database, organized by their categories. In order to support selection

and searching, all relevant attributes of component are shown and lists can be sorted by any attribute.

Selecting a component will add an instance of the component to the list of allocated components

in the allocation dialog. In case of parameterizable components, a dialog will pop up where the

designer can set component parameters used for allocation.

7.5 Computation Design

The design environment provides textual and graphical user interfaces for partitioning and

scheduling within computation design (see Chapter 4). The textual interface consists of correspond-

ing APIs inside the SCE shell and pre-coded, comprehensive command line scripts for partitioning

and scheduling.

CHAPTER 7. DESIGN ENVIRONMENT 187

Figure 7.11: Behavior and variable mapping.

7.5.1 Partitioning

Partitioning requires mapping of behaviors and channels in the design onto previously

allocated processor and memory PEs (Section 4.2). The allocation and mapping decisions are then

annotated into the design as input to partitioning refinement. Allocation and selection of PEs out of

the PE database is implemented based on the general database framework inside the environment

described in Section 7.4.

After PE allocation and selection, mapping of behaviors and variables in the graphical

user interface (Figure 7.11) is supported through the instance hierarchy tree in the sidebar of the

design window. An additional column shows mapping of instances to PEs and allows the designer

to select the target component for each behavior and variable instance. By default (no mapping),

instances are mapped to the same target PE as their parent. The currently selected mapping is further

highlighted by coloring behavior and variable types according their PE mapping.

CHAPTER 7. DESIGN ENVIRONMENT 188

Figure 7.12: Scheduling dialog.

7.5.2 Scheduling

Scheduling requires serialization of behavior execution inside PEs. For software proces-

sors, static or dynamic scheduling is possible whereas custom hardware PEs have to be scheduled

statically. Scheduling decisions about the order of subbehavior executions, task parameters, etc. are

annotated to the behaviors inside PEs for input to scheduling refinement tools.

Scheduling through the graphical user interface is performed via a scheduling dialog (Fig-

ure 7.12). The scheduling dialog contains tabs for each PE in the system. Each tab shows the

instance hierarchy tree of behaviors inside the corresponding PE where the designer can serialize,

flatten, and reorder individual behaviors or whole behavior trees through context menus and drag-

and-drop. In case of software processors, the designer can optionally select the dynamic scheduling

strategy to be implemented on the PE. If dynamic scheduling is requested, task parameters can be

assigned to concurrent behaviors through additional columns in the hierarchy tree.

7.6 Communication Design

Communication design consists of network and communication link design tasks (see

Chapter 5) which are supported by the design environment through corresponding textual and graph-

ical user interfaces. Similar to computation design, the textual user interface for communication

design includes necessary APIs as part of the SCE shell and pre-coded, comprehensive command

line scripts for bus allocation and channel mapping.

CHAPTER 7. DESIGN ENVIRONMENT 189

Figure 7.13: Channel routing.

7.6.1 Network Design

Network design requires definition of the overall system network topology and the rout-

ing of application channels over this network (Section 5.2). The network topology is defined by

allocating communication media and additional transducer and bridge components out of the bus

and CE databases, respectively. Allocation and selection of busses and CEs in the environment is

accomplished using the general database framework introduced in Section 7.4. However, to allow

allocation of both, the network allocation dialog contains separate tabs for bus and CE allocation.

Furthermore, as part of bus allocation, connectivity of PEs and CEs to busses including the type of

connection (master/slave) can be defined in the dialog.

In order to allow the definition of channel routing over allocated system network busses,

channel mapping is supported in the graphical user interface similar to mapping of behaviors and

variables to PEs. Hence, an additional column in the hierarchy tree of the design window sidebar

CHAPTER 7. DESIGN ENVIRONMENT 190

Figure 7.14: Link parameter dialog.

shows the mapping of channels to busses and allows the designer to define the routing of each

channel (Figure 7.13). In this case, the designer defines mapping as an ordered list of busses over

which all data of the channel will be routed.

7.6.2 Link Design

Communication link design requires selection of arbitration, addressing, and interrupt

handling schemes on each medium in the system network (Section 5.3). For arbitration, corre-

sponding arbitration protocols are part of and inserted together with communication media during

bus allocation. As part of defining connectivity of PEs and CEs to busses, priorities of masters

on the bus are assigned. In case of centralized media arbitration protocols, the designer has to al-

locate and connect arbiter components out of the CE database as part of network allocation (see

Section 7.6.1). Similarly, as part of CE allocation, the designer can allocate and connect additional

interrupt controller components for implementation of interrupt handling.

For implementation of communication links, addresses and interrupts have to be selected

for all links on a medium. To this effect, a dialog is available in the graphical user interface that

allows assignment of such link parameters (Figure 7.14). The dialog has tabs for each medium in

the system. Each bus tab lists all logical communication links on that physical medium. Parameters

for each link are shown and can be set in the respective columns.

7.7 Backend

The backend design process consists of hardware and software design tasks (see Chap-

ter 6) where the environment provides corresponding textual and graphical user interfaces, analysis

tools, refinement tools, and synthesis plugins.

CHAPTER 7. DESIGN ENVIRONMENT 191

Figure 7.15: RTL scheduling and binding dialog.

7.7.1 Hardware Design

Hardware design generally requires allocation, scheduling and binding steps (Section 6.1).

Allocation and selection of RT units out of the RTL database in the environment is based on the

general database framework described in Section 7.4. In the case of RTL allocation, however, the

allocation dialog contains tabs for each custom hardware PE in the system, allowing the definition

of separate datapaths for each hardware PE.

The hardware design framework in the design environment includes an RTL analysis tool

that computes hardware characteristics and implementation estimates. The RTL analysis tool can

be applied to any (S)FSMD model. It produces metrics like number of operations and transfers

in each state, variable lifetimes, critical path delays, and power estimates [88]. RTL metrics are

used by the designer to make scheduling and binding decisions. For example, operations, transfers,

and variables alive in each state determine functional unit, bus, and storage unit allocation in rela-

tion to scheduling. Furthermore, critical path delays and power metrics determine maximum clock

frequency and power consumption of the component.

Scheduling and binding decisions for a selected behavior are visualized in the graphi-

cal user interface through the RTL scheduling and binding dialog (Figure 7.15). On the left, the

scheduling and binding dialog shows the list of states in the behavior together with columns for

CHAPTER 7. DESIGN ENVIRONMENT 192

metrics computed by the RTL analysis tool. In addition to raw numbers, metrics are visualized

as bar graphs for easy comparison. Furthermore, hovering the mouse over an operation or variable

entry will pop-up a tooltip with details about the exact types of operations and variables in that state.

On the right, the scheduling and binding dialog shows a table with the three-address code

for the currently selected state. Within that table, scheduling is performed by assigning statements to

subcycles of the current state (within the constraints permitted by dependencies), splitting the state

into individual cycles as necessary. Full or partial binding is supported for each entry in the table. If

partial binding is enabled, the assignment of operators and variables to functional and storage units

is shown and the designer can bind entries to units by selecting a target out of a drop-box containing

a list of all allocated units. In addition, by enabling full binding, datapath connectivity can be shown

and set. For each register transfer, the busses and functional or storage unit ports to be used can be

selected. In summary, the dialog allows full control of scheduling and operator, variable, port, and

bus binding.

Since manual scheduling and binding of complete custom hardware designs is tedious,

time-consuming and error-prone, the default environment includes a set of RTL plugins that can be

applied by the designer to automatically schedule and/or bind a set of hardware behaviors. In the

dialog, the designer can make partial decisions and let the plugins fill in the rest. On the other hand,

decisions made by the algorithms in the plugins can be verified and overridden by the designer at

will.

7.7.2 Software Design

Software design (Section 6.2) only requires selection of a target operating system im-

plementation out of the RTOS database for each dynamically scheduled software processor in the

system. Selection of RTOS targets is implemented in the form of textual and graphical user inter-

faces of the environment using the general database framework outlined in Section 7.4.

All other necessary software design tasks are performed automatically by the respective

backend tools, including code generation, RTOS targeting, compilation and linking. Outside of

the system design environment, however, the designer has the option to employ external software

development tool sets, e.g. to manually write, optimize, compile, and debug C or assembly code for

the target processor based on and integrating with code automatically generated by SCE.

CHAPTER 7. DESIGN ENVIRONMENT 193

7.8 Summary

In this chapter, we described the implementation of the presented system design method-

ology in the form of the SoC Design Environment (SCE). SCE provides an environment for model-

ing, synthesis, exploration, and validation. It supports simulation, automatic model refinement, pro-

filing, estimation, and synthesis for specification capture, computation, communication, and back-

end design tasks. A set of databases that are part of SCE store component attributes and models

needed for exploration and synthesis. Furthermore, user interfaces for refinement and validation

enable designers to interactively make and enter decisions and to visualize design, analysis, and

simulation results.

The contributions of this chapter include the definition of a complete design framework

and comprehensive user interface for implementation of the complete system design flow from

specification down to implementation. Software architecture, organization, tool flow, design model

management, interfaces, and database formats of the design environment have been defined. Fur-

thermore, textual and graphical user interfaces have been developed that support both automated

and interactive design space exploration. Displays required for effective visualization and graphical

organization of design data in order to aid designers in comprehension and in educated decisions

making have been identified and implemented. In addition, interfaces for graphical capture and

entry of design decisions have been developed. Finally, the environment allows the user to employ

automated decision-making algorithms selectively on parts of the design through a plug-in mecha-

nism.

In conclusion, the human-computer interface developed for SCE shows how to effectively

visualize models and capture design decisions defined for each step in the flow. All in all, the SCE

implementation proves the feasibility of an automated, interactive system design flow supporting

rapid, efficient design space exploration.

Chapter 8

Experimental Results

The presented system-level design flow and methodology has been applied to the design

of several industrial-strength system examples including the simplified mobile phone baseband sys-

tem presented throughout this dissertation to illustrate the proposed design flow. The baseband

system is a comprehensive system design example that covers a wide variety of application and

target architecture requirements. Internally, it is composed out of separate voice encoding/decoding

(vocoder) and JPEG encoding subsystems with specific requirements and features each. Therefore,

in addition to the complete baseband system, both subsystems have been implemented separately.

Experimental results have been obtained for each subsystem and for the overall baseband system as

a combination of both.

In this chapter, we will present the results obtained from implementing the design ex-

amples following the steps of the developed design methodology. Section 8.1 gives an overview

of the system design process as applied the baseband system and its subsystems. In Section 8.2,

Section 8.3, and Section 8.4, results for the Vocoder subsystem, the JPEG encoder subsystem and

the overall baseband system will be shown, respectively. For each step in the design flow, resulting

system design models at corresponding abstraction levels will be analyzed, and tradeoffs between

model complexity and accuracy as a result of introducing implementation detail in each step will be

outlined. Furthermore, experimental results will show the benefits of each intermediate model and

design step for rapid, early design space exploration.

194

CHAPTER 8. EXPERIMENTAL RESULTS 195

8.1 Overview

Experimental results are derived from the implementation of the baseband system design

introduced throughout this dissertation, The baseband system is an example of a simplified mobile

phone baseband system design. The baseband system is composed hierarchically out of two sepa-

rate subsystems for JPEG encoding and voice encoding/decoding (Vocoder). The design has been

arranged and organized such that each subsystem can also be implemented and simulated indepen-

dently. At each step of the design flow, the overall baseband system is then created as a simple,

parallel composition of properly connected Vocoder and JPEG encoder subsystems1.

8.1.1 Modeling and Simulation

Following the guidelines and rules for specification capture (see Chapter 3), the specifica-

tion model of the example was written by manually converting available descriptions of the Vocoder

and JPEG encoder algorithms in the form of C code into an equivalent SpecC description. At the

lowest level, functions with basic algorithms in C were converted directly into SpecC leaf behav-

iors. At higher levels, the C function call hierarchy was converted into a clean, unambiguous, and

explicit SpecC behavior hierarchy by analyzing dependencies and side-effects, exposing available

parallelism, and encapsulating functionality and data hierarchically. Depending on the modularity

and quality of the existing C code, effort for manual C to SpecC conversion can range from days up

to months. In the case of the baseband system, quality of existing C code was low (communication

through global variables, functions with side-effects, etc.) such that conversion took several months.

Given the clean, unambiguous, and precise specification model that is easy to understand

for both humans and tools, effective and efficient system design, implementation, and design space

exploration becomes possible. For the baseband system design example, SpecC models of the

system at each step in the design flow and at all corresponding levels of abstraction were created

through successive refinement of the initial specification model. Following the steps of the design

methodology, all models of the baseband system were initially created through manual refinement

over a period of 1-2 months. Later, with the help of the architecture, OS, network, communication,

C, and RTL refinement tools, different models of the baseband system were also automatically

generated where automatic model refinement was completed within seconds. Note that results for

session and transport models are not shown here. Since session and transport layers are empty in

1Note that in order to simplify the illustration of the baseband system, this additional top level of concurrent hierarchy
has been flattened out in the corresponding figures throughout this dissertation.

CHAPTER 8. EXPERIMENTAL RESULTS 196

Behavior / Partitioning Scheduling
Variable PE Memory Child order Algorithm
JPEG ColdFire

-JPEGEncode Default
EncodeStripe Default
DCT DCT IP -

stripe[] - Mem -
ReceiveData DMA -

Vocoder DSP
-

Priority based
Decoder Default
Encoder Default

Codebook HW -
SerIn BI -
SpchOut SO -
SpchIn SI -
SerOut BO -

Table 8.1: Baseband computation design parameters.

the case of the baseband implementation, corresponding models are equivalent to the link model in

terms of complexity and accuracy.

All models of the baseband system in the design flow were simulated for validation and

analysis. A common testbench was created and re-used for all models throughout the flow. The test-

bench exercises the baseband system by simultaneously encoding and decoding 163 voice frames

(corresponding to 3.26s of speech) while performing JPEG encoding of 50 pictures with 116×96

pixels. Models of the whole system and each subsystem were then simulated on a 360 MHz Sun

Ultra 5 workstation using the QuickThreads version of the SpecC simulator.

8.1.2 System Design

The specification model of the baseband system has been introduced and described in

detail in Section 3.3 of Chapter 3 (Figure 3.2). In Chapter 4, Chapter 5, and Chapter 6, the baseband

system has then been taken down to an implementation through the individual steps and intermediate

design models of computation, communication, and backend design tasks, respectively.

The design decisions made during computation design of the baseband system are sum-

marized in Table 8.1. The system is partitioned onto nine PEs and one memory. In the resulting

partitioned design model (see Figure 4.7, page 74), the JPEG encoder is running on a ColdFire pro-

cessor assisted by a DCT IP, a DMA component, and a shared memory. The vocoder, on the other

CHAPTER 8. EXPERIMENTAL RESULTS 197

Network design Link design
Channel Routing Packeting Address Poll addr. Intr. Medium
stripeLen

linkDMA - 0x00010000 - int1

cfBus

imgSize
stripe[] Mem - 0x001000xx - -
HData

linkDCT - 0x00010010 - int2
DData

Ctrl
linkBri1 - 0x00010020 - int0
linkBri2 - 0xB000 - intA

dspBus

inparm linkBI - 0x8500 0x8501
intB

inframe linkSI - 0x8000 0x8001
exc[40]

linkHW - 0xA000 - intC

...
T0
prm[10]
...
gain
outframe linkSO - 0x9000 0x9001

intD
outparm linkBO - 0x9500 0x9501

Table 8.2: Baseband communication design parameters.

hand, is running on a DSP assisted by a hardware co-processor and four I/O processors. During

scheduling, the two nested JPEG encoding pipelines and the encoding and decoding behaviors of

the vocoder are statically scheduled in their default order. In addition, the vocoder is running en-

coding and decoding tasks dynamically scheduled under the control of a priority-based scheduling

algorithm. The result of scheduling and computation design overall is the architecture model of the

baseband system as shown in Figure 4.14, page 88.

In terms of communication design, Table 8.2 summarizes the design decisions for imple-

menting the communication channels in the baseband system. During the network design process,

the network is partitioned into one segment per subsystem with a bridge connecting the two seg-

ments. Individual point-to-point logical links connect each pair of stations in the resulting link

model (see Figure 5.7, page 111). Application channels are routed over these links where the Ctrl

channel spanning the two subsystems is routed over two links via the intermediate bridge. In all

cases, no packeting of messages transfered over links is performed, and the bridge is implemented

to be able to buffer whole Ctrl messages.

During link design, all links within each subsystem are implemented over a single shared

medium. In both cases, the native ColdFire and DSP processor busses are selected as communi-

CHAPTER 8. EXPERIMENTAL RESULTS 198

cation media. Within the segments, unique bus addresses and interrupts for synchronization are

assigned to each link. On the ColdFire side, the memory is assigned a range of addresses with

a base address plus offsets for each stored variable. On the DSP side, two of the four available

interrupts are shared among the four I/O processors. In those cases, additional bus addresses for

polling are assigned to each link (base address plus one). The result of communication link design

is the communication model of the baseband system as shown in Figure 5.11, page 141. In addi-

tion, intermediate media access (see Figure 5.9, page 122) and protocol (see Figure 5.10, page 133)

transaction-level models are created by the link design process.

Finally, in the backend design process the system is brought down to an implementa-

tion at the RTL/C level. For the software running on the ColdFire and DSP processors, C code is

generated from the SpecC description of the software application and re-imported into the system

design processor models. For the custom hardware co-processor on the DSP side, a 16-bit datapath

with three ALUs (for general, saturated, and long arithmetic), three register files (32 entries each),

one 256-word memory and six busses is allocated. Based on datapath allocation, scheduling and

binding decisions, the SpecC description of the codebook search is synthesized into a fully bound

and scheduled FSMD (style 4) model running at 100 MHz. Finally, for the DCT behavior, a pre-

designed, fully bound and scheduled FSMD (style 4) model of the IP including a transducer that

translates between the DCT and ColdFire bus protocols was inserted out of the component database.

8.2 Vocoder System

The Vocoder is a voice encoding/decoding application implementing the so-called En-

hanced Full Rate (EFR) speech transcoding standard that is part of the Global System for Mobile

communications (GSM) set of standards employed worldwide for mobile telephony networks [30].

It is a lossy speech codec that encodes speech at 104 kbit/s into a bit stream with a rate of 12.2 kbit/s

and vice versa. The codec is based on a speech synthesis model that emulates the way speech is

generated in the human vocal tract [51]. Speech is processed in frames of 4× 5ms = 20ms, and

the standard specifies a timing constraint of 20 ms on the transcoding latency, i.e. on the delay when

operating encoder and decoder in back-to-back mode.

As part of a previous project, the Vocoder design had been manually implemented on a

Motorola DSP56600 processor running at 60 MHz assisted by a custom hardware co-processor run-

ning at 100 MHz [51]. For that implementation, assembly code for the Motorola DSP had been cre-

ated by compiling the C code for the DSP into the DSP’s instruction set using the (retargeted gcc)

CHAPTER 8. EXPERIMENTAL RESULTS 199

compiler supplied by Motorola, by manually optimizing the assembly code generated by the com-

piler, and by linking the object code against a small custom RTOS kernel that uses a non-preemptive

scheduling algorithm in which the decoder has higher priority than the encoder. A gate-level imple-

mentation of the custom hardware co-processor, on the other hand, had been obtained by manually

designing an RTL implementation of the codebook search C algorithm and by synthesizing the re-

sulting RTL VHDL code using Synopsys DesignCompiler. As a result, this final implementation

consisted of approximately 70,500 lines of assembly and 45,000 lines of VHDL code.

The design flow as applied to the Vocoder subsystem in this dissertation directly replicates

this previous implementation. At the input of the design flow, the specification model of the Vocoder

in SpecC was developed based on a bit-exact C reference implementation included in the original

Vocoder standard published by the European Telecommunication Standards Institute (ETSI)[99]. In

addition to the RTL/C model at the output of the design flow, a fully cycle-accurate implementation

model was created that replaces the C model of the DSP with an instruction-set simulator (ISS)

running the existing DSP assembly code. For this purpose, the ISS supplied by Motorola for their

DSP566k family of processors was plugged into the Vocoder model by wrapping a SpecC DSP

model around the ISS’ C-level API and by linking the model against the external ISS libraries.

8.2.1 Modeling and Simulation

The results for modeling the Vocoder subsystem at different levels of abstraction are

shown in Table 8.3. The table lists complexities and characteristics of each Vocoder model in

the design flow. For each model, the total number of lines of code including testbench, the total

number of behaviors and channels, the maximal depth of the behavior hierarchy, and the number of

behavior, channel, and variable instances at the top, system level of the Vocoder design are shown.

In addition to totals, behaviors are further broken down into leaf behaviors and parallel behavior

compositions. Major modeling results are summarized in Figure 8.1, showing both number of lines

of code and number of design objects as the sum of behaviors and channels in each design.

Vocoder simulation results are shown in Table 8.4. For each model in the design flow, the

table lists runtimes of Vocoder simulations and feedback about minimum and maximum Vocoder

delays obtained during simulation. Simulation times are given for running the whole testbench of

encoding and decoding 163 frames of speech. Simulated delays are shown for encoding, decoding

and transcoding a single frame of speech. In general, simulated delays vary between minimum and

maximum values since the decoder execution is data dependent. Vocoder simulation results are sum-

CHAPTER 8. EXPERIMENTAL RESULTS 200

Lines Behaviors Chnl Max. Top-level
Model of code Total Leaf Parallel Total depth Beh Chnl Var
Specification 11,755 132 92 (69.7%) 12 (9.1%) 2 9 1 0 0
PE 12,244 144 96 (66.7%) 12 (8.3%) 2 10 6 7 11
Partitioned 12,601 144 96 (66.7%) 12 (8.3%) 2 10 6 17 0
Scheduled 12,585 144 96 (66.7%) 2 (1.4%) 2 10 6 17 0
Architecture 13,939 145 96 (69.2%) 1 (0.7%) 9 11 6 17 0
Link 13,590 145 96 (66.2%) 1 (0.7%) 13 11 7 6 0
Stream 13,663 145 96 (66.2%) 1 (0.7%) 16 11 7 12 0
Media Access 13,873 146 97 (66.4%) 1 (0.7%) 19 11 7 7 0
Protocol 14,058 148 99 (66.9%) 1 (0.7%) 18 12 9 3 0
Communication 14,311 152 100 (65.8%) 3 (2.0%) 18 14 7 0 9
RTL / C 21,387 39 21 (53.8%) 3 (7.7%) 18 8 7 0 9
Implementation 10,203 32 18 (56.2%) 2 (6.2%) 16 7 7 0 9

Table 8.3: Vocoder modeling results.

0

2500

5000

7500

10000

12500

15000

17500

20000

22500

25000

Spe
c PE

Par
t

Sch
ed

Arch Lin
k

Stre
am MAC

Pro
t

Com
m

RTL/C

Li
ne

s
of

 C
od

e
(L

O
C

)

0

20

40

60

80

100

120

140

160

180

200

Channels
Behaviors
LOC

Figure 8.1: Vocoder modeling results.

CHAPTER 8. EXPERIMENTAL RESULTS 201

Simulation Simulated delays
Model time Encoding Decoding Transcoding
Specification 16.3 s 0.00 - 0.00 ms 0.00 - 0.00 ms 0.00 - 0.00 ms
PE 16.9 s 7.14 - 7.14 ms 1.01 - 1.14 ms 8.15 - 8.28 ms
Partitioned 16.7 s 7.14 - 7.14 ms 1.01 - 1.14 ms 8.15 - 8.28 ms
Scheduled 16.6 s 8.29 - 8.29 ms 1.02 - 1.14 ms 9.31 - 9.43 ms
Architecture 17.8 s 9.09 - 9.22 ms 1.02 - 1.14 ms 10.11 -10.36 ms
Link 18.7 s 9.09 - 9.22 ms 1.02 - 1.14 ms 10.11 -10.36 ms
Stream 18.8 s 9.31 - 9.44 ms 1.10 - 1.23 ms 10.41 -10.67 ms
Media Access 25.2 s 9.86 - 9.99 ms 1.24 - 1.37 ms 11.10 -11.36 ms
Protocol 56.1 s 10.09 -10.22 ms 1.37 - 1.50 ms 11.46 -11.72 ms
Communication 178 s 10.22 -10.35 ms 1.44 - 1.56 ms 11.66 -11.91 ms
RTL / C 1270 s 10.44 -10.56 ms 1.44 - 1.56 ms 11.88 -12.12 ms
Implementation ≈ 5 h 9.22 - 9.22 ms 1.49 - 1.49 ms 10.71 -10.71 ms

Table 8.4: Vocoder simulation results.

1 s

10 s

100 s

1000 s

10000 s

Spe
c PE

Par
t

Sch
ed

Arch Lin
k

Stre
am MAC

Pro
t

Com
m

RTL/C

S
im

ul
at

io
n

tim
e

0 ms

2 ms

4 ms

6 ms

8 ms

10 ms

12 ms

14 ms

16 ms

Encoding
Enc. comm.
Decoding
Dec. comm.
Transcoding
Trans. comm.
Sim. time

Figure 8.2: Vocoder simulation results.

CHAPTER 8. EXPERIMENTAL RESULTS 202

marized in Figure 8.2. The graph plots both simulation runtimes and simulated encoding, decoding,

and transcoding delays. Note that runtimes are plotted on a logarithmic scale. Furthermore, the

graph also includes contributions of communication to overall simulated delays (see Section 8.2.4).

At the specification level, the design is a single behavior at the top level that executes the

Vocoder algorithm and that defines the functionality to be implemented as a concurrent composition

of four I/O behaviors plus the vocoder itself. The vocoder block is then internally composed of par-

allel encoder and decoder blocks which in turn are a hierarchical composition of different behavior

types. The specification model is untimed and simulated delays are zero. Furthermore, events in the

system are limited to modeling of pure causality only and simulation is fast.

In the PE model, an additional PE level of hierarchy is inserted and the depth of the

behavior tree increases by one. In addition to newly added PE behaviors, additional leaf behaviors

and top-level channel instances are inserted for inter-PE synchronization. In the process of behavior

grouping, variables shared between behaviors on different PEs become global variables instantiated

at the top. At the top level, the system becomes a composition of 6 PE behaviors connected via 17

communication channels and 11 shared variables where the five concurrent blocks from the original

specification are mapped onto 6 concurrent PEs2. Timing in the form of estimated execution delays

for behaviors mapped onto PEs is added. Finally, due to additional synchronization and timing

events, simulation runtimes increase slightly.

In the partitioned model, global, top-level variables shared between PEs are distributed

into local PE memories and replaced with additional channels for message-passing communication

of updated variable values. Synchronization behaviors inside PEs are extended to exchange data

over message-passing channels when necessary. At the top level, the partitioned model is a compo-

sition of the 6 PE behaviors that communication via 17 channels. Delays and simulation runtimes

are not affected.

In the scheduled model, all parallelism expect for the concurrent composition of encoder

and decoder behaviors has been statically scheduled away. Therefore, only one concurrent behavior

is left in addition to the concurrent composition at the top level. Note that the top level of the

design is not affected by scheduling. Due to scheduling, simulated delays increase and become

more accurate as computation inside PEs is serialized. The overall decrease in parallelism reduces

the number of simulated events and hence the simulation overhead. As a result, simulation runtimes

decrease slightly.

2Hence, no increase or decrease in overall concurrency.

CHAPTER 8. EXPERIMENTAL RESULTS 203

At the architecture level, an OS layer is added around the DSP PE as a result of dynamic

scheduling. Consequently, the depth of the behavior hierarchy increases by one and there is one

additional behavior. Due to insertion of the abstract RTOS model into the DSP OS layer, addi-

tional code in the form of channels needed for OS modeling is part of the design. Conversion of

concurrent behaviors into tasks on top of the RTOS model finally removes all concurrency inside

the inherently sequential PEs. Based on the chosen priority-based dynamic scheduling, the encoder

delays increase as the high-priority decoder interrupts ongoing encoding whenever ready. Note that

some parallelism is exploited and the decoding task gets interleaved into encoder wait times when

blocking on results from the hardware. Therefore, encoding delays do not increase by the full de-

coding delay amount. Furthermore, note that variations in decoding delays lead to variations in the

encoder delay as dynamic scheduling of both creates interdependencies between the tasks. In terms

of simulation overhead, the additional context switching overhead for dynamic scheduling of tasks

at fine timing granularity introduced together with the OS model results in a corresponding increase

in simulation runtimes.

At the link level, top-level channel instances have been merged and multiplexed over the

six remaining links for communication of the DSP with HW, SI, BI, BO, SO, and bridge compo-

nents. As a result, additional channels for links and adapters inside PEs have been created. Fur-

thermore, an additional behavior instance for the bridge connecting the Vocoder system with the

testbench has been inserted at the top level of the design. Simulated delays are not affected by

merging and routing of communication over yet untimed links and transducers. On the other hand,

simulation overhead increases slightly.

In the stream model, adapter channels with link layer implementations are inserted into

the PEs of the design. At the top level, the six communication links are split into 6 data and 6 control

streams. Data and control stream channels are annotated with estimated delays for media latencies

and interrupt handling overhead. Therefore, simulated delays are refined to include additional com-

munication overhead. Since modeled delays are integrated into the synchronization inherent in the

channels, simulation runtimes are not affected.

In the media access model, additional channels implementing stream layers are inserted

into the design in the form of communication adapters inside PEs. At the top level, the 6 data streams

are multiplexed over a single medium. As a result, the top level contains instances for the medium

and the 6 separate control stream channels. In addition to adapter, control stream and media chan-

nels, the design contains an additional behavior for modeling of interrupt handling tasks. Therefore,

in addition to estimated delays for communication over the medium as part of the medium channel,

CHAPTER 8. EXPERIMENTAL RESULTS 204

simulated delays are refined to include additional overhead for interrupt processing through inter-

rupt tasks on top of the operating system. As a consequence of these additional implementation

details, simulation runtimes increase accordingly.

The protocol model adds a hardware abstraction layer (HAL) behavior around the DSP

PE’s existing OS layer. As such, the depth of the behavior hierarchy increases one additional level.

Furthermore, additional adapter channels are inserted into the PEs for implementation of the media

access layer. At the top level, control stream and media channels are replaced with a single protocol

channel. In addition to the protocol channel and PE and bridge behaviors, the top level contains in-

stances of adapter channels and behaviors that are needed for connectivity and routing of interrupts

in the protocol model. Implementation of the media access layer in the Vocoder protocol model

includes additional detail for data slicing and polling as part of low-level interrupt handling. Conse-

quently, simulated delays increase mainly due to the additional interrupt handling overhead. On the

other hand, slicing of packets into individual protocol transfers increases the number of simulated

events and hence simulation overhead significantly, more than doubling simulation runtimes.

At the communication level, the bus-functional hardware layer of the DSP is inserted and

the top-level protocol channel, adapter channel and adapter behavior instances are replaced with

signal variables modeling the wires of the bus. As part of the DSP hardware model, an interrupt

controller model running concurrently with the DSP core is inserted. Hence, the new model con-

tains an additional interrupt controller behavior hierarchy with additional parallelism both inside the

controller and between controller and DSP. Furthermore, the depth of the DSP hierarchy increases

by two levels for the hardware layer and for the bus-functional layer that encapsulates DSP hardware

core and interrupt controller. As communication and processor models get refined, simulated delays

become more accurate. Particularly, processor hardware layers in the communication model now

accurately describe suspension of regular computation during interrupt handling3. However, accu-

rate modeling of protocols and protocol timing results in a large increase in simulation overhead

as driving and sampling of individual wires within each protocol transaction incurs an additional

simulation event each.

After backend design, the RTL/C model replaces the complete DSP software behavior

hierarchy with a single behavior wrapping the generated C code. As such, the number of behaviors

and the depth of the hierarchy drops significantly. On the hardware side, leaf behaviors are simply

replaced with corresponding FSMD models. At the top level, the design remains unchanged from

3In previous models, low-level interrupt handlers are executed in parallel to regular computation such that their delays
do not accumulate into the computation delays.

CHAPTER 8. EXPERIMENTAL RESULTS 205

the communication model. Implementing custom hardware down to an RTL description refines the

hardware execution delays to a cycle-accurate level. However, simulation overhead becomes huge

as hardware simulation requires one additional event per simulated clock cycle. Aside from the

SpecC RTL/C model, the backend process for the Vocoder produced 10,817 lines of C code for the

application software running on the DSP and 96,930 lines of Verilog code for the synthesizable RTL

netlist of the codebook search in hardware.

Finally, the implementation model replicating the existing Vocoder design replaces the

complete DSP model with a SpecC wrapper around the DSP’s instruction set simulator. Since the

ISS code is not included in the SpecC model but linked against externally, lines of code, number of

behaviors and depth of the hierarchy are reduced by the difference between behavioral and ISS DSP

models. Cycle-accurate simulation of the software and hardware in the implementation model pro-

vides accurate delays equivalent to the actual, physical Vocoder design at the expense of an orders of

magnitude increase in simulation time. Note that the difference in simulated delays between RTL/C

and implementation models is due to inaccuracies in estimated DSP delays (in this case mainly due

to inaccurate estimation of encoding software execution delays).

8.2.2 PE Modeling

A crucial aspect of most system designs is partitioning of functionality onto components.

In a computation-dominated design like the Vocoder, therefore, insertion of PEs during behavior

partitioning becomes a critical decision. In order to demonstrate exploration of the PE design space,

we allocated alternative system architectures with three PEs: in addition to the (Motorola) DSP

and the custom hardware co-processor running at 60 MHz and 100 MHz, respectively, we selected

a general-purpose processor (Motorola ColdFire at 60 MHz) to explore performance versus cost

tradeoffs. Mappings of eight top-level behaviors (five top-level encoder behaviors plus three levels

of hierarchy of behaviors inside Codebook) to every PE were evaluated.

Using the scripting capabilities of the design environment together with simulation of

each alternative, we ran an automated, exhaustive search of all 38 = 6561 design alternatives. Run-

ning on a Pentium IV Linux PC at 2.4 GHz, each iteration required 4.7 s (1.7 s per simulation and

3 s per model refinement) and the complete search was finished in 85:04 h. Figure 8.3 shows the

transcoding delay vs. cost for all design alternatives. For both ColdFire and DSP a fixed cost of 20

each was assigned for the manufacturing cost. For custom hardware, a linear cost function with a

base cost of 20 and an additional cost of $1 per 10 static operations of code complexity was assumed

CHAPTER 8. EXPERIMENTAL RESULTS 206

HW (144.1, 12.24 ms)

SW (20.0, 30.73 ms)

10 ms

15 ms

20 ms

25 ms

30 ms

35 ms

10 30 50 70 90 110 130 150 170

Cost

Tr
an

sc
od

in
g

de
la

y

Figure 8.3: Vocoder PE exploration.

to estimate costs of control logic and design overhead. If no behavior is mapped to a PE, its cost is

assumed to be zero.

Exploration results show that a pure software solution running on the ColdFire processor

(upper left) is the cheapest design but has the largest delay. A pure hardware solution (lower right),

on the other hand, is the fastest design at one of the highest costs. Optimal solutions in the sense of

the cheapest design that meets the transcoding timing constraint of 20 ms can easily be identified.

Based on the exploration results, a large part of the design space can be pruned, infea-

sible design alternatives can be ruled out at this early stage, and a Pareto-optimal region of the

design space can be identified for further investigation through following design stages. In sum-

mary, high-level modeling of PEs enables rapid, early validation, exploration and evaluation of

design alternatives in terms of the system computation architecture.

8.2.3 OS Modeling

As part of the system architecture model, an RTOS layer which contains an abstract model

of the underlying operating system scheduler gets introduced into the system design models (see

Section 4.3.2 in Chapter 4). In order to demonstrate the effectiveness of the RTOS layer for de-

sign space exploration, we evaluated different architectural alternatives using our RTOS model.

CHAPTER 8. EXPERIMENTAL RESULTS 207

Simulated delays OS switches
Encoding Decoding Transcoding Task Context

Unscheduled 8.29 - 8.29 ms 1.02 - 1.14 ms 9.31 - 9.43 ms 0 0
Round-robin 8.78 - 8.91 ms 1.83 - 2.33 ms 10.61 -11.24 ms 1771 64
Encoder > Decoder 8.34 - 8.37 ms 2.92 - 3.05 ms 11.26 -11.42 ms 1712 8
Decoder > Encoder 9.09 - 9.22 ms 1.02 - 1.14 ms 10.11 -10.36 ms 1711 2
RTL / C 10.44 -10.56 ms 1.44 - 1.56 ms 11.88 -12.12 ms 1711 1711

Table 8.5: Vocoder OS simulation results.

We created three scheduled models of the Vocoder with varying scheduling strategies: round-robin

scheduling and priority-based scheduling with alternating relative priorities of encoding and decod-

ing tasks.

Depending on the type of the chosen scheduling strategy, the RTOS model imported out of

the RTOS model database adds about 1000 lines of code to the system design model. Furthermore,

the template for the processor’s RTOS layer imported out of the PE database adds approximately

another 100 lines of code. Actual refinement of the template and the system model by converting

relevant SpecC statements into RTOS interface calls following the steps described in Section 4.3.2.2,

Chapter 4 requires changing or adding only 104 lines or less than 1% of code. All of these steps

have been integrated into the automatic refinement tool which automatically generates RTOS-based

architecture models from unscheduled partitioned models. With automatic refinement, all three

models could be created within seconds, enabling rapid exploration of the RTOS design alternatives.

Table 8.5 shows the simulation results of this RTOS exploration. For exploration, the

models were annotated to deliver feedback about the number of RTOS task and context switches in

addition to results about response times as reflected by the transcoding delays encountered during

simulation. A task switch occurs whenever the OS model is selecting a new task to dispatch. Context

switches, on the other hand, only count the number of times CPU state is actually changed. Due to

timing granularity, multiple task switches can happen in the same simulated time period. However,

only the last task switch will possibly lead to a real context switch.

At high levels of abstraction, task switches can provide an estimate about expected context

switches at finer timing granularity in the implementation. On the other hand, only context switch

counts provide feedback about real CPU state changes and associated overheads, especially at lower

levels of abstraction. In the Vocoder, for example, the OS model has to switch from decoder to

encoder task every time the decoder communicates. In the untimed case at high levels, however,

decoder communication finishes in zero time and the OS model can switch back to the decoder in

CHAPTER 8. EXPERIMENTAL RESULTS 208

the same time period without ever executing the encoder (resulting in two task switches and zero

context switches). In the final Vocoder implementation, task switches measured at higher levels

translate into real context switches as each decoder communication then requires two actual context

switches for execution of the corresponding interrupt handling task.

Simulation results show that the simulation overhead introduced by the RTOS model is

negligible while providing accurate results. As explained by the fact that both tasks alternate with

every time slice, round-robin scheduling causes the largest number of task and context switches

while providing a low response time. Note that context switch delays in the RTOS are not mod-

eled, i.e. the larger number of context switches would introduce additional delays. In priority-based

scheduling, it is of advantage to give the decoder the higher relative priority. Since the encoder exe-

cution time dominates the decoder execution time this is equivalent to a shortest-job-first scheduling

which minimizes wait times and hence overall response time. Furthermore, the number of task and

context switches is lower since the RTOS does not have to switch back and forth between encoder

and decoder whenever the encoder waits for results from the hardware co-processor. Therefore,

priority-based scheduling with a high-priority decoder was chosen for the final implementation as

mentioned previously during description of the design process.

In summary, compared to the huge complexity required for the implementation model,

results prove that the RTOS model enables early and efficient evaluation of dynamic scheduling

implementations.

8.2.4 Communication Modeling

In order to evaluate accuracy of communication modeling in the different Vocoder design

models, we obtained simulation results that separate overall delays into communication overhead

and computation delays. To measure the contributions of communication overhead to overall simu-

lated delays, we simulated all Vocoder design models with (estimated) computation delays for ap-

plication code inside the PEs set to zero. The resulting simulated delays therefore provide feedback

about the pure communication overhead in each model. More specifically, these simulated com-

munication delays do not include (estimated or other) delays for implementation of communication

(i.e. adapter channels) inside the PEs. They only reflect unavoidable overhead due to multiplexing,

arbitration or interrupt handling, for example.

Table 8.6 lists the simulated contributions of communication overhead to overall encod-

ing, decoding and transcoding delays. For resulting communication delays, both absolute and rela-

CHAPTER 8. EXPERIMENTAL RESULTS 209

Model Encoding Decoding Transcoding
Specification 0.00 ms (0.0%) 0.00 ms (0.0%) 0.00 ms (0.0%)
PE 0.00 ms (0.0%) 0.00 ms (0.0%) 0.00 ms (0.0%)
Partitioned 0.00 ms (0.0%) 0.00 ms (0.0%) 0.00 ms (0.0%)
Scheduled 0.00 ms (0.0%) 0.00 ms (0.0%) 0.00 ms (0.0%)
Architecture 0.00 ms (0.0%) 0.00 ms (0.0%) 0.00 ms (0.0%)
Link 0.00 ms (0.0%) 0.00 ms (0.0%) 0.00 ms (0.0%)
Stream 0.20 ms (2.1%) 0.09 ms (7.7%) 0.29 ms (2.8%)
Media Access 0.35 ms (3.5%) 0.22 ms (16.9%) 0.57 ms (5.1%)
Protocol 0.46 ms (4.5%) 0.33 ms (23.0%) 0.79 ms (6.8%)
Communication 0.51 ms (5.0%) 0.41 ms (27.3%) 0.92 ms (7.8%)
RTL / C 0.51 ms (4.9%) 0.41 ms (27.3%) 0.92 ms (7.7%)
Implementation 0.44 ms (4.7%) 0.26 ms (17.4%) 0.70 ms (6.5%)

Table 8.6: Vocoder simulated communication delays.

tive values (as percentage of overall delays) are shown. Note that communication delay results are

included in the graph of Vocoder simulation results shown in Figure 8.2.

In the Vocoder design, communication delays on the encoder side are generally higher due

to the additional overhead of communication with the hardware co-processor. On the other hand,

due to the low computational complexity of the decoder, communication delays have a relatively

large contribution to the overall delay on the decoder side, i.e. the decoder is more communication-

dominated than the encoder.

Results confirm that communication delays remain zero throughout the computation de-

sign process. During communication design, delays are then gradually refined down to their final

implementation values. In the link model, delays remain zero since channel merging and insertion

of yet untimed transducers does not introduce any communication overhead. Beginning with the

stream model, nonzero communication delays are observed as channels are annotated with esti-

mated media latencies. In the media access model, additional communication delays are introduced

largely due to high-level interrupt handling through interrupt tasks running on top of the RTOS.

In the protocol model, interrupt handling delays are further increased due to the necessity of slave

polling inside the added low-level interrupt handlers. Finally, in the communication model, protocol

transactions are refined down to accurate protocol timing, and processor interrupt behavior is refined

by inserting interrupt controllers and processor hardware layers that accurately model suspension of

regular computation during processing of interrupts.

Communication delays in the RTL/C and communication model are the same as they are

not affected by synthesis of computation inside the PEs. Compared to the actual implementation

CHAPTER 8. EXPERIMENTAL RESULTS 210

model, however, communication delays in higher-level models are generally overestimated. On the

DSP side, the actual Vocoder implementation employs a small, custom operating system kernel with

minimal overhead in terms of interrupt handling. In the implementation, interrupt tasks disappear

as they are inlined into computation tasks and interrupt handlers. Consequently, interrupt handling

delays are lower which reduces overall delays especially in the communication-intensive decoder.

In summary, different levels of communication modeling allow exploration of trade-offs

between complexity, speed and accuracy of design models. Depending on the application and the

chosen target communication architecture, abstracted transaction-level models can provide accu-

rate results in shorter time. Furthermore, intermediate models allow stepwise implementation and

evaluation of different communication designs aspects.

8.3 JPEG Encoder Subsystem

JPEG is a lossy image compression standard originally developed by the Joint Photo-

graphic Experts Group committee [7] and now published by the International Telecommunication

Union (ITU) [63]. It is designed to compress color or gray-scale photographic images by exploiting

known limitations of the human eye. For the JPEG encoder subsystem that is part of the baseband

system, we implemented a so-called baseline sequential JPEG encoding process. Based on an exist-

ing, public C reference implementation, the initial SpecC specification model of the JPEG encoder

was developed [14, 106]. Furthermore, as part of previous projects, cycle-accurate RTL implemen-

tations of the discrete cosine transform (DCT) block [14] and of a transducer between DCT and

ColdFire busses [106] had been developed. For the design of the JPEG encoder shown here, these

pre-designed DCT and transducer components were added to the IP database for import into the

design during the design process.

8.3.1 Modeling and Simulation

Results of modeling the JPEG encoder at different levels of abstraction are shown in

Table 8.7 and Figure 8.4. Simulation results of the JPEG encoder models, on the other hand, are

listed in Table 8.8 and summarized in Figure 8.5.

At the specification level, the JPEG encoder is a single behavior internally composed out

of untimed behaviors and channels including the two nested, concurrent pipelines. In the PE model,

the specification is mapped onto 4 concurrent PEs communication 7 synchronization channels and

CHAPTER 8. EXPERIMENTAL RESULTS 211

Lines Behaviors Chnl Max. Top-level
Model of code Total Leaf Parallel Total depth Beh Chnl Var
Specification 2,684 31 21 (67.7%) 3 (9.7%) 5 6 1 0 0
PE 3,243 53 32 (60.4%) 5 (9.4%) 5 7 3 7 4
Partitioned 3,243 51 28 (54.9%) 7 (13.7%) 5 7 4 7 0
Scheduled 3,236 51 28 (54.9%) 1 (2.0%) 5 7 4 7 0
Architecture 3,420 52 28 (53.8%) 1 (1.9%) 7 8 4 7 0
Link 3,633 55 32 (58.2%) 1 (1.8%) 18 8 5 3 0
Stream 3,788 55 32 (58.2%) 1 (1.8%) 21 8 5 7 0
Media Access 4,010 56 33 (58.9%) 1 (1.8%) 27 8 5 4 0
Protocol 5,007 61 36 (59.0%) 1 (1.6%) 38 9 6 6 0
Communication 5,620 65 38 (58.5%) 3 (4.6%) 41 11 7 0 25
RTL / C 7,089 35 18 (51.4%) 3 (7.7%) 41 7 7 0 25

Table 8.7: JPEG encoder modeling results.

0

2500

5000

7500

10000

12500

15000

Spe
c PE

Par
t

Sch
ed

Arch Lin
k

Stre
am MAC

Pro
t

Com
m

RTL/C

Li
ne

s
of

 C
od

e
(L

O
C

)

0

20

40

60

80

100

120

Channels
Behaviors
LOC

Figure 8.4: JPEG encoder modeling results.

CHAPTER 8. EXPERIMENTAL RESULTS 212

Simulation Simulated delays
Model time Encoding Communication
Specification 0.30 s 0.00 ms 0.00 ms (0.0%)
PE 0.28 s 33.21 ms 0.00 ms (0.0%)
Partitioned 0.27 s 33.21 ms 0.00 ms (0.0%)
Scheduled 0.29 s 74.13 ms 0.00 ms (0.0%)
Architecture 0.29 s 74.13 ms 0.00 ms (0.0%)
Link 0.30 s 74.13 ms 0.00 ms (0.0%)
Stream 0.62 s 74.41 ms 0.28 ms (0.4%)
Media Access 0.99 s 74.53 ms 0.40 ms (0.6%)
Protocol 8.66 s 75.67 ms 1.18 ms (1.6%)
Communication 20.6 s 75.63 ms 1.50 ms (2.0%)
RTL / C 23.4 s 74.78 ms 1.50 ms (2.0%)

Table 8.8: JPEG encoder simulation results.

0.1 s

1 s

10 s

100 s

Spe
c PE

Par
t

Sch
ed

Arch Lin
k

Stre
am MAC

Pro
t

Com
m

RTL/C

S
im

ul
at

io
n

tim
e

0 ms

10 ms

20 ms

30 ms

40 ms

50 ms

60 ms

70 ms

80 ms

90 ms

Encoding
Enc. comm.
Sim. time

Figure 8.5: JPEG encoder simulation results.

CHAPTER 8. EXPERIMENTAL RESULTS 213

4 shared, global variables instantiated at the top level. In the partitioned model, an additional shared

memory component is inserted, top-level variables are moved into local and shared memories and

synchronization behaviors and channels are refined to communicate data values. Additional con-

current synchronization behaviors and channels are inserted into the hierarchy of PE and partitioned

models as necessary. In the scheduled model, pipelines and synchronization/communication behav-

iors have been statically scheduled. Serialization of behaviors results in an according increase in

computation delays. At the architecture level, an empty OS layer is then inserted around the Cold-

Fire processor model. Since no dynamic scheduling overhead is required and since static scheduling

decreases the number of fork and join events during simulation, simulation runtimes decrease down

to a level below the original specification in the scheduled and architecture models.

At the link level, adapter channels are inserted into the PEs and top-level channels are

merged over three links (DMA, DCT, and bridge) and an additional bridge behavior. In the stream

model, the three top-level links are split into three control and three data streams. In addition, a

top-level channel for memory communication is inserted. In the media access model, the three

top-level data streams and the memory channel are multiplexed over one data transfer medium.

High-level interrupt handling behaviors are inserted into PEs and stream and media channels are

annotated with estimated latencies, resulting in increased communication delays. In the protocol

model, the top-level medium channel is replaced with two protocol channels for ColdFire and DCT

bus protocols connected via one transducer component behavior. In addition, a semaphore channel

for arbitration on the ColdFire bus is instantiated. For the ColdFire PE, a hardware abstraction

layer is inserted and media access layer implementation channels are added to each PE. Due to

data slicing and arbitration, simulated communication delays and associated simulation overhead

increase drastically. Especially the detailed modeling of arbitration behavior in the protocol model

results in significantly more accurate delay results at the expense of a corresponding increase in

simulation runtimes.

The communication model finally refines protocol channels down to wires modeled by

signal-type variables, replaces the arbitration channel with an instance of the actual arbiter compo-

nent behavior, and inserts the bus-functional and hardware processor model including its interrupt

controller. As expected, modeling of protocol timing and interrupt handling increases accuracy of

results even further while incurring an order-of-magnitude increase in simulation overhead.

As a result of the backend process, the RTL/C model replaces the ColdFire application

software behavior hierarchy with a single SpecC behavior that encapsulates the generated C code.

Furthermore, DCT and transducer component models are replaced with their pre-designed, cycle-

CHAPTER 8. EXPERIMENTAL RESULTS 214

accurate RTL descriptions taken out of the IP database. Cycle-accurate simulation of synthesized

hardware results in a corresponding increase in simulation overhead while providing exact timing

for hardware PEs. Results show that estimated hardware computation delays at higher levels were

too conservative.

Results generally confirm observations made in the case of the Vocoder design. Com-

pared to the Vocoder, the JPEG encoder requires less communication on its critical path. As such,

overall delays are influenced by communication overhead to a much lesser extent and the output of

computation design provides already accurate results.

On the other hand, the JPEG encoder overall is a more communication-intensive design

than the Vocoder. Since DMA communication is overlapped with encoding computation in the

processor (exploiting the available pipeline parallelism), it leaves overall delays largely unaffected

while contributing to the overall communication complexity. In addition, implementation of com-

munication inside each PE is more complex since the JPEG encoder uses more advanced communi-

cation features (e.g. bigger variety in terms of message data types exchanged between PEs compared

to only a single data type in the Vocoder). Furthermore, overall computational complexity of the

JPEG encoder as expressed by the complexity of the specification model is smaller than the Vocoder

application complexity. Therefore, implementation details inserted during communication design as

measured, for example, by the number of channels, contribute to a larger relative growth of overall

model complexities and simulation runtimes when compared to the Vocoder.

Finally, comparing Vocoder and JPEG encoder backend design, the relative size of custom

hardware in the JPEG encoder is smaller. Hence, hardware design in the JPEG encoder has a smaller

effect on overall complexity and simulation overhead of its resulting RTL/C model.

8.3.2 PE Modeling

Similar to the PE design space exploration in the Vocoder case (Section 8.2.2), we ex-

plored several behavior partitioning design alternatives for the JPEG encoder in order to demonstrate

effectiveness and usefulness of the high-level design models. At the core of the JPEG encoder, the

inner loop consists of four behaviors running in a pipelined fashion: HandleData (HD), DCT (D),

Quantization (Q), and HuffmanEncode (HE). For exploration of behavior partitioning, we allocated

a system architecture with two PEs, a Motorola DSP56600 (SW) running at 60 MHz and a custom

hardware (HW) processor running at 80.8 MHz. By mapping four behaviors to two PEs in different

permutations, we derived 16 (24) design alternatives.

CHAPTER 8. EXPERIMENTAL RESULTS 215

Design Encoding delay
HD D Q HE Impl. Arch. Diff.
SW SW SW SW 205.00 ms 199.44 ms 2.71%
SW SW SW HW 184.77 ms 177.18 ms 4.11%
SW SW HW SW 189.00 ms 180.87 ms 4.30%
SW SW HW HW 168.77 ms 158.61 ms 6.02%
SW HW SW SW 73.35 ms 76.79 ms -4.69%
SW HW SW HW 53.12 ms 54.53 ms -2.65%
SW HW HW SW 57.35 ms 58.22 ms -1.52%
SW HW HW HW 37.12 ms 35.96 ms 3.12%
HW SW SW SW 183.23 ms 176.92 ms 3.44%
HW SW SW HW 163.00 ms 154.66 ms 5.12%
HW SW HW SW 167.23 ms 158.35 ms 5.31%
HW SW HW HW 147.00 ms 136.09 ms 7.42%
HW HW SW SW 51.58 ms 54.27 ms -5.22%
HW HW SW HW 32.01 ms 29.93 ms -2.11%
HW HW HW SW 35.70 ms 38.84 ms -0.34%
HW HW HW HW 15.35 ms 13.44 ms 12.44%

Table 8.9: JPEG encoder PE exploration.

For each design alternative, we generated a SpecC architecture model using the scripting

capabilities of the design environment together with the architecture refinement tool. Each archi-

tecture model was then simulated to obtain feedback about estimated encoding delays. Results

were compared against delays of an actual implementation of the design alternative. Implemen-

tation delays for software were obtained by converting SpecC code to C code, compiling the C

code into assembly code, and running the assembly code on a customized, annotated version of the

DSP56600 instruction set simulator [14]. Implementation delays for hardware were obtained by

simulating manually written RTL models.

Results of the PE exploration for the JPEG encoder are shown in Table 8.9. For each

design alternative, the tables lists implementation delays and simulated delays at the architecture

level. Results show that the simulated delays at the high level are accurate to within 12.5% of the

actual implementation. It should be noted, however, that the JPEG encoder is not communication-

intensive. Hence, it is possible to achieve a relatively high absolute accuracy at this high level. In

more communication-oriented designs, communication delays which are not included at the archi-

tecture level will have a bigger impact on the overall, final implementation delays.

An important metric at high levels is the so-called fidelity [68, 36]. The fidelity is defined

as the percentage of correctly predicted comparisons between design alternatives. If the estimated

CHAPTER 8. EXPERIMENTAL RESULTS 216

values of a design metric for two design alternatives bear the same comparative relationship to

each other as do the measured values of the metric, then the estimate correctly compares the two

alternatives. Based on the results, we compute the fidelity for the JPEG encoder PE exploration

by comparing implementation and simulated architecture delays. For JPEG encoder example, the

fidelity of PE exploration is 100%. Therefore, results confirm that high-level models allow the

designer to make educated design decisions by providing relevant feedback.

8.4 Baseband System

The overall baseband system is a combination of Vocoder and JPEG encoder subsystems.

In general, the baseband system is the parallel composition of the two subsystems both at the spec-

ification and at architecture and lower levels. As such, complexities of baseband design models are

generally the sum of corresponding Vocoder and JPEG encoder model complexities. Note, however,

that at architecture and lower levels, the two subsystem architectures are combined at the top level

into one overall architecture with ten PEs. Table 8.10 lists the results of modeling the complete

baseband system at different levels of abstraction.

As design progresses, more and more implementation detail gets added to the design

models and model complexities grow. Figure 8.6 compares the two subsystems and the overall

system in terms of model complexity growth. The graphs plot the number of lines of code added to

each design model when compared to the the complexity of the original specification model. Graphs

are shown for both absolute number of added lines of code (Figure 8.6(a)) and added lines of code

normalized against the number of lines of code in the respective specification model (Figure 8.6(b)).

Modeling results show that implementation detail added to the models generally grows

linearly with lower levels of abstraction. Note, however, that complexity increase is largely in-

dependent of the complexity of the original specification. Rather, added implementation detail

depends mainly on the complexity of the selected target architecture as measured by the number

of PEs and busses, for example. Since Vocoder and JPEG encoder target architectures have similar

complexity, their model complexities increase by approximately the same absolute amount. In the

baseband system as the combination of both subsystems, model complexity increase is then the sum

of complexity increases in each subsystem.

Figure 8.7 and Figure 8.8 summarize the simulation results for the two subsystems and the

overall system in terms of simulation runtimes and simulated delays, respectively. For simulation

runtimes, both absolute times (Figure 8.7(a)) and runtimes normalized against the simulation run-

CHAPTER 8. EXPERIMENTAL RESULTS 217

Lines Behaviors Chnl Max. Top-level
Model of code Total Leaf Parallel Total depth Beh Chnl Var
Specification 13,428 161 111 (68.9%) 16 (9.7%) 6 10 2 1 0
PE 14,476 193 124 (64.2%) 18 (9.3%) 6 11 9 15 15
Partitioned 14,833 193 122 (63.2%) 20 (10.4%) 6 11 10 25 0
Scheduled 14,810 193 122 (63.2%) 3 (1.6%) 6 12 10 25 0
Architecture 16,307 195 122 (62.6%) 3 (1.5%) 15 12 10 25 0
Link 16,193 199 127 (63.8%) 3 (1.5%) 30 12 11 9 0
Stream 16,403 199 127 (63.8%) 3 (1.5%) 31 12 11 19 0
Media Access 16,866 201 129 (64.2%) 3 (1.5%) 45 12 11 11 0
Protocol 18,078 208 134 (64.4%) 3 (1.4%) 56 13 14 9 0
Communication 18,946 216 137 (63.4%) 7 (3.2%) 59 15 13 0 34
RTL / C 27,511 73 38 (52.1%) 7 (9.6%) 59 9 13 0 34

Table 8.10: Baseband system modeling results.

time of the respective specification model (Figure 8.7(b)) are plotted. For simulated transcoding and

JPEG encoding delays, overall delays (Figure 8.8(a)) and communication overheads (Figure 8.8(b))

are shown, both normalized against the corresponding delay in the RTL/C model.

In general, simulation overhead grows exponentially with lower levels of abstraction as

more and more implementation detail gets added. Especially during communication and backend

design, simulation overhead increases dramatically. Simulation overhead added during computation

design, on the other hand, is negligible. As mentioned previously, due to shared memory and

DMA communication the JPEG encoder is a more communication-intensive design compared to

the Vocoder. Therefore, overhead added during communication design in the JPEG encoder has a

bigger impact on simulation runtimes than in the Vocoder. On the other hand, the hardware part

in the JPEG encoder is smaller than in the Vocoder. As a result, simulation overhead for cycle-

accurate RTL simulation is comparatively less. Note that for the overall baseband system, absolute

simulation runtimes are not equal to the sum of Vocoder and JPEG encoder runtimes. Rather, results

show that combining subsystems in such a way that their simulated events overlap in logical time

leads to an exponential increase in simulation runtimes for the whole system.

Along with model complexities, model accuracy increases in a linear fashion as more

implementation is added with each new abstraction level. Simulated transcoding and JPEG encod-

ing delays show that the architecture model at the output of computation design can deliver almost

100% accurate results. Depending on the amount of parallelism in each PE, scheduling is required

to provide accurate results. In other cases, the partitioned model can already return useful feedback.

CHAPTER 8. EXPERIMENTAL RESULTS 218

0

2000

4000

6000

8000

10000

12000

14000

16000

Spec PE Part Sched Arch Link Stream MAC Prot Comm RTL/C

Li
ne

s
of

 im
pl

em
en

ta
tio

n
co

de
 a

dd
ed

Baseband Vocoder JPEG

(a) absolute complexity increase

0%

20%

40%

60%

80%

100%

120%

140%

160%

180%

Spec PE Part Sched Arch Link Stream MAC Prot Comm RTL/C

N
or

m
al

iz
ed

 li
ne

s
of

 im
pl

em
en

ta
tio

n
co

de
 a

dd
ed

Baseband Vocoder JPEG

(b) normalized complexity increase

Figure 8.6: Baseband implementation detail added during model refinement .

0.1 s

1 s

10 s

100 s

1000 s

10000 s

Spe
c PE

Par
t

Sch
ed

Arch Lin
k

Stre
am MAC

Pro
t

Com
m

RTL/C

S
im

ul
at

io
n

tim
e

Baseband Vocoder JPEG

(a) absolute

0.1

1

10

100

1000

Spe
c PE

Par
t

Sch
ed

Arch Lin
k

Stre
am MAC

Pro
t

Com
m

RTL/C

N
or

m
al

iz
ed

 s
im

ul
at

io
n

tim
e

Baseband Vocoder JPEG

(b) normalized

Figure 8.7: Baseband simulation times.

0.00

0.20

0.40

0.60

0.80

1.00

1.20

Spec PE Part Sched Arch Link Stream MAC Prot Comm RTL/C

N
or

m
al

iz
ed

 s
im

ul
at

ed
 d

el
ay

Transcoding JPEG encoding

(a) total

0.00

0.20

0.40

0.60

0.80

1.00

1.20

Spec PE Part Sched Arch Link Stream MAC Prot Comm RTL/C

N
or

m
al

iz
ed

 c
om

m
un

ic
at

io
n

de
la

y

Transcoding JPEG encoding

(b) communication

Figure 8.8: Baseband simulated delays.

CHAPTER 8. EXPERIMENTAL RESULTS 219

Accuracy of the architecture level generally depends on the amount of non-overlapping communi-

cation in the design.

Compared to the JPEG encoder, the Vocoder requires more communication on the critical

path. Therefore, delay estimates after computation design are less accurate. On the other hand, since

there is only a single bus master and no bus contention in the Vocoder design, its media access model

provides already relatively accurate results for communication and hence overall delays. Protocol

and communication models add further delays for slave interrupt polling and actual suspension of

computation, respectively4. If, however, arbitration for resolution of bus contention is required as is

the case for the JPEG encoder, the media access model does not provide accurate feedback and only

detailed modeling of arbitration and slicing in the protocol model results in precise measurements.

In summary, results show that model complexities and model accuracies increase linearly

as design moves down in the level of abstraction. However, simulation runtimes grow exponentially

with lower levels of abstraction. With each step in the design flow, more implementation infor-

mation is added in the form of additional code and additional behaviors and channels. Additional

implementation information increases the accuracy of simulation results with each new model down

to the final RTL/C model. Specifically, as communication gets more and more refined, additional

channels are inserted into the design and simulated delays include additional overhead for communi-

cation and synchronization. On the other hand, additional implementation information dramatically

increases simulation overhead as the number of events simulated during execution of the system

grows exponentially with each step.

Overall, experimental results for the baseband system including its two subsystems con-

firm that moving to higher levels of abstraction enables more rapid design space exploration while

being able to provide accurate results. Depending on the application and design characteristics, in-

termediate high-level models can provide early feedback about critical design decisions where each

model focuses on a different, separate design aspect.

At the specification level, functionality of the application is validated. PE and partitioned

design models provide the same accuracy at the same speed. However, only the partitioned model

provides additional feedback about actual organization, sizes, and utilization of memories. De-

pending on the amount of required scheduling, partitioned or architecture models allow evaluation

of different computation architectures with little or no additional overhead. If extensive static or

dynamic scheduling is required, the architecture model together with any RTOS models provides

4If neither arbitration nor slave polling is required, the media access model will provide even more accurate results.

CHAPTER 8. EXPERIMENTAL RESULTS 220

feedback for exploration of different scheduling strategies. Therefore, the architecture model as a

representation of the overall computation architecture allows reliable exploration of the computation

design space at simulation runtimes comparable to the abstract C-level specification.

With little or no additional overhead, the link model defines and validates the overall

network topology while serving as the specification for implementation of individual bus segments.

The stream model introduces communication delays in the form of estimated media latencies but is

not accurate enough for reliable exploration. Depending on the communication architecture, media

access or protocol transaction-level models provide rapid, accurate feedback about overall results

including communication overhead. If there is no bus contention and slave polling in the system,

the media access model returns exact results at high simulation speeds. On the other hand, in the

presence of arbitration, slicing of packets into protocol words/frames has to be modeled in order to

get accurate delays that include effects of interleaved media accesses at the protocol level5. In these

cases, only the protocol model can provide correct estimates at the expense of significantly reduced

simulation speed.

Finally, at the communication level, final, pin- and timing-accurate results are available

at the expense of vastly increased simulation runtimes compared to transaction-level models above.

Delay results in the communication model only depend on the accuracy of software and hardware

estimations results for all PEs. Once cycle-accurate descriptions for hardware and/or software are

included as part of RTL/C or implementation models, precise results can be obtained. However,

simulation performance at the RTL/C and implementation levels is prohibitive for exhaustive simu-

lations of complete system designs.

8.5 Summary

In this chapter, we presented the results of implementing several industrial-strength sys-

tem design examples following the steps of the developed design methodology. The design flow has

been applied to the example of a mobile phone baseband platform consisting of separate vocoder

and JPEG encoder subsystems. The results show the tradeoffs in terms of complexity, overhead,

and accuracy of system design models as design moves down in the level of abstraction. In general,

with increasing implementation detail at lower levels of abstraction, accuracy gradually improves

while model complexities grow exponentially. Thereby, results provide insights into the relationship

between critical design issues and the represented implementation detail at each abstraction level.

5Similar to the effects of scheduling of computation on PEs.

CHAPTER 8. EXPERIMENTAL RESULTS 221

The results presented in this chapter results confirm the choice of intermediate models for

system design and design space exploration. The specification model is the starting point of the

design process and defines the desired functionality at native C simulation performance. The ar-

chitecture model allows evaluation of different computation architectures with negligible overhead.

Depending on the communication architecture, media access or protocol models enable rapid, re-

liable communication architecture exploration. The communication model then provides pin- and

timing-accurate results for further investigation of actual communication implementations. Finally,

implementation models and/or mixed-level communication/implementation models are necessary

for cycle-accurate validation and sign-off.

In addition to the analysis of model tradeoffs and benefits, contributions of this chapter

include a demonstration of the effectiveness of the proposed design methodology using the design

examples. The examples verify that the design flow supports a broad range of target implementa-

tions as used in real SoC designs. Therefore, with the help of the automated tools in the SoC design

environment (see Chapter 7), the methodology can achieve the required productivity gains while

being able to create designs of comparable quality. Furthermore, rapid design space exploration

of large numbers of design alternatives allows for global optimization of overall system design pa-

rameters with potentially significant improvements in design quality compared to locally optimal

solutions.

Chapter 9

Summary and Conclusions

In this dissertation, we presented a well-defined flow of design steps and design models

for embedded system and system-on-chip (SoC) design. To our knowledge, this is the first approach

to provide a rigorous structuring of the system design process for the design of complete systems

from abstract specification down to a cycle-accurate implementation. System design thus far has

been mostly done in an ad-hoc fashion based on the experience of designers. Design decisions are

made in no particular order and without any systematic organization. However, in order to achieve

the required productivity gains, system design has to be structured such that all important design

issues are addressed in the proper order.

We identified, classified and organized implementation decisions required for such sys-

tem design into a set of successive design steps based on grouping of highly related decisions,

breaking of the design gap into independent, manageable steps and ordering of steps according to

dependencies. Models of the design after each step have been developed that accurately represent

the corresponding implementation decisions while abstracting unnecessary or unknown implemen-

tation detail. The resulting sequence of design steps and design models enables rapid and reliable

exploration of critical design aspects at early stages in the design process. Furthermore, design deci-

sions and model transformations for each design step have been defined such that model refinement

and decision making can be automated while supporting a wide range of realistic applications and

target implementations.

Based on a separation of concerns and orthogonality of concepts, system design is split

into computation, communication and backend design. Within computation and communication

design, the component architecture is defined in a first task before the order of events on each inher-

ently sequential structural components can be determined. Computation design therefore consists

222

CHAPTER 9. SUMMARY AND CONCLUSIONS 223

of partitioning and scheduling tasks. Behavior and variable partitioning define the number and type

of processing elements (PEs) and memories in the computation architecture and the mapping of

behaviors and variables onto PEs and memories. Since behavior partitioning determines the set of

global variables, it is performed before variable partitioning. On the other hand, component alloca-

tion and mapping are highly dependent and are performed together in a single step each. Scheduling

during computation design consists of static and dynamic scheduling steps which define the order of

behavior execution on the sequential PEs in a pre-defined, fixed manner or dynamically at runtime

under the control of a chosen scheduling algorithm, respectively. In the case of dynamic schedul-

ing, an abstract OS model which accurately represents and reflects dynamic scheduling behavior

without the overhead of a complete operating system is introduced. The result of partitioning and

scheduling is the architecture model of the design. The architecture model provides accurate feed-

back about the computation architecture critical to most designs. On the other hand, it introduces

only a negligible overhead, enabling rapid architecture exploration.

Communication design consists of network and link design tasks. Network design defines

the overall network topology and the implementation of abstract channels over the network. In a

first step, channels are converted and merged into untyped byte streams. Then, streams are bro-

ken down into packets and routed over links connecting PEs and additional transducers. After the

communication architecture has been defined, link design determines the implementation of groups

of links within each network segment over a selected medium and corresponding media interfaces

for each station connected to the network. First, interface types, addresses and interrupts for each

link are defined and packet transfers are implemented over media transactions. Then, connection of

arbiters and interrupt controllers to busses and processors is defined and pin- and timing accurate

protocol implementations are inserted. Intermediate transaction-level models in between steps of

the link design task enable rapid communication exploration while providing accurate feedback. On

the other hand, since arbitration depends on the slicing of data packets into bus words/frames, the

link design task is broken into individual design steps and steps are ordered accordingly. The result

of communication design is the communication model which provides an accurate description of

the system communication structure and timing.

Backend design consists of separate, independent hardware and software design tasks.

During hardware design, behavioral code is converted into state machine descriptions and state

machines are implemented on RTL processors with datapaths consisting of functional units, mem-

ories, register files and busses through scheduling and binding. During software design, C code

for application software and network protocol stacks is generated, code is customized and targeted

CHAPTER 9. SUMMARY AND CONCLUSIONS 224

for implementation of application tasks and bus drivers on a selected RTOS, and resulting code is

compiled and linked against target processor and RTOS libraries. The result of backend design is

the implementation model which provides a cycle-accurate description of the whole system. On

the other hand, by exchanging components between implementation and communication models

through simple plug-and-play, mixed-level models can be easily created.

Based on a separation of synthesis into decision making and model refinement, the design

flow has been implemented in the form of the system-on-chip design environment (SCE). As part of

this work, we defined architecture, organization, tool flow, design model management, interfaces,

and databases of an environment that enables integration and interoperability of various tools for

automation of the design process under a common framework. In addition, a graphical user inter-

face (GUI) has been developed that aids and steers the designer in the decision making process,

provides visualization of design model characteristics and metrics and supports interactive, graph-

ical decision entry for each design step. Overall, the design environment shows the feasibility and

benefits of a seamless interactive, automated design flow based on the proposed design steps and

models. The environment proves that the flow enables automation of tedious, error-prone tasks of

model rewriting. Models in the flow have been defined such that they can be automatically gener-

ated and corresponding model refinement tools have been integrated into the environment. On the

other hand, design steps and design models support an interactive flow that effectively draws from

human knowledge and insight by keeping the designer in the loop at all times. Intermediate models

provide a direct representation of implementation decisions for immediate transparency of results

and observability of design decisions. In addition, well-defined design decisions enable decision

entry under control of the designer assisted by the design environment. Furthermore, the user can

employ automated decision-making algorithms selectively on parts of the design at any stage of the

design process. However, at any time decisions can be fully or partially overwritten, replaced or

predefined, resulting in the necessary controllability of the process.

The design flow has been applied to the design of several industrial-size system examples.

Experimental results show the tradeoffs and benefits of intermediate design models at high levels of

abstraction. Results confirm the choice of design steps and intermediate design models for rapid,

early design space exploration. Furthermore, they prove that critical design issues can be made

quickly and reliably at early stages of the design flow. Finally, experiments show that designs

of comparable quality can be created for realistic applications and target architectures. With the

help of automated tools integrated into the design environment, designs of significant complexity

can be completed and optimized within days. Therefore, a design flow based on the steps and

CHAPTER 9. SUMMARY AND CONCLUSIONS 225

models presented in this dissertation can achieve the required productivity gains for the design and

exploration of complete systems from specification down to implementation.

Bibliography

[1] Samar Abdi, Junyu Peng, Haobo Yu, Dongwan Shin, Andreas Gerstlauer, Rainer Dömer, and

Daniel Gajski. System-on-chip environment (SCE version 2.2.0 beta): Tutorial. Technical

Report CECS-TR-03-41, Center for Embedded Computer Systems, University of California,

Irvine, July 2003.

[2] Samar Abdi, Dongwan Shin, and Daniel D. Gajski. Automatic communication refinement for

system level design. In Proceedings of the Design Automation Conference (DAC), Anaheim,

CA, June 2003.

[3] Accellera, C/C++ Class Library Standardization Working Group. RTL Semantics, February

2001. Draft Specification, Version 0.8.

[4] Felice Balarin, Massimiliano Chiodo, Paolo Giusto, Harry Hsieh, Attila Jurecska, Luciano

Lavagno, Claudio Passerone, Alberto Sangiovanni-Vincentelli, Ellen Sentovich, Kei Suzuki,

and Bassam Tabbara. Hardware-Software Co-Design of Embedded Systems: The POLIS

Approach. Kluwer Academic Publishers, 1997.

[5] David Berner, Dirk Jansen, and Daniel D. Gajski. Development of a visual refinement and

exploration tool for SpecC. Technical Report ICS-TR-01-12, Information and Computer

Science, University of California, Irvine, March 2001.

[6] Gerard Berry and Georges Gonthier. The Esterel synchronous programming language: De-

sign, semantics, implementation. Science of Computer Programming, 19(2):87–152, 1992.

[7] Vasudev Bhaskaran and Konstantinos Konstantinides. Image and Video Compression Stan-

dards: Algorithms and Architectures. Kluwer Academic Publishers, second edition, 1997.

[8] Jasmin Blanchette and Mark Summerfield. C++ GUI Programming with Qt 3. Prentice Hall,

February 2004.

226

BIBLIOGRAPHY 227

[9] Joseph Buck, Soonhoi Ha, Edward A. Lee, and David G. Messerschmitt. Ptolemy: A frame-

work for simulating and prototyping heterogeneous systems. International Journal of Com-

puter Simulation, 4(2):155–182, April 1994.

[10] Giorgio C. Buttazzo. Hard Real-Time Computing Systems. Kluwer Academic Publishers,

1999.

[11] Lucai Cai. Estimation and Exploration Automation of System-Level Design. PhD thesis,

Information and Computer Science, University of California, Irvine, January 2004.

[12] Lucai Cai, Andreas Gerstlauer, and Daniel D. Gajski. Retargetable profiling for rapid, early

system-level design space exploration. In Proceedings of the Design Automation Conference

(DAC), San Diego, CA, June 2004.

[13] Lucai Cai, Andreas Gerstlauer, and Daniel D. Gajski. Retargetable profiling for rapid, early

system-level design space exploration. Technical Report CECS-TR-04-04, Center for Em-

bedded Computer Systems, University of California, Irvine, March 2004.

[14] Lucai Cai, Junyu Peng, Chun Chang, Andreas Gerstlauer, Hongxing Li, Anand Selka, Chuck

Siska, Lingling Sun, Shuqing Zhao, and Daniel D. Gajski. Design of a JPEG encoding

system. Technical Report ICS-TR-99-54, Information and Computer Science, University of

California, Irvine, November 1999.

[15] Marco Caldari, Massimo Conti, Marcello Coppola, Stephane Curaba, Lorenzo Pieralisi, and

Claudio Turchetti. Transaction-level models for AMBA bus architecture using SystemC 2.0.

In Proceedings of the Design, Automation and Test in Europe (DATE) Conference, Munich,

Germany, March 2003.

[16] Francky Catthoor, Sven Wuytack, Eddy De Greef, Florin Balasa, Lode Nachtergaele, and

Arnout Vandecappelle. Custom Memory Management Methodology: Exploration of Memory

Organisation for Embedded Multimedia System Design. Kluwer Academic Publishers, 1998.

[17] Wander O. Cesário, Damien Lyonnard, Gabriela Nicolescu, Yanick Paviot, Sungjoo Yoo,

Ahmed A. Jerraya, Lovic Gauthier, and Mario Diaz-Nava. Multiprocessor SoC platforms:

A component-based design approach. IEEE Design and Test of Computers, 19(6), Novem-

ber/December 2002.

BIBLIOGRAPHY 228

[18] Marcello Coppola, Stephane Curaba, Miltos Grammatikakis, and Giuseppe Maruccia. IP-

SIM: SystemC 3.0 enhancements for communication refinement. In Proceedings of the De-

sign, Automation and Test in Europe (DATE) Conference, Munich, Germany, March 2003.

[19] Jordi Cortadella, Alex Kondratyev, Luciano Lavagno, Marc Massot, Sandra Moral, Claudio

Passerone, Yosinori Watanabe, and Alberto Sangiovanni-Vincentelli. Task generation and

compile time scheduling for mixed data-control embedded software. In Proceedings of the

Design Automation Conference (DAC), Los Angeles, CA, June 2000.

[20] Pascal Coste, F. Hessel, Ph. Le Marrec, Z. Sugar, M. Romdhani, R. Suescun, N. Zergainoh,

and Ahmed A. Jerraya. Multilanguage design of heterogeneous systems. In Proceedings of

the International Symposium on Hardware-Software Codesign (CODES), Rome, Italy, May

1999.

[21] Ali Dasdan, Dinesh Ramanathan, and Rajesh K. Gupta. A timing-driven design and valida-

tion methodology for embedded real-time systems. ACM Transactions on Design Automation

of Electronic Systems, 3(4):533–553, October 1998.

[22] Bharat P. Dave, Ganesh Lakshminarayana, and Niraj K. Jha. COSYN: Hardware-software

co-synthesis of embedded systems. In Proceedings of the Design Automation Conference

(DAC), Anaheim, CA, June 1997.

[23] Dirk Desmet, Diederick Verkest, and Hugo De Man. Operating system based software gener-

ation for system-on-chip. In Proceedings of the Design Automation Conference (DAC), Los

Angeles, CA, June 2000.

[24] Rainer Dömer. The SpecC internal representation. Technical report, Information and Com-

puter Science, University of California, Irvine, January 1999. SpecC V 2.0.3.

[25] Rainer Dömer. System-Level Modeling and Design with the SpecC Language. PhD thesis,

University of Dortmund, Germany, April 2000.

[26] Rainer Dömer. SpecC reference compiler SCRC 1.1, software architecture and implementa-

tion. Technical report, Information and Computer Science, University of California, Irvine,

September 2001.

[27] Rainer Dömer, Andreas Gerstlauer, and Daniel Gajski. SpecC Language Reference Manual,

Version 2.0. SpecC Technology Open Consortium, http://www.specc.org, December 2002.

http://www.specc.org

BIBLIOGRAPHY 229

[28] Petru Eles, Krzysztof Kuchcinski, and Zebo Peng. System Synthesis with VHDL. Kluwer

Academic Publishers, December 1997.

[29] Rolf Ernst, Jörg Henkel, and Thomas Brenner. Hardware-software co-synthesis for micro-

controllers. IEEE Design and Test of Computers, 10(4):64–75, December 1993.

[30] European Telecommunication Standards Institute (ETSI). Digital cellular telecommunica-

tions system; Enhanced Full Rate (EFR) speech transcoding, final draft edition, 1996. GSM

06.60.

[31] Python Software Foundation. Python Programming Language. http://www.python.org.

[32] Daniel Gajski, Junyu Peng, Andreas Gerstlauer, Haobo Yu, and Dongwan Shin. System

design methodology and tools. Technical Report CECS-TR-03-02, Center for Embedded

Computer Systems, University of California, Irvine, January 2003.

[33] Daniel D. Gajski. Principles of Digital Design. Prentice Hall, 1997.

[34] Daniel D. Gajski, Nikil Dutt, Allen Wu, and Steve Lin. High Level Synthesis: Introduction

to Chip and System Design. Kluwer Academic Publishers, 1992.

[35] Daniel D. Gajski and R. Kuhn. Guest editors’ introduction: New VLSI tools. IEEE Com-

puter, 16(12):11–14, 1983.

[36] Daniel D. Gajski, Frank Vahid, Sanjiv Narayan, and Ji Gong. Specification and Design of

Embedded Systems. Prentice Hall, 1994.

[37] Daniel D. Gajski, Jianwen Zhu, Rainer Dömer, Andreas Gerstlauer, and Shuqing Zhao. The

SpecC methodology. Technical Report ICS-TR-99-56, Information and Computer Science,

University of California, Irvine, December 1999.

[38] Daniel D. Gajski, Jianwen Zhu, Rainer Dömer, Andreas Gerstlauer, and Shuqing Zhao.

SpecC: Specification Language and Design Methodology. Kluwer Academic Publishers,

2000.

[39] Lovic Gauthier and Sungjoo Yo Ahmed A. Jerraya. Automatic generation and targeting of

application-specific operating systems and embedded systems software. IEEE Transactions

on Computer-Aided Design of Intergrated Circuits and Systems (TCAD), 20(11), November

2001.

http://www.python.org

BIBLIOGRAPHY 230

[40] Patrice Gerin, Sungjoo Yoo, Gabriela Nicolescu, and Ahmed A. Jerraya. Scalable and flexi-

ble cosimulation of SoC designs with heterogeneous multi-processor target architectures. In

Proceedings of the Asia and South Pacific Design Automation Conference (ASPDAC), Yoko-

hama, Japan, January 2001.

[41] Andreas Gerstlauer. SpecC modeling guidelines. Technical Report CECS-TR-02-16, Center

for Embedded Computer Systems, University of California, Irvine, April 2002.

[42] Andreas Gerstlauer. Communication abstractions for system-level design and synthesis.

Technical Report CECS-TR-03-30, Center for Embedded Computer Systems, University of

California, Irvine, October 2003.

[43] Andreas Gerstlauer, Lukai Cai, Dongwan Shin, Haobo Yu, Junyu Peng, and Rainer Dömer.

SCE Database Reference Manual, Version 2.2.0 beta. Center for Embedded Computer Sys-

tems, University of California, Irvine, July 2003.

[44] Andreas Gerstlauer, Lukai Cai, Dongwan Shin, Haobo Yu, Junyu Peng, and Rainer Dömer.

System-on-chip component models. Technical Report CECS-TR-03-26, Center for Embed-

ded Computer Systems, University of California, Irvine, July 2003.

[45] Andreas Gerstlauer and Rainer Dömer. SCE Specification Model Reference Manual, Version

2.2.0 beta. Center for Embedded Computer Systems, University of California, Irvine, July

2003.

[46] Andreas Gerstlauer, Rainer Dömer, Junyu Peng, and Daniel D. Gajski. System Design: A

Practical Guide with SpecC. Kluwer Academic Publishers, 2001.

[47] Andreas Gerstlauer and Daniel D. Gajski. System-level abstraction semantics. In Proceed-

ings of the International Symposium on System Synthesis, Kyoto, Japan, October 2002.

[48] Andreas Gerstlauer, Kiran Ramineni, Rainer Dömer, and Daniel D. Gajski. System-on-chip

specification style guide. Technical Report CECS-TR-03-21, Center for Embedded Computer

Systems, University of California, Irvine, June 2003.

[49] Andreas Gerstlauer, Haobo Yu, and Daniel D. Gajski. RTOS modeling for system level

design. In Ahmed A. Jerraya, Sungjoo Yoo, Norbert Wehn, and Diedrik Verkest, editors,

Embedded Software for SoC. Kluwer Academic Publishers, 2003.

BIBLIOGRAPHY 231

[50] Andreas Gerstlauer, Haobo Yu, and Daniel D. Gajski. Rtos modeling for system level design.

In Proceedings of the Design, Automation and Test in Europe (DATE) Conference, Munich,

Germany, March 2003.

[51] Andreas Gerstlauer, Shuqing Zhao, Daniel D. Gajski, and Arkady M. Horak. Design of a

GSM vocoder using SpecC methodology. Technical Report ICS-TR-99-11, Information and

Computer Science, University of California, Irvine, March 1999.

[52] Andreas Gerstlauer, Shuqing Zhao, Daniel D. Gajski, and Arkady M. Horak. SpecC system-

level design methodology applied to the design of a GSM vocoder. In Proceedings of the

Workshop of Synthesis and System Integration of Mixed Information Technologies, Kyoto,

Japan, April 2000.

[53] Thorsten Grötker, Stan Liao, Grant Martin, and Stuart Swan. System Design with SystemC.

Kluwer Academic Publishers, 2002.

[54] Peter Grun, Nikil Dutt, and Alex Nicolau. Memory Architecture Exploration for Pro-

grammable Embedded Systems. Kluwer Academic Publishers, 2003.

[55] Rajesh K. Gupta and Giovanni De Michelli. Hardware-software co-synthesis for digital sys-

tems. IEEE Design and Test of Computers, pages 29–41, September 1993.

[56] Rajesh K. Gupta and Stan Y. Liao. Using a programming language for digital system design.

IEEE Design and Test of Computers, 14(2):72–80, April-June 1997.

[57] Sumit Gupta. Coordinated Coarse-Grain and Fine-Grain Optimizations for High-Level Syn-

thesis. PhD thesis, Information and Computer Science, University of California, Irvine, June

2003.

[58] Wolfram Hardt, Achim Rettberg, and Bernd Kleinjohann. The PARADISE design environ-

ment. In Proceedings of the Embedded System Conference (ESC), Auckland, New Zealand,

1999.

[59] W. A. Horn. Some simple scheduling algorithms. Naval Research Logistics Quarterly,

21:177–185, 1974.

[60] SEMATECH Inc. International technology roadmap for semiconductors (ITRS).

http://public.itrs.net, 2001.

http://public.itrs.net

BIBLIOGRAPHY 232

[61] Trolltech Inc. Qt application development framework.

http://www.trolltech.com/products/qt/.

[62] Internation Organization for Standardization (ISO). Reference Model of Open System Inter-

connection (OSI), second edition, 1994. ISO/IEC 7498 Standard.

[63] International Telecommunication Union (ITU). Digital Compression and Coding of

Continous-Tone Still Images, September 1992. ITU Recommendation T.81.

[64] International Telecommunication Union (ITU). Specification and Description Language

(SDL), November 1999. ITU-T Recommendation Z.100.

[65] Axel Jantsch, Shashi Kumar, and Ahmed Hemani. The Rugby model: A conceptual frame for

the study of modelling, analysis and synthesis concepts of electronic systems. In Proceedings

of the Design, Automation and Test in Europe (DATE) Conference, Munich, Germany, March

1999.

[66] Ahmed A. Jerraya and Kevin O’Brien. SOLAR: An intermediate format for systemlevel

modelling and synthesis. In Jerzy Rozenblit and Klaus Buchenrieder, editors, Computer

Aided Software/Hardware Engineering. IEEE Press, 1994.

[67] Hermann Kopetz. Real-Time Systems: Design Principles for Distributed Applications.

Kluwer Academic Publishers, 1997.

[68] Fadi J. Kurdahi, Daniel D. Gajski, Champaka Ramachandran, and Viraphol Chaiyakul. Link-

ing register transfer and physical levels of design. IEICE Transactions on Information and

Systems, 76(9):991–1002, September 1993.

[69] Edward A. Lee and David G. Messerschmitt. Static scheduling of synchronous data flow

programs for digital signal processing. IEEE Transactions on Computers, 36(1), January

1987.

[70] Heiko Lehr and Daniel D. Gajski. Modeling custom hardware in VHDL. Technical Report

ICS-TR-99-29, Information and Computer Science, University of California, Irvine, July

1999.

[71] C. L. Liu and James W. Leyland. Scheduling algorithms for multiprogramming in a hard-

real-time environment. Journal of the ACM, 20(1):46–61, January 1973.

http://www.trolltech.com/products/qt/

BIBLIOGRAPHY 233

[72] Jane W. S. Liu. Real-Time Systems. Prentice Hall, 2000.

[73] Riverbank Computing Ltd. PyQt. http://www.riverbankcomputing.co.uk/pyqt/.

[74] Damien Lyonnard, Sungjoo Yoo, Amer Baghdadi, and Ahmed A. Jerraya. Automatic gener-

ation of application-specific architectures for heterogeneous multiprocessor system-on-chip.

In Proceedings of the Design Automation Conference (DAC), Las Vegas, NV, June 2001.

[75] Peter Marwedel. Embedded Systems Design. Kluwer Academic Publishers, 2003.

[76] Giovanni De Micheli. Synthesis and Optimization of Digital Circuits. McGraw-Hill, 1994.

[77] Wolfgang Mueller, Rainer Dömer, and Andreas Gerstlauer. The formal execution semantics

of SpecC. In Proceedings of the International Symposium on System Synthesis, Kyoto, Japan,

October 2002.

[78] Open SystemC Initiative, http://www.systemc.org. Functional Specification for SystemC

2.0, 2000.

[79] Open SystemC Initiative. http://www.systemc.org.

[80] Achim Österling, Thomas Brenner, Rolf Ernst, Dirk Herrmann, Thomas Scholz, and Wei Ye.

The COSYMA system. In Jorgen Staunstrup and Wayne Wolf, editors, Hardware/Software

Co-Design: Principles and Practice. Kluwer Academic Publishers, 1997.

[81] Preeti R. Panda, Nikil D. Dutt, and Alexandru Nicolau. Memory Issues in Embedded Systems-

On-Chip. Kluwer Academic Publishers, 1999.

[82] Junyu Peng, Samar Abdi, and Daniel D. Gajski. Automatic model refinement for fast ar-

chitecture exploration. In Proceedings of the Asia and South Pacific Design Automation

Conference (ASPDAC), Bangalore, India, January 2002.

[83] Junyu Peng, Lucai Cai, Andreas Gerstlauer, and Daniel Gajski. Interactive system design

flow. Technical Report CECS-TR-02-15, Center for Embedded Computer Systems, Univer-

sity of California, Irvine, April 2002.

[84] Shiv Prakash and Alice Parker. SOS: Synthesis of application-specific heterogeneous multi-

processor systems. Journal of Parallel and Distributed Computing, 16:338–351, December

1992.

http://www.riverbankcomputing.co.uk/pyqt/
http://www.systemc.org
http://www.systemc.org

BIBLIOGRAPHY 234

[85] Boudewijn Rempt. GUI Programming with Python: Qt Edition. Opendocs Llc., January

2002.

[86] Kai Richter, Dirk Ziegenbein, Marek Jersak, and Rolf Ernst. Model composition for schedul-

ing analysis in platform design. In Proceedings of the Design Automation Conference (DAC),

New Orleans, LA, June 2002.

[87] Patrick Schaumont, Serge Vernalde, Luc Rijnders, Marc Engels, and Ivo Bolsens. A pro-

gramming environment for the design of complex high speed ASICs. In Proceedings of the

Design Automation Conference (DAC), San Francisco, CA, June 1998.

[88] Dongwan Shin, Andreas Gerstlauer, Rainer Dömer, and Daniel D. Gajski. C-based inter-

active RTL design environment. Technical Report CECS-TR-03-42, Center for Embedded

Computer Systems, University of California, Irvine, December 2003.

[89] Robert Siegmund and Dietmar Müller. SystemCSV : An extension of SystemC for mixed

multi-level communication modeling and interface-based system design. In Proceedings of

the Design, Automation and Test in Europe (DATE) Conference, Munich, Germany, March

2001.

[90] David Stepner, Nagarajan Rajan, and David Hui. Embedded application design using a real-

time OS. In Proceedings of the Design Automation Conference (DAC), New Orleans, LA,

June 1999.

[91] SpecC Technology Open Consortium. http://www.specc.org.

[92] Kjetil Svarstad, Nezih Ben-Fredj, Gabriela Nicolescu, and Ahmed A. Jerraya. A higher

level system communication model for object-oriented specification and design of embed-

ded systems. In Proceedings of the Asia and South Pacific Design Automation Conference

(ASPDAC), Yokohama, Japan, January 2001.

[93] Hiroyuki Tomiyama, Yun Cao, and Kazuaki Murakami. Modeling fixed-priority preemp-

tive multi-task systems in SpecC. In Proceedings of the Workshop of Synthesis and System

Integration of Mixed Information Technologies, Nara, Japan, October 2001.

[94] Frank Vahid, Sanjiv Narayan, and Daniel D. Gajski. SpecCharts: A VHDL frontend for

embedded systems. IEEE Transactions on Computer-Aided Design of Intergrated Circuits

and Systems (TCAD), 14(6):694–706, June 1995.

http://www.specc.org

BIBLIOGRAPHY 235

[95] Carlos A. Valderrama, Mohamed Romdhani, Jean-Marc Daveau, Gilberto F. Marchioro, Adel

Changuel, and Ahmed A. Jerraya. Cosmos: A transformational co-design tool for multipro-

cessor architectures. In Jorgen Staunstrup and Wayne Wolf, editors, Hardware/Software

Co-Design: Principles and Practice. Kluwer Academic Publishers, 1997.

[96] Karl van Rompaey, Diederick Verkest Ivo Bolsens, and Hugo De Man. CoWare: A design

environment for heterogeneous hardware/software systems. In Proceedings of the European

Design Automation Conference (Euro-DAC), Geneva, Switzerland, September 1996.

[97] Guido van Rossum and Fred L. Drake, Jr. (Editor). The Python Language Reference Manual.

Network Theory Ltd., September 2003.

[98] Geert Vanmeerbeeck, Patrick Schaumont, Serge Vernalde, Marc Engels, and Ivo Bolsens.

Hardware/software partitioning for embedded systems in OCAPI-xl. In Proceedings of the

International Symposium on Hardware-Software Codesign (CODES), Copenhagen, Den-

mark, April 2001.

[99] Martin von Weymarn. Development of a specification model of the EFR vocoder. Technical

Report ICS-TR-01-35, Information and Computer Science, University of California, Irvine,

July 2001.

[100] Kazutoshi Wakabayashi and Takumi Okamoto. C-based SoC design flow and EDA tools:

An ASIC and system vendor perspective. IEEE Transactions on Computer-Aided Design of

Intergrated Circuits and Systems (TCAD), 19(12):1507–1522, December 200.

[101] Wayne Wolf. An architectural co-synthesis algorithm for distributed, embedded computing

systems. IEEE Transactions on VLSI Systems, 5(2):218–229, June 1997.

[102] Wayne Wolf. Hardware/software co-synthesis algorithms. In Ahmed A. Jerraya and Jean

Mermet, editors, System-Level Synthesis. Kluwer Academic Publishers, 1998.

[103] Chun Wong, Paul Marchal, and Peng Yang. Task concurrency management methodology to

schedule the MPEG4 IM1 player on a highly parallel processor platform. In Proceedings

of the International Symposium on Hardware-Software Codesign (CODES), Copenhagen,

Denmark, April 2001.

BIBLIOGRAPHY 236

[104] Ti-Yen Yen and Wayne Wolf. Communication synthesis for distributed embedded systems.

In Proceedings of the International Conference on Computer Aided Design (ICCAD), San

Jose, CA, November 1995.

[105] Ti-Yen Yen and Wayne Wolf. Performance estimation for distributed embedded systems.

IEEE Transactions on Parallel and Distributed Systems, 9(11):1125–1136, November 1998.

[106] Hanyu Yin, Haito Du, Tzu-Chia Lee, and Daniel D. Gajski. Design of a JPEG encoder using

SpecC methodology. Technical Report ICS-TR-00-23, Information and Computer Science,

University of California, Irvine, July 2000.

[107] Haobo Yu, Rainer Dömer, and Daniel Gajski. Automatic software generation for system

level design. Technical Report CECS-TR-03-18, Center for Embedded Computer Systems,

University of California, Irvine, May 2003.

[108] Haobo Yu, Rainer Dömer, and Daniel Gajski. Embedded software generation from system

level design languages. In Proceedings of the Asia and South Pacific Design Automation

Conference (ASPDAC), Yokohama, Japan, January 2004.

[109] Haobo Yu and Daniel D. Gajski. RTOS modeling in system level synthesis. Technical Report

CECS-TR-02-25, Center for Embedded Computer Systems, University of California, Irvine,

August 2002.

[110] Peng Zhang, Dongwan Shin, Haobo Yu, Qiang Xie, and Daniel D. Gajski. SpecC RTL

design methodology. Technical Report ICS-TR-00-44, Information and Computer Science,

University of California, Irvine, December 2000.

[111] Jianwen Zhu, Rainer Dömer, and Daniel D. Gajski. Syntax and semantics of the SpecC

language. In Proceedings of the International Symposium on System Synthesis, Osaka, Japan,

December 1997.

[112] Jianwen Zhu and Daniel D. Gajski. A retargatable, ultra-fast instruction set simulator. In

Proceedings of the Design, Automation and Test in Europe (DATE) Conference, Munich,

Germany, March 1999.

[113] Jianwen Zhu and Daniel D. Gajski. Compiling SpecC for simulation. In Proceedings of

the Asia and South Pacific Design Automation Conference (ASPDAC), Yokohama, Japan,

January 2001.

BIBLIOGRAPHY 237

[114] Dirk Ziegenbein, Kai Richter, Rolf Ernst, Lothar Thiele, and Jürgen Teich. SPI — a sys-

tem model for heterogeneously specified embedded systems. IEEE Transactions on VLSI

Systems, 2002.

	Cover
	Table of Contents
	List of Figures
	List of Listings
	List of Tables
	List of Acronyms
	Acknowledgments
	Curriculum Vitae
	Abstract of the Dissertation
	1 Introduction
	1.1 Design and Synthesis
	1.2 System Design
	1.3 Abstraction Levels and Design Models
	1.4 Design Language
	1.5 Problem Definition
	1.6 Dissertation Overview
	1.7 Related Work
	1.7.1 Design Methodologies
	1.7.2 Computation Synthesis
	1.7.3 Communication Synthesis
	1.7.4 Design Environments

	2 Modeling Flow
	2.1 Overview
	2.1.1 Design Flow
	2.1.2 Modeling

	2.2 Design Models
	2.2.1 Specification
	2.2.2 Architecture
	2.2.3 Communication
	2.2.4 Implementation

	2.3 Design Methodology
	2.4 Design Process
	2.5 Design Environment
	2.5.1 Modeling
	2.5.2 Refinement
	2.5.3 Exploration
	2.5.4 Synthesis

	2.6 Summary

	3 System Specification
	3.1 Modeling Guidelines
	3.1.1 Computation
	3.1.2 Communication

	3.2 Modeling Style
	3.2.1 Computation
	3.2.2 Communication

	3.3 Design Example
	3.4 Summary

	4 Computation Design
	4.1 Overview
	4.2 Partitioning
	4.2.1 Processing Element Layer
	4.2.2 Memory Layer

	4.3 Scheduling
	4.3.1 Static scheduling
	4.3.2 RTOS Layer

	4.4 Summary

	5 Communication Design
	5.1 Overview
	5.1.1 SoC Communication
	5.1.2 Communication Layers

	5.2 Network Design
	5.2.1 Application Layer
	5.2.2 Presentation Layer
	5.2.3 Session Layer
	5.2.4 Transport Layer
	5.2.5 Network Layer

	5.3 Link Design
	5.3.1 Link Layer
	5.3.2 Stream Layer
	5.3.3 Media Access Layer
	5.3.4 Protocol Layer

	5.4 Summary

	6 Backend
	6.1 Hardware Design
	6.1.1 Overview
	6.1.2 Superstate Model
	6.1.3 Behavioral RTL
	6.1.4 Structural RTL

	6.2 Software Design
	6.2.1 Overview
	6.2.2 C Model
	6.2.3 Instruction Set Simulation Model

	6.3 Summary

	7 Design Environment
	7.1 Overview
	7.1.1 Simulation
	7.1.2 Profiling
	7.1.3 Refinement
	7.1.4 Synthesis
	7.1.5 User Interface

	7.2 Specification Capture
	7.2.1 Modeling
	7.2.2 Simulation

	7.3 Profiling and Estimation
	7.3.1 Profiling Flow
	7.3.2 Metrics
	7.3.3 Visualization

	7.4 Databases
	7.4.1 Database Format
	7.4.2 Allocation and Selection

	7.5 Computation Design
	7.5.1 Partitioning
	7.5.2 Scheduling

	7.6 Communication Design
	7.6.1 Network Design
	7.6.2 Link Design

	7.7 Backend
	7.7.1 Hardware Design
	7.7.2 Software Design

	7.8 Summary

	8 Experimental Results
	8.1 Overview
	8.1.1 Modeling and Simulation
	8.1.2 System Design

	8.2 Vocoder System
	8.2.1 Modeling and Simulation
	8.2.2 PE Modeling
	8.2.3 OS Modeling
	8.2.4 Communication Modeling

	8.3 JPEG Encoder Subsystem
	8.3.1 Modeling and Simulation
	8.3.2 PE Modeling

	8.4 Baseband System
	8.5 Summary

	9 Summary and Conclusions
	Bibliography

