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Abstract—Distributed system-level simulation among 
coordinated, heterogeneous simulators requires communication 
and synchrony to preserve event causality.  Once achieved, 
multiple coordinated, distributed instances of a single simulator 
not originally written for internal parallelism can  be used to 
conduct the expression-level parallel execution of a model 
partitioned into subsystems, such that each subsystem is assigned 
to an individual simulator.  Using a Kahn Process Network 
simulation backplane for coordination, and a custom Xspice 
TCP/IP socket device for interfacing, expression-level distributed 
simulation was applied to observe a decrease of up to 1/52 times 
the transient analysis time of the same circuit in a single Ngspice 
instance, without modifying the Ngspice kernel or host execution 
environment.  Up to 128 independent Ngspice instances were 
coordinated in parallel with this method, with a selectable 
tradeoff in speed versus accuracy. 

Keywords: distributed Spice simulation, heterogeneous 
cosimulation, Kahn Process Networks, cosimulation backplanes, 
expression-level parallelism 

I.  INTRODUCTION 

Distributed circuit simulation techniques can be used to 
coordinate the parallel simulation of circuit subsystems across 
multiple, process-independent instances of a single simulator 
not normally supporting internal parallelism.  This is possible if 
the simulator offers a communication interface at the model 
expression-level to communicate with other running instances, 
or to communicate with an arbitrating software agent such as a 
simulation backplane [1].  However, since each concurrent 
simulator may advance time independently (local virtual time) 
[2], a coordination solution must both communicate signal 
values and enforce event causality, such that the local causality 
constraint (LCC) is observed.  The LCC requires that 
concurrent simulators process external events in time step order 
[2].  Techniques addressing causality in distributed simulation 
are covered in depth in the literature in the field of Parallel 
Discrete Event Simulation (PDES) [3], and discrete 
event/continuous-time cosimulation [4]. 

If a coordination solution is achieved, it can be applied to 
conduct the multiple-simulator, parallel execution of a Spice 
 

 

 

 

circuit at the model expression level for the speed up of an 
otherwise long-duration, sequential transient circuit analysis.  
This is important for modern VLSI device counts, where Spice 
simulation becomes “typically infeasible for designs larger than 
20,000 devices” [5].  Where parallel techniques can be 
employed, the non-linear increase in transient analysis time per 
device count for sequential executions can be reduced by 
conducting the Spice model-evaluation phase or the matrix-
solving phase of each time point iteration in parallel.  Reported 
solutions, however, require hardware acceleration (such as 
offloading to a GPU [5] or FPGA [6]), may not parallelize both 
the model-evaluation and the matrix-solve phases [6], or 
require changes to the Spice kernel (all cases reviewed).  With 
the expression-level approach, however, both model-evaluation 
and matrix-solving phases are parallelized in software, without 
modifying the Spice kernel [7] or host environment, at the cost 
of a selectable tradeoff in execution speed versus accuracy.    

 For distributed simulator coordination, we used the 
SimConnect/SimTalk infrastructure [8] to speed up the 
transient analysis time of a counter circuit of more than three 
thousand transistors.  We wrote an Xspice [9] user TCP/IP 
socket device, which allowed concurrently running Ngspice 
instances to exchange node information with the SimConnect 
simulator backplane.  Parallelism was employed across 2 to 
128 concurrently running Ngspice instances, for speedup to 
52x at less than 10 percent error of measurement, and up to 17x 
with less than 1 percent error of measurement.  Percent error of 
measurement was arbitrarily reduced, at the expense of longer 
simulation time, by increasing the resolution of the interpolated 
event (IE) data types exchanged between the Ngspice 
instances.   

II. RELATED WORK 

Parallel execution is not new to Spice circuit simulation, 
due to its high internal data potential parallelism [6] in the 
model-evaluation and matrix-solving phases of each time point 
iteration.  Techniques exploiting this through executive means 
(parallel CPUs, GPU or FPGA offloading, or matrix algorithm 
techniques) are covered in [5], [6], and [10]-[13], but these 
methods require modifying the Spice kernel, expensive 
hardware, and most importantly are not generally ported to 
other simulators that have no studied internal parallelism.  We 
term this post-model level of internal simulator parallelism, 
“execution-level parallelism.”  That is, the parallelism is not 
carried out at the model description layer (the expressive level), 



but rather at the model execution level, where it occurs “behind 
the scenes” to some degree from the view of the model writer.   

Execution-level techniques are powerful though, reporting 
up to an 18x speedup of Spice 3f5 benchmarks in [6], without 
loss of accuracy, by offloading the model evaluation phase onto 
an FPGA.  In another approach [5], the expensive BSIM3 
transistor model evaluation steps, which “may comprise about 
75% of the SPICE runtime [5],” are offloaded to a GPU for 
parallel execution, for up to a 4x speedup at the expense of 
single-precision floating-point accuracy (GPU execution) 
verses double-precision floating-point accuracy (BSIM3 model 
code).  In the matrix-solving phase, domain decomposition 
methods can be employed to achieve a very large performance 
increase (up to 870x reported simulation speedup in [13]), but 
scaling limits the approach at around 400k nodes as the 
execution is hosted in only a single SPICE3/HSPICE instance.   
Finally, with multiple technique advancements and 
supercomputer parallel CPU execution, Sandia National 
Laboratories’ Xyce simulator [14] “demonstrates  good 
speedups (24x on 40 processors),” but results may be limited to 
“sufficiently large circuits” [6].  These are by no means an 
exhaustive set of speed up reports, but rather show that 
significant increases may be obtained at the execution-level 
through hardware acceleration and software techniques, if they 
are available and the Spice kernel is modified. 

For heterogeneous, distributed simulation, the “backplane” 
technique ([1], [15]-[17]) has been employed to solve the 
simulator coordination problem.  Simulator backplanes are 
arbitrating software agents that distribute information across 
connected simulators and potentially control simulator time 
advancement.  An interface must be constructed for each 
simulator that connects to the backplane to implement the 
coordination API.  The SimConnect/SimTalk client-server 
backplane architecture described in [8] implements the 
dynamics of a Kahn Process Network (KPN) [18], such that the 
tokens of the KPN are interpolated event (IE) data types.  
Interpolated events are defined in [8] and summarized in 
section III.  With this coordination, simulators are synchronized 
through dataflow, rather than explicit time step control, 
lessening the backplane API complexity.  Additionally, 
simulators have no process awareness of one another (per the 
rules of a KPN), only awareness of their input and output 
FIFOs, which offers easier management as the number of 
simulators increases.   

III.  DISTRIBUTED PARALLELISM  

We define “expression-level parallelism” to start at the 
model description layer.  At this layer, the description is 
inspected for points of partition, at which nodes the circuit is 
expressed as new, independent subcircuits with communication 
interfaces.   Each new subcircuit is assigned to an independent 
simulator.  The entire model then simulates in coordination 
over the distributed, coordinated instances of the single 
simulator normally hosting the non-partitioned model.  In this 
way, if a communication interface is offered at the model 
description layer, parallel execution can be gained for 
simulators not normally supporting internal parallelism.  The 
cost is the additional communication overhead between 
simulators (both a computation and latency cost), and the 

burden of coordinating distributed simulators with independent 
versions of time advancement (local virtual time). 

As an example of a partitioned distribution, Figure 1 
illustrates the coordination of eight Ngspice instances 
connected to the SimConnect server through SimTalk, for a 
concurrent 8x parallel simulation of the a 128-bit counter 
described in section IV.  The counter is partitioned into 
subcircuits 16 bits wide, connected at their MSB and LSB 
nodes via Xspice socket devices. 

 

Figure 1.  SimConnect/SimTalk relationship for distributed, parallel 
Ngspice instances 

The SimConnect server implements the dynamics of a 
Kahn Process Network, where the contents of the KPN tokens 
in are “interpolated event” (IE) objects.  Interpolated events, 
defined in [8], are 3-tuple elements (v, tm, tn) from the product 
set V × T × T, where { V } is a set of values, and { T } is a set 
of tags.  This nomenclature borrows from the value/tag (v, t) 
definition of an event covered in [19].  For a given interpolated 
event (v, tm, tn), we define the value v to be constant on the 
interval [tm, tn ) specified in the IE, such that the tag set { T } is 
ordered.  { T } is conventionally the real number set R1 in 
timed, event driven simulations, representing the simulation 
time stamp of an event occurrence.  For an interpolated event 
(v, tm, tn), the range [tm, tn ) assigns a “stable” time to the signal 
value v for producers and consumers. 

If a simulator consumes an interpolated event, it may 
assume the value v is constant on the tag range [tm, tn), and not 
need to sample the value again until expiration time tn.  
Therefore, an interpolated event encapsulates both 
communication (the signal value) and synchronization (the start 
and end time).  Mapped to nodes in a Kahn Process Network, 
simulators consume IEs, run, and produce IEs until the 
expiration tag of the last consumed IEs, at which point 
simulators sample their FIFOs again for a new IEs.  If input 
FIFOs are empty, simulators are blocked.  Through the 
blocking read property of KPNs, the local causality constraint 



is observed, because simulators cannot advance in time beyond 
the expiration tags of IEs on their input FIFOs.  Further 
dynamics of KPN and IEs are detailed in [8]. 

As a consequence of sampling, there is a tradeoff in speed 
versus accuracy when using the SimConnect/SimTalk method 
of IEs for distributed Spice parallelism.  Specifically, an IE 
assigns a stable value for duration to a node voltage, during 
which local time a consuming simulator can operate on it 
without re-querying the value.  During that time, however, the 
signal may change, resulting sample-and-hold error for 
continuous values, or change-delay error for digital values, 
since the state change information of the digital value is 
delayed until the start time of the next IE.  This speed versus 
accuracy tradeoff is tunable, however, as explored in section 
VI.     

IV.  EXPERIMENTS 

Consider simulating a wide-bit asynchronous ripple counter 
at the transistor level.  While ripple counters are impractical as 
real circuits, due to the rollover delay from maximum value 
(0xFFF…) to zero, they are simple elementary circuits for 
conceptualizing or simulating a propagation delay (the 
rollover delay as the carry bit propagates from bit 0 to bit <n>-
1, for counter width <n>).  Consider the <n>-bit ripple counter 
in Figure 2, composed of inverters and positive edge- triggered 
D flip-flops. 

 

 
Figure 2.  <n>-bit asynchronous ripple counter 

The inverters are implemented as a standard pmos/nmos 
pair, and the D flip-flop at the gate level is implemented 
according to Figure 3. 
 

 
Figure 3.  Edge-triggered D flip-flop 

Each bit, with two inverters and one flip-flop, consumes 30 
MOSFETs, 15 pmos and 15 nmos.   The pmos transistors are 

oversized for symmetric drive strength with respect to the 
nmos transistors.  

 Single Instance Simulation 

The single-instance counter is simulated in Ngspice [7], the 
open source distribution of Berkeley Spice version 3 and 
Georgia Tech’s Xspice [9].  Figure 4 shows the increase in 
transient analysis time as the number of transistors in the 
circuit increases, per bit width of the counter.  The counter is 
simulated at 4, 8, 16, 32, 64, and 128 bits for 1.5 µs of 
simulation time.   
 

 
Figure 4.  Increase in Ngspice transient analysis time for 1.5 µs of 

simulation time as counter width increases 

From Figure 4, the increase in analysis time per number of 
transistors is non-linear due to the non-linear increase in 
model evaluation time and matrix solution time in the Spice 
kernel as the device count increases.  As the number of bits in 
the counter increases from 64 to 128 bits (1918 to 3838 
transistors), for example, the analysis time increases from 
slightly over a minute to more than five minutes on a single 
workstation Linux 2.6.16 kernel machine with Intel Xeon 2.93 
GHz core.  This non-linear increase limits the practicality of 
simulating complex circuits at the transistor level on the order 
of modern VLSI transistor counts. 

 Parallel Simulation 

For improvement, the circuit is partitioned at the expression 
level (the Ngspice circuit deck) into subcircuits <m>-bits 
wide, where <m> is a power-of-two divisor of 128, and the 
factor of parallelization.  Each subcircuit is then assigned to an 
independent Ngspice process, coordinated with other Ngspice 
processes in parallel through SimConnect and SimTalk. 

Figure 5 shows an <m>-bit wide subcircuit of the counter, 
where Xspice user TCP/IP socket devices connect the circuit 
to its neighboring subcircuits over SimTalk. 
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Figure 5.  Partitioned subcircuit with socket devices

Between subcircuits, TCP/IP socket devices connec
most significant to least significant bits from one 
the next.  For example, bit 15 of the subcircuit fo
is connected to bit 16 of the subcircuit for bits [16:
onward through bit 127.  The socket device services the 
SimTalk protocol and delivers IE tokens 
backplane, which distributes the IE tokens through 
FIFOs from signal producer to signal consumer.

V. RESULTS 

At 10 ns IE resolution, Figure 6 shows the speedup result 
per factor of parallelization for the same 
1.5 µs of transient analysis time. 
 

Figure 6.  Speedup at 10 ns IE resolution

By dividing the 128-bit counter into two 64
we achieve a 2x speedup alone, and then achieve a 52x 
speedup by subdividing into 64 subcircuits, each 2 
However, the speedup maximizes at this point, after which it 
diminishes as the communication overhead
Ngspice instances increases.  This manifests
speedup from 64x to 128x parallel in Figure 
fixed-resolution IE duration also results in a non
error of measurement, shown in Figure 7, where the
time of the ripple counter across the parallel
against the rollover time of the non-parallel case. 
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with socket devices 

TCP/IP socket devices connect the 
most significant to least significant bits from one subcircuit to 
the next.  For example, bit 15 of the subcircuit for bits [0:15] 

of the subcircuit for bits [16:31], and 
.  The socket device services the 

IE tokens to the SimConnect 
tokens through KPN 

from signal producer to signal consumer.  

shows the speedup result 
for the same 128-bit counter for 

 
ns IE resolution 

counter into two 64-bit subcircuits, 
we achieve a 2x speedup alone, and then achieve a 52x 

uits, each 2 bits wide.  
maximizes at this point, after which it 

communication overhead per number of 
manifests in the loss of 

to 128x parallel in Figure 6.  The cost of 
results in a non-zero percent 

, shown in Figure 7, where the rollover 
parallel cases is measured 

parallel case.  

Figure 7.  Percent error of measurement

The error in measurement occurs because the IEs are of 
finite duration, during which
constant.  If an IE duration is greater than the rail
time of a circuit inverter, for example, 
conveying the information of the inverter’s changed state may 
be delayed up to the duration of the IE
inverter output was sampled
from one communication node to th
parallel instance, it can accumulate at the output at bit 127 
where the rollover delay is measured.  The sum
accumulated delay can increase as the parallelism increases.  
This is responsible for the positively correlated relationship
Figure 7. 

 Increased Resolution 

However, if IE resolution
Figure 8, the percent error of measurement decreases.  This is 
because an inverter fall at communication nodes is sampled 
every 2 ns, instead of 10 ns.  Since t
the order of 10 ns as these transistors were
results in smaller worst-case 
state change on an inverter output
measurement drops to below five percent 
parallel cases in Figure 8, and to 
to 16x parallel cases, although the speedup decreases.
 

Figure 8.  Percent error of measurement at 2
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measurement at 10 ns IE resolution 

The error in measurement occurs because the IEs are of 
duration, during which sample time an event is declared 

.  If an IE duration is greater than the rail-to-rail fall 
for example, or on the order of it, 

information of the inverter’s changed state may 
be delayed up to the duration of the IE, depending on when the 

sampled.  Since this delay can continue 
from one communication node to the next through each 

it can accumulate at the output at bit 127 
delay is measured.  The sum of 

increase as the parallelism increases.  
This is responsible for the positively correlated relationship in 

IE resolution increases (from 10 ns to 2 ns) in 
, the percent error of measurement decreases.  This is 

because an inverter fall at communication nodes is sampled 
.  Since the inverter fall time is on 
ransistors were sized, a 2 ns sample 

case delay in observing a rail-to-rail 
on an inverter output.  Percent error of 

drops to below five percent for the 64x and 128x 
and to below one percent for the 2x 

cases, although the speedup decreases. 

 
measurement at 2 ns IE resolution 
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The transient analysis time for the
parallelism increases as resolution increases
9, due to the increased communication rate with the 
SimConnect server (higher resolution 
Ngspice time steps, resulting in more IE tokens through the 
KPN FIFOs). 

 

Figure 9.  Speedup at 2 ns IE resolu

VI.  DISCUSSION 

Significant transient analysis time decrease (17x at less than 
1 percent error) may be achieved by partitioning the 
counter into subcircuits each 128/<n> bits wide, where 
a divisor of 128 and the desired factor of parallelism
Maximum speedup occurs at a parallelization factor 
resolution, beyond which, as parallelization increases, speedup 
decreases due to increased communication and load on the 
SimConnect backplane. 

This cost of communication also occurs as IE resolut
increases.  However, percent error of measurement can be 
reduced arbitrarily per degree of parallelization by increasing 
the IE resolution, as shown in Figure 8.  This speedup in 
transient analysis time for the same 
achieved without modifications to the Ngspice kernel, or the 
execution host, making it different than execution
parallelization schemes.  In this method, the partitioning 
performed at the circuit expression-level, in multiple Ngspice 
decks spread over independent simulators, so both the model
evaluation and the matrix-solving phases occur in parallel.

Choosing an appropriate degree of parallelization and IE 
resolution automatically is not yet suggested by this work
since it is highly circuit dependent (the partiti
look for nodes of loose coupling or signal feed
cutsets).  For accuracy, IE resolution should be on the order of 
the maximum frequency content of the communicated signal
to minimize accumulated delay of rise or fall time information 
due to sampling.  In the examples of Figure
decreasing the IE duration to one fifth (2 ns)
inverter rail-to-rail fall time (approximately 
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, due to the increased communication rate with the 
SimConnect server (higher resolution results in smaller 

more IE tokens through the 

 
Speedup at 2 ns IE resolution 

me decrease (17x at less than 
error) may be achieved by partitioning the 128-bit 

bits wide, where <n> is 
desired factor of parallelism.  

Maximum speedup occurs at a parallelization factor per IE 
resolution, beyond which, as parallelization increases, speedup 
decreases due to increased communication and load on the 

This cost of communication also occurs as IE resolution 
increases.  However, percent error of measurement can be 

degree of parallelization by increasing 
IE resolution, as shown in Figure 8.  This speedup in 

transient analysis time for the same 128-bit counter is 
modifications to the Ngspice kernel, or the 

, making it different than execution-level 
In this method, the partitioning is 

, in multiple Ngspice 
simulators, so both the model-

solving phases occur in parallel. 
Choosing an appropriate degree of parallelization and IE 

yet suggested by this work, 
(the partitioning should 

se coupling or signal feed-forward 
IE resolution should be on the order of 

communicated signal 
of rise or fall time information 

.  In the examples of Figures 7 and 8, 
(2 ns) of the circuit 

approximately 10 ns) decreased 

the percent error of measurement 
parallelism by more than one
parallel cases. 

With this approach, there will always be t
degree of parallelization, 
resolution, and percent error of measurement.  However,
up to 52x transient analysis time at less t
by this software technique alone, without modifying the 
simulator or execution host, may be acceptable
investigation phases of system

VII.  SUMMARY

We took the SimConnect/SimTalk KPN an
simulation scheme [8] and applied it to the expression
parallel execution of an Ngspice circuit at the transistor level.  
We observed gains up to 52x in analysis time, at less than ten 
percent error of measurement
than one percent error of measurement
without any modification to the Ngspice kernel or execution 
host, but by partitioning the circuit at the expression level and 
distributing the coordinated subcircuits over independen
concurrent instances of Ngspice.  Coordination was achieved 
through IE tokens exchanged with the Si
through SimTalk, implementing the dynamics of a Kahn 
Process Network.  In maximum parallelization, up to 128 
individual Ngspice instances 
SimConnect server. 

We postulate that it may be possible to combine expression
level parallelization and executio
further speedup.  For example, if at execution
speedup is achieved, then 
achieved individually over 
since the speedup is internal to each instance
level, though, a J-times speedup is achieved, then combining 
both, a J times K factor of speedup should 
both techniques (the speedups should mult
speedup occurs at the execution
expression-level.  There will still
due to the usage of IEs with this method at the expression
level (compared to execution
not introduce error).  We also 
simulators not initially written for parallel internal execution, 
such that they offer a device-
see if similar speedup gains can be achieved
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