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ABSTRACT
In this paper, we explore opportunities to increase energy
efficiency by providing cores with restricted functionality,
but without necessarily impacting performance. We aim to
achieve this by removing support for complex but less fre-
quently executed instructions since instruction mixes used
by real-world workloads are often heavily biased. We inves-
tigate which instructions are worthwhile to remove by ana-
lyzing a subset of instructions in the ARM ISA and their cor-
responding logic burden in the microarchitecture. We pro-
pose a heterogeneous-ISA system to achieve energy efficiency
without performance degradation using a system architec-
ture that combines both full- and reduced-ISA cores. Results
show that by providing the flexibility of heterogeneous-ISA
cores, the proposed system can improve energy efficiency by
12% on average and up to 15% for applications that do not
require NEON support, all without performance overhead.

1. INTRODUCTION
Current mobile systems-on-chips (SoCs) take advantage

of heterogeneity at the system level by switching between
high-performance and energy-efficient cores [1]. These het-
erogeneous systems match application demands with core
types to maximize energy efficiency. In such systems, the
heterogeneity lies in the microarchitecture. In bigger cores,
more transistors are spent on components that improve per-
formance, such as branch predictors and out-of-order pro-
cessing capabilities. In smaller cores, reducing the amount
of performance-relevant resources can, however, be detri-
mental to some workloads.

An alternate approach is to implement energy-efficient
cores by restricting functionality instead of giving up per-
formance. Specifically, by reducing resources that have less
impact on performance, power dissipation can be alleviated
without losing significant performance. The benefit of imple-
menting certain features in the Instruction Set Architecture
(ISA) is highly dependent on workloads. Not all instruc-
tions are frequently used by every workload. If a particular
workload favors specific instructions that are not directly
supported by the hardware, performance dramatically de-
creases. By contrast, there is little performance degradation
if those instructions are not frequently used.

In this paper, we explore opportunities for systems com-
prised of heterogeneous reduced-ISA cores to improve en-
ergy efficiency. We identify candidate instructions that are
complex to implement in state-of-the-art ARM-based sys-
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tems. We further evaluate performance degradations if can-
didate instructions are removed. If performance degrada-
tion is large, it is not worthwhile to consider removing them
despite the potential power benefit. We evaluate system
performance with a reduced instruction set running several
benchmarks. Results show that some subsets of instructions
are critical to performance while others are not essential
since in most cases, their usage frequency is low enough to
not impact performance significantly.

We propose a heterogeneous-ISA architecture to obtain
energy benefits while maintaining performance across a wide
range of workloads. In our proposed system architecture,
reduced-ISA cores remove hardware support for complex
instructions, which increases energy efficiency but requires
trapping and emulating of non-supported instructions. When
unsupported instructions are infrequent, a workload runs on
the reduced-ISA core to reduce energy. By contrast, when
unsupported instructions are prevalent, the workload is mi-
grated to a traditional full-ISA core. This dynamic core
switching allows the system to avoid the performance degra-
dation and energy inefficiency of software-emulated instruc-
tions. As long as they are not performance-critical, a com-
piler can thereby optimize binaries to remove unsupported
instructions and thus maximize residency on the reduced-
ISA core. Our results show that workloads without per-
formance critical instructions spend most of their execution
time on reduced-ISA cores, achieving energy savings of up to
15%. Workloads with frequent use of unsupported instruc-
tions execute exclusively on full-ISA cores with no change
in performance or energy consumption. On average, 12%
energy savings at little to no performance cost are observed
across a variety of benchmarks, where applications migrate
between reduced- and full-ISA cores depending on dynami-
cally varying instruction usage.

2. REDUCED-ISA CORE DESIGN
We first identify the instructions that greatly impact logic

complexity for reduced-ISA core design and evaluate the per-
formance impact after removing them. As a case study, we
select the ARM V7 ISA, and one of the performance-oriented
ARM processors, Cortex-A15, as a baseline. We find that
the overall number of instructions in an ISA is not as cru-
cial for logic reduction as would be expected. Our study
instead focuses on the specific semantics required by par-
ticular instructions that contribute to large logic within the
microarchitecture. Since the processor is unaware of the
instruction until decoded, we regard the fetch stage as an
irrelevant block. We analyze the logic burdens of various
instructions and provide the instruction distribution of both
Android applications and SPEC benchmarks. The details
of our ISA analyses can be found in [12]. Based on these
analyses, we identify four sets of candidate instructions for
removal as follows:

• NEON instruction set extensions including floating-point
(FP) and SIMD operations.

• Load and store multiple (LDM/STM) instructions.
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Figure 1: Performance of ISA without
NEON instructions.
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Figure 2: Performance of ISA without
conditional instructions.
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Figure 3: Performance of ISA without
Load/Store Multiple instructions.

• Predicated instructions [2].

• DSP-like instructions (QADD, SSAT, etc.).

Reduced-ISA Performance Impact: We define re-
duced instruction sets as case studies and observe the perfor-
mance overhead of each with SPEC CPU2006 benchmarks
(bzip2, gcc, mcf, hmmer, sjeng, libquantum, omnetpp, astar,
namd, soplex, povray, and lbm). We modify LLVM to gen-
erate binaries in which candidate instructions are removed.
The execution time was measured on an Arndale board [3].

NEON instructions are a large source of logic to sustain
performance. In other words, the performance loss from re-
moving NEON instructions is also large if they are heavily
used. To measure the performance impact of NEON instruc-
tions, we compare the execution time of SPEC benchmarks
with and without NEON instructions. Note that since we
could not fully remove all NEON code from some of the
pre-compiled libraries, there still exist a negligible number
of NEON instructions. Figure 1 shows the detailed perfor-
mance loss and original NEON instruction usage for each
benchmark along with NEON coverage.

For floating-point benchmarks, the performance slowdown
is significant, ranging from about 6 to 23 times. When re-
moving floating-point support in the ISA, there is no other
choice for the compiler than to resort to soft-float emula-
tion. By contrast, for integer benchmarks, which sporadi-
cally use NEON instructions, the performance degradation
is less than 7% with the exception of omnetpp. Since om-
netpp contains a large number of NEON instructions, the
37% performance degradation is understandable. These pro-
filing result match prior work [5].

Figure 2 shows results for a reduced ISA that excludes
predicated instructions. Avoiding to use of conditional in-
structions is done by disabling the SimplifyCFG optimiza-
tion pass in LLVM. When removing this optimization pass,
the compiler also loses the chance to generate optimal code.
Thus, the slowdown is not solely from removing conditional
instructions. However, since we observed that only a very
small number of instructions are changed compared to full-
ISA binaries, we regard such effects as negligible.

Overall, the performance loss is less than 5% except for
hmmer. Removing conditional instructions results in an in-
creased amount of branches in the code. Results indicate
that the branch predictor of a modern high-performance
mobile processor is good enough to handle the removal of
predicated instructions. In case of hmmer, further analysis
showed that the single hot loop in which most of the execu-
tion time is spent shows significantly worse branch predictor
performance, causing the severe performance degradation.

Load and store multiple instructions provide a way to re-
duce a number of consecutive load/store operations. How-
ever, since modern instruction prefetch/fetch and out-of-
order logic can hide such an increase in instruction count, the
penalty of replacing them with separate load/store instruc-
tions is somewhat mitigated. Figure 3 shows the detailed
performance with and without load/store multiple instruc-
tions. The performance loss is negligible across benchmarks.
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Figure 4: Full- and reduced-ISA core heterogeneous system.

We find that current compilers hardly use DSP-like in-
structions for most types of workloads. Some of them are
never used by the LLVM compiler back-end in the first
place. Consequently, it is meaningless to conduct perfor-
mance comparison with or without these DSP-like instruc-
tions. However, despite the fact that we skipped the perfor-
mance evaluation, a reduced ISA without DSP-like instruc-
tions to reduce the logic burden is still valid.

3. HETEROGENEOUS-ISA SYSTEM
We propose a heterogeneous system that contains a combi-

nation of both full- and reduced-ISA cores (Figure 4). Tradi-
tional full-ISA cores execute applications with no change in
performance or energy consumption. By contrast, by cut-
ting down on the instructions supported by the underly-
ing microarchitecture, the logic complexity of reduced-ISA
cores is decreased. This allows such cores to achieve lower
power consumption. At the same time, unsupported instruc-
tions need to be trapped and software-emulated. A compiler
can create binaries that are optimized for execution on the
reduced-ISA core. Nevertheless, if removed instructions are
critical, as is the case with NEON instructions for floating-
point workloads, performance suffers severely. In the re-
mainder of the paper, we define rISA as the reduced ISA
with all the previously mentioned instructions removed.

For workloads with unsupported instructions that are sen-
sitive to performance, a heterogeneous-ISA system can al-
leviate the performance degradation. When running an ap-
plication in which performance-sensitive instructions are not
prevalent, it is better to run it on reduced-ISA cores. How-
ever, when the application is in a phase where it includes
performance-sensitive instructions, the application switches
to the full-ISA core where it does not lose any performance.
The core switching overhead depends on the granularity and
subsequent frequency of switching. We present evaluation
results for varying core switching granularities in Section 4.

Dynamically monitoring the instruction streams and switch-
ing cores based on performance is the best way to maxi-
mize energy savings. In this approach, the process scheduler
can dynamically map applications to an appropriate ISA
core based on the information from hardware performance
counters, such as the number of NEON instructions exe-
cuted during the current scheduling period. As mentioned
above, we assume that unsupported instructions are exe-
cuted using emulation after undefined instruction exceptions
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Figure 5: Power estimation of reduced
ISA (SPEC CPU2006 INT).
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Figure 6: Runlength of SPEC CPU2006
bzip2 with various NEON overheads.
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Figure 7: Core residency of SPEC
CPU2006 bzip2.

in the reduced-ISA core. This will only be acceptable for in-
frequent use of the software-emulated instructions. Once
the number of software-emulated instructions exceeds a cer-
tain threshold within a certain time period, the application
should be migrated to a full-ISA core to avoid further perfor-
mance degradation. On a full-ISA core, on the other hand,
the same instructions are also monitored. If the instructions
are not used during a certain time period, the application is
migrated back to the reduced-ISA core.

For optimal energy and performance balance, we imple-
ment a dynamic core scheduling strategy. At the end of
each scheduling period, the scheduler determines which core
the application should run on based on NEON instruction
counts. If there are more NEON instructions than a pre-
determined threshold, it is better to run the application on
a full-ISA core to reduce performance loss. In the opposite
case, it is better to run the application on a reduced-ISA core
for energy efficiency. Core switching happens when there are
consecutive periods where NEON instructions are above or
below a pre-defined neon threshold. In this paper, we assume
that there are two cores, full- and reduced-ISA, respectively,
and no other programs are running. The detailed algorithm
can be found in [12].

4. EXPERIMENTS AND RESULTS
Power Estimation: We use McPAT [10] to estimate

power consumption. We estimate the logic reduction effects
resulting from the removal of the candidate instructions by
adjusting numbers under certain assumptions about physical
and implementation details. The power estimation details
can be found in [12].

As accurately quantifying power consumption is challeng-
ing, we give a range of power estimates: opt (optimistic)
indicates that the effect of the logic reduction is assumed
to be relatively large while pes (pessimistic) means the op-
posite (Figure 5). The power reduction for removing most
instruction types is about 2% each, except for NEON in-
structions, which show about 9% improvement. Due to the
orthogonality of removed instructions, we assume that the
logic related to each instruction is independent, and, thus,
those power reductions are additive. Our rISA core shows
about 15% power reduction compared to the full-ISA one.

Performance Evaluation: To observe the performance
degradation based on the core switching scenario, we eval-
uate SPEC CPU2006 integer benchmarks using QEMU [4]
while collecting a trace of all NEON instructions. We focus
on NEON instructions as other removed instructions have
little impact on performance as previously shown. We sim-
ulate core switching using the previously shown scheduling
algorithm that accounts for the number of NEON instruc-
tion in each scheduling period. Since switching is not free,
each core switching is assumed to incur a fixed instruction
overhead. Furthermore, since emulating NEON instructions
leads to additional instructions, every time a NEON instruc-
tion is executed, an associated instruction penalty is added
to the total instruction counts.

Reducing the emulation penalty is crucial for removing
instructions. Ideally, it is desirable for an application to en-
tirely run on the reduced-ISA core. However, we find that
the penalty to emulate NEON instructions is critical to per-
formance (Figure 6). We estimate the NEON instruction
penalty in increments of 20 instructions corresponding to
the maximum 20x performance degradation of FP bench-
marks. An increase in the penalty per NEON instruction
from 20 to 80 directly affects overall performance.

Figure 7 details the fraction of scheduling periods bzip2 is
running on each core and the corresponding number of core
switches. The higher the NEON threshold for scheduling,
the longer the bzip2 can run on the reduced-ISA core. This,
however, results in more NEON instructions requiring emu-
lation, and, thus, an increase in instruction counts. However,
the increase is relatively small. In addition, the number of
core switches is low. As such the switching overhead is not
crucial for overall performance, and a large switching over-
head does not result in significant performance loss. In other
words, lowering the penalty allows more NEON instructions
to run on the reduced-ISA core.

System Evaluation: Based on the performance and en-
ergy evaluation results, we estimate the overall efficiency of
our heterogeneous system. The estimated average power of
each benchmark is multiplied by the total number of instruc-
tions and the square of total instructions to compute energy
and energy delay product (EDP), respectively, assuming a
constant CPI per benchmark. Furthermore, the computed
energy is normalized to the energy and EDP for the full-ISA
core in order to observe how much energy savings our sys-
tem can achieve. These experiments are conducted with a
20-instruction NEON penalty and a core switching overhead
of 3000 instructions.

Figure 8(a) shows the estimated performance and energy
for SPEC CPU2006 benchmarks. Among the integer bench-
marks, we exclude omnetpp and sjeng ; given their high por-
tion of NEON instructions. It is evident that they will run
mostly on the full-ISA core. Since dynamic scheduling de-
termines which core to run on next, other applications show
diverse scheduling behavior. The hmmer benchmark runs on
the full-ISA core most of the time due to having more NEON
instructions than the threshold for each period, resulting in
no performance degradation with no energy benefit.

At the opposite end of the spectrum, mcf, astar, and
libquantum run most of the time on the reduced-ISA core
with negligible performance degradation, but significant en-
ergy benefits. Interestingly, bzip2 and gcc show unbiased be-
havior. In these workloads, due to the broad range of NEON
instructions that vary between 500 and 5000 per period, our
scheduling algorithm switches cores frequently depending on
the NEON threshold. This aggravates the performance loss
with higher NEON penalties and thresholds, thus reducing
energy efficiency.

Compiler Optimizations: To optimize energy efficiency,
it is better to run applications on the reduced-ISA core as
much as possible without losing any performance. This sug-
gests that reducing the amount of NEON instructions is
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(a) SPEC CPU2006 integer benchmarks with NEON instructions. Compiler statically removes LDM/STM,
DSP-like, and conditional instructions
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Figure 8: Performance evaluation and energy estimation.

beneficial not only to maximize residency of workloads on
reduced-ISA cores, but also to reduce performance degrada-
tion. Thus, we further limit the generation of NEON instruc-
tions by modifying the LLVM back-end. Since we observe
that vector load/store instructions are frequently used in in-
struction optimizations, blocking such optimizations leads to
less NEON instructions. We measure the performance of the
two binaries on full-ISA cores on the real board and confirm
that performance differences of blocking such optimizations
are negligible.

Figure 8(b) shows the performance and estimated energy
of the modified binaries. The amount of time bzip2 and gcc
run on the full-ISA core is reduced to zero. This leads to
a total energy efficiency equivalent to running solely on the
reduced-ISA core. The hmmer benchmark still incorporates
quite a few NEON instructions, causing it to stay on the
full ISA core. Experimental results show that energy sav-
ings of up to 15% are achieved for benchmarks that have
negligible NEON instructions. On average, about 12% en-
ergy savings are achieved across all evaluated benchmarks.
Interestingly, with the manipulation of the compiler, core
switches are completely avoided, further increasing energy
efficiency. This suggests that if a system has control over
the compiler, it is possible to prefer and only use the limited
set of instructions available on the energy-efficient reduced-
ISA core.
5. RELATED WORKS

Kumar et al. first suggested the possibility of increas-
ing energy efficiency by proposing a single-ISA heteroge-
neous system [9]. ARM’s big.LITTLE architecture [1] sub-
sequently implemented this approach for mobile systems.
All of these approaches, however, only focused on the high-
performance components in the microarchitecture.

Recently, several notable approaches investigated hetero-
geneous ISA architectures. Blem et al. revisited the debate
about RISC versus CISC, comparing x86 and ARM ISAs [6].
Their research quantifies each ISA and argues that there is
not much difference between x86 and ARM ISAs. DeVuyst
et al. [8] and Venkat et al. [7] proposed a way of harnessing
heterogeneous ISAs. However, their research only focused on
the diversities of each ISA and argued the benefits when find-
ing the right ISA depending on the workloads. Several prior
works [11, 5] investigated OS and software support for task
migration between cores with overlapping ISAs. However,
their work does not discuss detailed trade-offs in designing
actual architectures for such heterogeneous-ISA systems.

6. SUMMARY AND CONCLUSIONS
A reduced ISA core opens up a chance to run high-performance

tasks with better energy efficiency. In this paper, we explore
and demonstrate the potential with a case study of a het-
erogeneous system that includes both full- and reduced-ISA
cores. Results show that certain complex instructions can be
removed with little performance overhead. We argue that
in a heterogeneous system that effectively migrates appli-
cations to match ISA requirements, significant benefits in
energy efficiency can be obtained. Providing heterogeneity
in functionality rather than performance can improve en-
ergy efficiency with virtually no performance degradation.
Results show that our proposed system can improve energy
by up to 15% and by 12% on average, all with little to no
performance overhead.
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