
Fine-Grain Program Snippets Generator

for Mobile Core Design

Shuang Song, Raj Desikan*, Mohamad Barakat*, Sridhar Sundaram*,

Andreas Gerstlauer and Lizy K. John

The University of Texas at Austin, Austin, TX, USA

*Samsung Austin R&D Center, Austin, TX, USA

songshuang1990@utexas.edu,{gerstl,ljohn}@ece.utexas.edu,

{r.desikan,m.barakat,s.sundaram}@samsung.com

ABSTRACT
As mobile devices have come to dominate modern computing sys-
tems, improving mobile processors’ performance and energy con-
sumption has become an important topic for both industry and academia.
Similar to desktop and server CPUs, the design of mobile proces-
sors relies on a combination of high-level micro-architectural and
low-level RTL simulations for design exploration and optimiza-
tion. Shrinking simulation times remains a critical design issue,
as it directly impacts turnaround time and time-to-market. Many
prior works have been proposed to generate smaller program snip-
pets (simulation points) aimed at reducing the simulation times
for the micro-architecture design process. However, as emerging
mobile applications are divergent from traditional desktop/server
workloads in terms of functionality, code length, and code compo-
sition, prior strategies may no longer be satisfactory. In this pa-
per, we propose a novel approach to generate fine-grain application
snippets of mobile benchmarks that can accurately represent the
full application performance for both high-level micro-architectural
and low-level RTL simulations. Compared to prior work, snippets
produced by our generator reduce performance estimation error by
5.6% while saving 76% simulation time on average.

1. INTRODUCTION
In the era of mobile computing, processor design still plays an

essential role, as it can significantly impact device performance, en-
ergy consumption, and user satisfaction [8]. Therefore, improving
mobile CPU performance and energy efficiency is considered as
a primary goal [8][14][15][11] for industry and academia. Sim-
ilar to conventional CPU design, design of mobile CPU design
relies on high-level micro-architecture and low-level RTL simu-
lations for design space exploration and implementation. Hence,
reducing simulation time becomes extremely important to keep de-
sign time manageable. At the same time, mobile applications differ
from desktop and server applications in terms of service function-
ality, software length, and code composition. This causes signifi-
cant differences in micro-architectural behavior, such as instruction
cache misses/stall cycles and branch mis-predictions [7].

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full cita-
tion on the first page. Copyrights for components of this work owned by others than
ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or re-
publish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
GLSVLSI ’17, May 10-12, 2017, Banff, AB, Canada
c� 2017 ACM. ISBN 978-1-4503-4972-7/17/05. . . $15.00

DOI: http://dx.doi.org/10.1145/3060403.3060439

0%

10%

20%

30%

40%

50%

60%

70%

AE
S

LZ
M
A

JP
EG

CA
NN

Y
LU
A

DI
JK
ST
RA

SQ
LIT

E
HT

M
L5
P

HT
M
L5
D

HI
ST
OG

RA
M

PD
FR

EN
DE

R
LL
VM

CA
M
ER

A
SG

EM
M

SF
FT

NB
OD

Y
RA

YT
RA

CE
RI
GI
DB

OD
Y

GB
LU

R
HD

R
SP
EE
CH

RE
C

M
EM

LA
T

M
EM

BW
FA

CE
DE

CT

M
ax
im

um
Av

er
ag
e

IP
CL
Er
ro
r(%

)

Figure 1: Errors in IPC for 24 emerging mobile applications with
prior approach [13].

Many prior work [10] [13] [6] have proposed sampling-based
methodologies to represent full benchmark by using sampled pro-
gram snippets. Although such work can significantly reduce snip-
pet length, they still require simulating hundreds of millions of
instructions. This limits the number of micro-architecture explo-
rations that can be performed even with fast micro-architectural
simulators. Furthermore, this also makes RTL-based explorations
practically infeasible. RTL simulations are slow. In practice, they
have to finish over night, where only smaller segments of sampled
snippets generated by prior work or completely different micro-
benchmarks with affordable instruction lengths are used by indus-
try. However, this can lead to mismatches between high-level micro-
architectural and low-level RTL simulations. Such correlations are
necessary to help diagnose potential implementation bugs and re-
veal performance/energy issues.

To make use of the existing sampling-based approach [13] for
both micro-architecture and RTL simulations, the granularity of
snippets needs to be reduced from the 100M to the 100K instruc-
tions level. However, as shown in Figure 1, program snippets gen-
erated by prior work [13] at a granularity of 100K instructions (with
100K-instruction warmup) cause unsatisfactory performance esti-
mation errors for emerging mobile applications. The maximum
instructions per cycle (IPC) error is around 67% and the average
error reaches 15.4%. The inaccuracy of performance estimation
can result in misleading design decisions.

In this paper, we present a novel approach for automatic gener-
ation of fine-grained snippets of mobile applications to speed up
the simulation time of mobile CPU designs. Compared to prior
works, our approach does not solely rely on code structures (basic
blocks) to characterize program phases. Therefore, even when the
basic block distribution becomes sparse at fine-granularity, we can

still achieve better clustering. In addition, to achieve comprehen-
sive program characterization with better accuracy, we add more
micro-architecture independent features that are specific to emerg-
ing mobile applications. The specific contributions of this paper
are as follows:

• We propose a novel generator that leverages principal com-
ponent and clustering analysis to capture representative pro-
gram snippets of mobile applications at fine-granularity, and
use them to substitute the full trace in the simulation process.
These finer-grained snippets can be applied for both high-
level micro-architecture and low-level RTL simulations, which
help hardware designers correlate the micro-architecture sim-
ulation to the RTL one. Compared to prior work, the snip-
pets provided by our generator can reduce the average per-
formance estimation error from 15.4% to 9.8% while saving
76% simulation time.

• In order to precisely characterize mobile applications, we de-
fine domain-specific features to capture unique characteris-
tics of mobile workloads, such as percentage of CRYPTO in-
structions and memory misaligned accesses. Those provided
features are micro-architecture independent, so they can be
reused for mobile CPU designs in the future.

• Moreover, due to the length limit of generated snippets, we
analyze the impacts of warmup and preload for fine-grained
benchmark snippet generation on state-of-the-art mobile CPUs.
This analysis can guide performance studies to generate fine-
grain snippets from other applications for modern mobile
CPU designs.

2. RELATED WORK
In this section, we want to review several prior works that are

relevant to this paper. Simpoint [13] method makes the use of ba-
sic block distribution to find small portions of the application to
simulate that can represent the full program’s behavior. This ap-
proach is heavily based upon the program’s code structure. Each
simpoint/snippet is collected at the granularity of 100 million in-
structions for SPEC95 and SPEC2000 benchmarks. However, if the
snippet granularity is reduced by 1000 times, the basic block distri-
bution will become very sparse, which is really difficult to cluster.
Our approach does not solely depend on the code structures (basic
blocks), so it achieves better accuracy for mobile applications at
fine-granularity.

mov r0, r10
bl 0x51dd4

ldrex r0, [r6]
cmp r0, r5

bne 0x51a14
……

Clustering at 25k level

Cycle-accurate
simulator with

embedded
cache preloader

25K-snippet Selection

warmup generation

Figure 2: The flow overview of the proposed generator.

Eeckhout et al. [6] define 47 micro-architecture independent fea-
tures based on instruction mix, working set sizes, etc., to charac-
terize the conventional CPU applications (from SPECint2000 and

SPECfp2000) at the level of 100 million instructions per interval.
We extend, provide, and use more mobile application specific fea-
tures, as we target on these emerging applications for mobile pro-
cessor designs. Different from Simpoint work, Eeckhout et al.
study the similarities among all applications, and select the snip-
pets to represent the entire benchmark suite instead of an individ-
ual benchmark. These chosen snippets are used to perform design
space exploration, which requires a huge number of executions to
cover various micro-architectural configurations. Since the pro-
gram length and simulation time of these conventional benchmarks
are much longer than the modern mobile applications’, we do not
necessarily have to perform this further reduction among all appli-
cations. Additionally, most mobile application suites score proces-
sor’s performance based on the execution speed of each applica-
tion, like [1]. Therefore, it is necessary for the hardware designers
to monitor the performance of each workload, when optimization
is applied on the design.

Other than these two prior works, Gutierrez et al. [7] discover the
differences between SPEC CPU2006 benchmarks and smartphone
applications, and reflect the poor performance of instruction cache,
instruction TLB, and branch predictor. Lau et al. [10] study the
applications to identify the program phases at the variable length.
Since we target at 25K-instruction granularity, snippets from a gi-
ant repeated loop will all be collected. Dhodapkar and Smith [5]
found a relationship between phases and instruction working sets,
as phase changes occur when the working set changes. We in-
clude multiple instruction working set sizes as micro-architecture
independent features in our generator. SMARTS [16] employs full
functional warmup during the entire non-sampling units in-between
sampling units, which provides nearly perfect warmup effects. How-
ever, it significantly limits the time reduction due to the long warmup,
which occupies more than 99% of the entire simulation time. Conte
[4] deploys the adaptive functional warmup. Compared to them,
our generator provides a just-right warmup trace and only preloads
for the necessary components. Jiang and Yu [9] target on the opti-
mization of warmup for multi-thread simulations, such as PARSEC
benchmarks [2], which is different from our emphasis.

3. METHODOLOGY
In this section, we first give an overview of proposed genera-

tor’s flow, then describe the details of deployed micro-architectural
independent features, snippet selection, and warmup/preload trace
generation.

3.1 Generator Flow
The input of our generator is the program trace. As shown in Fig-

ure 2, we split the trace into 25K-instruction snippets, then apply
predefined micro-architectural independent features to characterize
these snippets. Snippets with similar features will be clustered in
one group, and the snippet located in the center of the cluster will
be selected to represent the cluster. Corresponding warmup and
preload traces are generated for each selected snippet.

3.2 Program Features
Eeckhout et al. proposed 47 micro-architecture independent fea-

tures to characterize the conventional CPU applications, such as
SPEC CPU benchmarks. In our work, we make use of these charac-
teristics and extend them with more mobile-specific features. These
added features are categorized in several groups, such as instruction
mix, instruction level parallelism (ILP) for load and store instruc-
tions, and misaligned accesses. All the features used in our method-
ology, including the previous and our new ones, are summarized in
Table 1 for integrity.

Table 1: List of micro-architectural independent fingerprinting parameters used to characterize mobile workloads.

Category Fingerprints Explanation
Instruction mix Load, store, control, arithmetic % load, store, control, arithmetic instructions

Float, SIMD, CRYPTO % floating-point, single instruction multiple data, crypto instructions
Instruction level parallelism (ILP) for load&store LLP_W-32, 64, 128, 256 ILP counts for load&store instruction in 32, 64, 128, 256 instructions window

Instruction level parallelism (ILP) ILP_W-32, 64, 128, 256 ILP counts in 32, 64, 128, 256 instructions window
Register traffic RegNOp average number of operands

RegTc_1 % of instructions with 1 target register
RegTc_2 % of instructions with 1< target register
RegUse average degree of freedom

RegD_1, 4, 8, 16, 32, 64 pro register dependency = 1, <= 2, <= 4, <= 8, <= 16, <= 32, <= 64
Working set D-WS_32, 64, 128, 4096 number of data stream within 32, 64, 128, 4096B block level

I-WS_32, 64, 128, 4096 number of instruction stream within 32, 64, 128, 4096B block level
Data stream stride IcLdS_0, 8, 16, 32, 64, 512, 4096 pro local load stride = 0, <= 8, <= 16, <= 32, <= 64, <= 512, <= 4096

lcStS_0, 8, 16, 32, 64, 512, 4096 pro local store stride = 0, <= 8, <= 16, <= 32, <= 64, <= 512, <= 4096
glLdS_0, 8, 16, 32, 64, 512, 4096 pro global load stride = 0, <= 8, <= 16, <= 32, <= 64, <= 512, <= 4096
glStS_0, 8, 16, 32, 64, 512, 4096 pro global store stride = 0, <= 8, <= 16, <= 32, <= 64, <= 512, <= 4096

Branch predictability GAg PPM predictor global history, global predictor
GAs PPM predictor global history, local predictor
PAg PPM predictor local history, global predictor
PAs PPM predictor local history, local predictor

Misaligned access ld-ma-8, 16, 32, 64, 4096 Pro load 8B, 16B, 32B, 64B, 4096B miss aligned
st-ma-8, 16, 32, 64, 4096 Pro store 8B, 16B, 32B, 64B, 4096B miss aligned

3.2.1 Instruction mix
We include the percentage of load, store, control, arithmetic,

floating point, SIMD, and CRYPTO operations in this category
to fully analyze the instruction mix of mobile workloads. Com-
pared to the prior work, SIMD and CRYPTO are the new metrics
we added. For mobile workloads leveraging vector instructions,
such as SGEMM and SFFT, SIMD operation is heavily used in
major program phases. CRYPTO instruction is largely deployed
in AES workload, which is not widely used in traditional SPEC
benchmarks.

3.2.2 ILP for load&store instructions
Load and store instructions become more important for the mo-

bile devices, as the sizes of caches and memory subsystem are lim-
ited but highly related to the performance/user experience. There-
fore, we dedicate four fingerprinting features to quantify the amount
of ILP for only load & store instructions. We assume an idealized
out-of-order mobile processor model, where all components are
idealized and all resources are unlimited except for the instruction
window. These added features measure the number of independent
load & store instructions located in the instruction window, which
has four different sizes (32, 64, 128, and 256).

3.2.3 Misaligned access
Misalignment happens when read or write operations try to read

N bytes of data starting from an address that is not evenly divisi-
ble by N. Different architectures attempt to perform the misaligned
memory accesses in different manner. For example, some pro-
cessors raise exceptions when unaligned access is detected, and
some are able to perform them transparently. However, none of
them can avoid the performance degradation for such memory ac-
cess. For mobile processors, these existing misalignments in the
mobile applications can easily impact the application’s execution
speed. Therefore, we consider misalignment as one of important
performance factors. In our application characterization, we sepa-
rate load & store instructions, and categorize these accesses by the
size of data they are attempting to touch. As the capacity of mobile
processor’s caches and memory grows, our feature set contains the

misalignment of 8B, 16B, 32B, 64B, and 4096B for both load and
store instructions.

3.2.4 Other features
Similar to Section 3.2.2, window size is the only tunable pa-

rameter of ILP metrics. Different from Section 3.2.2, ILP metrics
quantify the amount of ILP for all types of instructions (not only
load & store). All the register traffic, working set, and data stream
strides are included in the prior work. Register traffic characteris-
tics are used to capture the number of input operands, the average
number of times a register is consumed, and register dependency
distance. Working set features count the number of unique blocks
(32B, 64B, 128B, 4096B) in each interval. Data stream analyzes
both local and global data strides. The branch behavior is also an
important characteristic we want to capture. Same as prior work,
we want to measure how predictable the branches are for a given
execution interval. To accomplish this, we deploy the Prediction by
Partial Matching (PPM) predictor [3], which is built on the notion
of a Markov predictor. ‘G’ stands for global branch history, and
‘g’ means one global predictor table. ‘P’ stands for local branch
history, and ‘s’ means an individual table for each branch. PPM is
a theoretical basis for predicting branch prediction, therefore, these
features still hold the characteristic of being micro-architectural in-
dependent.

3.3 Snippet Selection
To select the most representative snippets for each benchmark,

we need to study the similarity of split snippets in order to avoid
choosing repeated ones. We leverage two statistical methods, which
are the Principal Component Analysis (PCA) and K-means Cluster-
ing. Both of them are widely used in the performance evaluation
and benchmark analysis domain [12].

3.3.1 Principal Component Analysis
After characterizing all snippets using predefined program fea-

tures, we have to group the snippets in multiple clusters and select
the representative one from each cluster. Due to the size of the
deployed program feature set, the number of dimensions for clus-

tering becomes too high to produce a limited number of compact
clusters. Therefore, we leverage the PCA method to remove the
correlation among these features. Since we are not studying simi-
larities across benchmarks, the snippets of each trace may end up
having different sets of important features after the PCA process.
For example, SFFT application with a high percentage of floating
point (fp) instructions has the percentage of fp instructions as one
of principal components, where the integer applications will not
consider it as an important characteristic. For all mobile applica-
tions in this work, the generator selects the reduced set of princi-
pal components to cover more than 90% of the program variances.
Other than the 90% minimal bound requirement, we add one more
constraint in the generator. We define the component with more
than 1% program variance coverage as an important feature to in-
clude. Therefore, some applications end up having more principal
components than necessary to cover 90% variance, as we want to
incorporate all the important features. On average, each application
has 14 private principal components.

3.3.2 Clustering Analysis
After we identify the principal components, we can move on to

the clustering phase in the generator. We use the K-means cluster-
ing algorithm, as we can directly control the number of clusters by
setting the k value. Of course, other clustering algorithms with the
same functionality can substitute the K-means algorithm. In this
phase, the issue we are facing is how to choose the minimal num-
ber of clusters that can provide good clustering quality. We deploy
a metric called ‘cubic clustering criterion‘ (CCC) to quantify the
clustering quality. The CCC value is proportional to the cluster-
ing quality, as higher CCC means better quality. To achieve better
quality, increasing the number of clusters is the most effective way.
However, as the number of clusters (k value) can directly determine
the number of snippets to be selected for simulation. This is con-
sidered as a tradeoff problem. Therefore, we provide two knobs in
the clustering phase of the proposed generator, which are the qual-
ified CCC value and maximum k value (the maximum number of
clusters). From our experience, most of the applications reach ro-
bust CCC value (> 800) with less than 10 clusters. Thereafter, we
set the maximum number of clusters for each workload to be ten.

3.4 Warmup/Preload Trace Generation
Due to the length limitation, most generated snippets suffer from

the impact of cold misses in multiple hardware components, such
as multi-level caches. Prior work does not face this issue, as their
snippets are long enough that negative influences due to the lack of
warmup cannot affect the performance significantly. However, for
fine-grained snippets, warmup can cause severe performance im-
pact, which will be demonstrated in section 4. To avoid this prob-
lem, our generator can automatically extract the warmup trace for
each snippet. The warmup trace is defined as the section of instruc-
tions located prior to the target snippet. For example, after the snip-
pet A is selected from its cluster, the generator uses its beginning
instruction to trace back certain number of instructions and extract
those instructions to form the corresponding warmup trace. For our
snippets, the length of warmup trace is set to be 100K-instruction
(same as the baseline we are comparing to).

Even though the warmup trace can indeed help reflect the true
performance of snippets, it has a non-negligible disadvantage, as it
still requires to be executed on the simulator, which can be expen-
sive if the length is long. However, after we diagnose the state-of-
the-art mobile processor designs, we recognize that the multi-layer
cache system is a critical component that needs a long warmup
trace. Therefore, we deploy the preloading technique and imple-

ment the preloader on top of our in-house micro-architectural sim-
ulator to generate the trace for preloading. Similar to warmup trace
capturing, we extract a section of code prior to the snippet and feed
them to our preloader. The preloader will execute the trace and
dump the image of multi-layer caches into a yaml file. This cache
image file can be preloaded back to both micro-architectural sim-
ulator and RTL simulator before executing the warmup trace and
representative snippet. Since we only need to generate this preload-
ing file once and it can be reused, the overhead can be ignored.

4. EXPERIMENTS AND RESULTS
In this section, we would like to review the experiment infras-

tructure and selected mobile applications, discuss the insightful ob-
servations, and analyze the experimental results.

4.1 Experiment Infrastructure
To demonstrate the accuracy and effectiveness of our generator,

we evaluate it with 24 emerging mobile applications. These 24
benchmarks are categorized into four groups, which are cryptog-
raphy workloads, integer workloads, floating-point workloads, and
memory workloads. The information about each application’s type
can be found in Table 2. Each of them is deployed as a single-core
application. All of them are implemented in C++ and compiled by
Clang compiler. The performance data is collected on the in-house
micro-architecture simulator, which simulates the Samsung Exynos
M1 mobile processor. The preloader is embedded in the simulator
to snapshot the cache status image at any given moment. In addi-
tion, the simulator can take the cache image as an input and reside
the status in the multi-layer caches before executing the snippet.
The baseline (named as Prior_work in the figures) we are com-
paring to is the 100K-instruction program snippets generated from
Simpoint method [13] associated with 100K-instruction warmup.

Table 2: 24 Emerging mobile workloads classification [1].

Type Applications
Cryptography workloads AES

Integer workloads LZMA compression, JPEG compression,
Canny, Dijkstra, SQLite, LLVM, HTML 5 Parse,

HTML 5 DOM, PDF rendering, Lua, Camera
Floating point workloads SGEMM, SFFT, Gaussian blur, Ray trace,

N-Body physics, Rigid body physics, HDR,
Histogram equalization, Face detection,

Speech recognition
Memory workloads Memory bandwidth, Memory latency

0%

10%

20%

30%

40%

50%

LZMA CANNY HDR

IP
C

er
ro

r (
%

)

1M 900K 800K 700K
600K 500K 400K 300K

Figure 3: Warmup sensitivity study for LZMA, CANNY, and HDR.

0

0.5

1

1.5

2

L1D_misses L2_misses BP_mispredictions

No
rm

ali
ze
dLm

iss
es

WPL(Warmup) PLL(Preload)L&LWP

Figure 4: Component-level performance comparison between
solely using warmup trace and using combination of preloading
and warmup tarce.

4.2 Mobile Applications
Cryptography workloads: The Advanced Encryption Standard

(AES) is the only cryptography workload, which defines a symmet-
ric block encryption algorithm. It is widely used to secure com-
munication channels and information. This workload encrypts a
32MB string using AES running in CTR mode with a 256-bit key.

Integer workloads: LZMA is lossless compression algorithm,
while JPEG is a lossy image compression. LZMA compresses and
decompresses a 450KB HTML ebook using SDK as the implemen-
tation of core algorithm. Compared to traditional bzip2 benchmark
in SPEC, LZMA features a high compression ratio. JPEG works by
encoding an image in 8 * 8 blocks, and each block is transformed
using a discrete cosine transform (DCT). Canny is a typical sophis-
ticated technique in image processing and computer vision, which
contains four components, such as noise removal (Gaussian Blur),
gradient calculation, minimum maximum threshold pass, and edge
following (BFS). The Dijkstra workload computes driving direc-
tion between destinations. The data for this workload is captured
from Open Street Map data for the Waterloo region, which includes
79392 nodes and 162644 edges with integer weights. SQLite is a
self-contained SQL database engine that executes queries against
an in-memory database. This SQLite benchmark is created to stress
the underlying engine using a variety of SQL features and query
keywords, such as SELECT, COUNT, SUM, etc. The LLVM work-
load processes an LLVM IR file through its optimizer and code-
generation routines. The IR file is generated from a 3,900 line C file
using Clang. HTML 5 Parse and DOM constructs a parse tree from
a HTML5 document using Gumbo, and creates a HTML5 Docu-
ment Object Model (DOM), respectively. Both of them stress the
multi-layer cache system in the mobile CPU. PDF rendering parses
and renders a 29-page PDF document, which contains mostly text
with a few small images. Lua executes a Lua script using standard
Lua interpreter to parse data from a JSON file, and uses Mustache
to combine data to produce an HTML file. Camera replicates a
photo sharing application like Instagram that merges several func-
tions into one, such as AES, Lua parsing, JPEG, and SQLite. All
these functions are executed on the CPU without GPU support.

Floating point workloads: The SGEMM (general matrix mul-
tiplication) workload computes the result of C = AB + C, where A,
B, and C are matrices with 512 * 512 single precision. GEMM is
implemented using vector instructions, such as AVX, SSE2, SSE3,
and ARMv8 NEON. SFFT executes an FFT algorithm on an 32MB
input in 16KB chunks. Similar to SGEMM, it also deploys vector
instructions. Face detection and HDR are from the computer vi-
sion domain. The Face detection includes scale, pose, occlusion,
expression, makeup, and illumination operations. Gaussian blur
benchmark blurs an image using Gaussian spatial filter with a fixed
sigma of 1.0f. This sigma translates into a filter diameter of 9 pix-
els. Histogram equalization workload is designed to improves the

contrast in an image by implying mapping one distribution to an-
other. It contains four steps, which are image loading, image con-
verting, equalizing histogram, and displaying equalized image.

Memory workloads: The Memory Latency benchmark mea-
sures the latency of system memory by traversing a circular linked-
list. The nodes in the linked-list are arranged to reduce the TLB
misses to the level of 1 miss per page. The Memory Bandwidth
captures the sustained memory bandwidth by using vector instruc-
tions, such as AVX and ARMv7 NEON.

4.3 Warmup Sensitivity Study
In this experiment, we attempt to quantify application’s sensi-

tivity to the length of warmup trace. Since our snippets are 25K-
instruction each, we perform this study only with the warmup trace
ranging from 1M-instruction to 100K-instruction. As shown in Fig-
ure 3, a different application has different reactions to the warmup
length. LZMA snippets can be concluded that they are extremely
sensitive to its warmup traces, as the application is doing compres-
sion work that needs to exercise the L1 and L2 caches heavily.
Therefore, with 1M warmup instructions, LZMA snippets achieve
the minimal IPC estimation error. However, compared to LZMA,
CANNY and HDR are much less sensitive. CANNY snippets’ per-
formance is very stable with various warmup lengths, and HDR
snippets lose 4% accuracy by decreasing 1M warmup instructions
to 100K instructions.

4.4 Warmup vs. Preload
To reduce the long warmup trace for applications that are sensi-

tive, such as LZMA, we deep dive into the performance analysis of
LZMA. As we mentioned above, LZMA is a compression applica-
tion that stresses the multi-level memory subsystems during execu-
tion. Therefore, we deploy the preloading technique to resolve this
issue. Our preloader can snapshot the cache system at any given
time and preload it back. As shown in Figure 4, we can see that us-
ing a 900K preload image with 100K warmup trace results in simi-
lar number of misses in the L1 data cache and L2 cache. Moreover,
we observe another interesting behavior, as the 100K warmup can
approximately reach the same level of performance for the branch
predictor, which has some storage components like branch history
tables. Similar behaviors are also captured in other applications so
that we can claim using 100K warmup should be able to provide
enough exercise to the major core components. Caches need to
preload the status image in order to reduce the negative impacts of
modeling the performance of modern mobile processor.

4.5 Performance Estimation and Simulation
Time Reduction

The maximum error generated by prior work appears in the HTML
5 DOM application. The reason behind it is HTML 5 DOM needs a
long time to warmup the ’cold’ cache hierarchies. As we discussed
above, long warmup trace is too expensive for simulations. Our
implemented preloader indeed helps solve this problem. Figure 5a
shows that we reduce the max error from 67.2% to 1.0%. We evalu-
ate our generator across all 24 applications. As shown in Figure 5b,
our generator with 1 million instructions warmup can significantly
decrease the average performance estimation error by half (around
7.6%), however, 1 million instructions are too costly in terms of
simulation time. Using a low overhead preloading technique for
900K instructions with 100K warmup can provide an average error
of 9.8%. Compared to the prior work, our snippets are extremely
fine-grained, so the number of instructions for the simulation has
been saved by 76%, as Figure 6 illustrates. The number of instruc-
tions to be simulated is strongly proportional to the simulation time.

0%

10%

20%

30%

40%

50%

60%

70%

80%

Prior_work Our_work(PL&WP)

M
ax
LIP
CL
er
ro
rL
(%

)

PL:$Preload
WP:$Warmup

(a) Maximum IPC error reduction on HTML5DOM workload.

0%

4%

8%

12%

16%

Prior_work Our_work(WP) Our_work(PL+WP)

A
ve
ra
ge
LIP

CL
er
ro
rL(
%
)

PL:$Preload
WP:$Warmup

(b) The comparison of average errors in IPC between prior work and our work.

Figure 5: Comparing the IPC estimation errors of our proposed work to the errors caused by Simpoint for 24 emerging mobile workloads.

0

0.2

0.4

0.6

0.8

1

Prior_work Our_work(PL+WP)

No
rm

al
ize

d	
am

ou
nt
	o
f	i
ns
tr
uc
tio

ns

76%	savings

Figure 6: Comparison of the number of simulated instruction
needed for Simpoint and our work.

Hence, we expect that our snippets can reduce the simulation time
significantly as well.

5. CONCLUSIONS
In this paper, we propose a novel snippet generator that can pro-

duce representative program snippets for emerging mobile applica-
tions at fine-granularity. Our generated snippets are short enough
to fit in both RTL and microarchitecture simulators. Compared to
prior work, snippets provided by our generator reduce the average
performance estimation error from 15.4% to 9.8% across 24 emerg-
ing mobile workloads. Meanwhile, these snippets shrink the total
simulation time by up to 76%, which benefits the mobile proces-
sor’s time to market. Furthermore, we define mobile-specific pro-
gram characteristics that can be leveraged to analyze the mobile ap-
plications for other embedded research areas. Lastly, we study and
quantify the mobile applications’ sensitivity to the warmup length
and propose the use of cache preloading technique to replace the
long warmup trace.

6. ACKNOWLEDGMENTS
This work was supported in part by Samsung GRO grant, and

National Science Foundation grant CCF-1337393. Any opinions,
findings, conclusions, or recommendations are those of the authors
and do not necessarily reflect the views of these funding agencies.

7. REFERENCES
[1] Geekbench 4 CPU Workloads. Technical report, Primate

Labs, 08 2016.
[2] C. Bienia, S. Kumar, et al. The parsec benchmark suite:

Characterization and architectural implications. In PACT,
2008.

[3] I.-C. K. Chen, J. T. Coffey, et al. Analysis of branch
prediction via data compression. In ASPLOS VII, New York,
NY, USA, 1996. ACM.

[4] T. M. Conte, M. A. Hirsch, et al. Reducing state loss for
effective trace sampling of superscalar processors. In ICCD
’96. IEEE Computer Society, 1996.

[5] A. S. Dhodapkar and J. E. Smith. Managing
multi-configuration hardware via dynamic working set
analysis. In ISCA ’02. IEEE Computer Society, 2002.

[6] L. Eeckhout, J. Sampson, et al. Exploiting program
microarchitecture independent characteristics and phase
behavior for reduced benchmark suite simulation. In IISWC,
2005.

[7] A. Gutierrez, R. G. Dreslinski, et al. Full-system analysis and
characterization of interactive smartphone applications. In
IISWC, 2011.

[8] M. Halpern, Y. Zhu, et al. Mobile cpu’s rise to power:
Quantifying the impact of generational mobile cpu design
trends on performance, energy, and user satisfaction. In
HPCA, 2016.

[9] C. Jiang, Z. Yu, et al. Shorter on-line warmup for sampled
simulation of multi-threaded applications. In ICPP ’15.
IEEE Computer Society, 2015.

[10] J. Lau, E. Perelman, et al. Motivation for variable length
intervals and hierarchical phase behavior. In ISPASS ’05,
Washington, DC, USA, 2005. IEEE Computer Society.

[11] X. Li, G. Yan, et al. Smartcap: User experience-oriented
power adaptation for smartphone’s application processor. In
DATE ’13, San Jose, CA, USA, 2013. EDA Consortium.

[12] A. Phansalkar, A. Joshi, et al. Analysis of redundancy and
application balance in the spec cpu2006 benchmark suite. In
ISCA ’07. ACM, 2007.

[13] T. Sherwood, E. Perelman, et al. Basic block distribution
analysis to find periodic behavior and simulation points in
applications. In PACT ’01, Washington, DC, USA, 2001.
IEEE Computer Society.

[14] Y. Shin, H. J. Lee, et al. 28nm high-k metal gate
heterogeneous quad-core cpus for high-performance and
energy-efficient mobile application processor. In ISOCC,
2013.

[15] S. Swanson and M. B. Taylor. Greendroid: Exploring the
next evolution in smartphone application processors. IEEE
Communications Magazine, 2011.

[16] R. E. Wunderlich, T. F. Wenisch, et al. Smarts: Accelerating
microarchitecture simulation via rigorous statistical
sampling. In ISCA ’03. ACM, 2003.

