
HETEROGENEOUS MULTIPROCESSOR MAPPING
FOR REAL-TIME STREAMING SYSTEMS

Jing Lin?, Akshaya Srivatsa†, Andreas Gerstlauer? and Brian L. Evans?

? The University of Texas at Austin, Austin, TX, USA
† Rice University, Houston, TX, USA

ABSTRACT
Real-time streaming signal processing systems typically de-
sire high throughput and low latency. Many such systems can
be modeled as synchronous data flow graphs. In this paper,
we address the problem of multi-objective mapping of SDF
graphs onto heterogeneous multi-processor platforms. The
primary contributions include (1) an integer linear program-
ming (ILP) model that globally optimizes throughput, latency
and cost; (2) a low-complexity two-stage heuristic based on a
combination of an evolutionary algorithm with an ILP to gen-
erate either a single sub-optimal mapping solution or a Pareto
front for design space optimization. In our simulations, the
proposed heuristic shows a 10−6 gap from the ILP optimal
solution, with up to 12x better run-time efficiency.

Index Terms— Synchronous data flow, streaming, het-
erogenous multiprocessor, mapping, scheduling

1 Introduction
Real-time streaming signal processing applications are push-
ing embedded systems’ capabilities of processing high-
volume data streams with very low latency. Such stream-
based systems are prevalent in a vast area of multimedia and
communication applications. To achieve high performance,
a stream processing system should have a highly-optimized
execution path that maximizes throughput and minimizes
latency in a balanced fashion.

With the current trend towards heteregoeneous multipro-
cessor systems-on-chips (MPSoCs), the mapping of applica-
tions onto such platforms is among the most critical tasks in
the system design process. Many real-time streaming systems
can be modeled by synchronous data flow (SDF) graphs [1].
Multiprocessor mapping of an SDF graph selects a number
of processors from a resource library, binds each actor to a
processor, and schedules intra-processor and inter-processor
execution orders among all actors (Fig. 1).

Earlier research efforts were focused on SDF mapping
on homogeneous multiprocessors [1][2]. More recent ap-
proaches have extended support to heterogeneous multipro-

This research was supported by an equipment gift from Intel.
A. Srivatsa conducted this research at the University of Texas at Austin.

(a) An SDF graph and a multiprocessor platform.

(b) Partitioning and scheduling output.

Fig. 1: An example of the SDF mapping problem.

cessor platforms [3]. In [4] the scheduling sub-problem was
addressed through constraint programming, with the goal
of minimizing memory requirements subject to throughput
constraints. In [5] a graph-based solution was proposed to
globally tackle the partitioning and scheduling problems for
a sub-set of SDF graphs, named homogeneous SDF (HSDF)
graphs, and several low-complexity heuristic acceleration
techniques were presented. While all of the approaches above
optimize for a single objective, significant amount of work
has been done on generating Pareto-optimal solution sets
for design space exploration. Evolutionary algorithms (EA)
have been proven to be effective in generating Pareto fronts
in multi-objective optimization problems. [6] and [7] have
shown application of EA in circuit synthesis and uniprocessor
software synthesis from SDF graphs.

To the best of our knowledge, we are the first to propose a
multi-objective optimization framework that jointly optimizes
throughput, latency and processor cost for general multipro-
cessor SDF mapping. We target platforms that are a combi-
nation of general processors, FPGA, DSP and other process-
ing elements. The execution time of an actor is processor-
dependent, and each actor is statically bound to a unique pro-
cessor. Since multiple instances of an actor cannot be si-
multaneously executed, optimization techniques such as loop
unfolding do not result in any throughput improvement, and
hence are not considered in our work.



2 Problem Definition
Given an SDF model for a real-time streaming system, we
assume that static analysis has been performed to provide a
consistent repetition vector and the number of initial tokens
on all edges (Fig. 1(a)). Also provided is a multiprocessor
platform and the execution profile (i.e. the execution time of
each actor on different processors).

An optimal processor partition and a parallel schedule are
to be constructed. The schedule is represented by a finite-
length time sequence consisting of a startup phase followed
by one iteration of the stable phase (Fig. 1(b)). The through-
put is the inverse of the iteration period. The latency is defined
as the time interval between the source’s start and the sink’s
end within the same iteration. Without loss of generality, we
assume unique source and sink actors in the SDF graph, or
otherwise pseudo actors with zero execution time could be
added to represent the source and/or sink.

The following assumptions are made for the rest of the
paper: each actor can only be statically mapped to a single
processor; actors mapped to the same processor must be ex-
ecuted sequentially, and; to simplify the analysis, the inter-
processor communication overhead is neglected (or alterna-
tively, a global shared memory model is assumed, in which
data cannot be transferred locally within one processor, i.e.
memory access time can be folded into actor execution times).

3 A Global ILP Model
In this section, we develop an ILP model for simultaneous
optimization of multiprocessor SDF partitioning and schedul-
ing. First we formulate an integer nonlinear programming
(INLP) model to capture the physical concepts. Then an
equivalent ILP model is derived.

Let I be the number of actors in an SDF graph (suppose
that actor 1 and actor I are the source and sink, repectively),
and J be the number of processors. Parameters are defined in
Table 1 for i, i1, i2 ∈ {0, · · · I − 1} and j ∈ {0, · · · J − 1}.

We define the decision variables as the following. Let
Si(t) and Ei(t) represent the number of started (or ended)
executions of actor i up to time t, respectively. They are
two sets of time-indexed counting processes starting from 0
with unit increments. Also define two sets of binary vari-
ables: Aij indicating whether actor i is mapped to processor

Parameter Explanation
pcj Cost (user-defined measure of area, price, etc.) of pro-

cessor j
dij Execution time of actor i on processor j
pi1,i2 (ci1,i2 ) The number of tokens produced (consumed) on edge

(i1, i2)
ni The number of firings of actor i in one iteration
oi1,i2 The number of initial tokens on edge (i1, i2)
T The length of the time window in which the parallel

schedule is constructed (i.e. the total length of the
startup phase and one period of the stable phase)

Table 1: Input parameters of the ILP model.

j, and start(t) indicating whether the periodic stable phase
starts from time slot (t + 1). Note that

∑
j Aij = 1 since

every actor is statically mapped to a unique processor, and∑
t start(t) = 1 since the length-T time window only in-

cludes one stable phase.
The following constraints are added to satisfy the SDF

execution semantics and the requirement posed by heteroge-
neous multiprocessor mapping.

Execution precedence. Enough tokens are accumulated on
input edges before an actor fires:

ci1,i2Si2(t) ≤ pi1,i2Ei1(t) + oi1,i2 (1)

Execution time of an actor. An execution starting at t ends
after certain execution time:

Si(t) =
∑

j AijEi(t+ dij) (2)

Sequential execution. Actors mapped to the same processor
cannot be executed simultaneously:∑

j Aij(Si(t)− Ei(t)) ≤ 1 (3)

Periodicity in the stable phase. Each actor completes exactly
one iteration in the stable phase:

Wi(T )−
∑

tWi(t)start(t) = ni
∑

j Aijdij (4)
where Wi(t) is the number of time slots that ac-
tor i has been executed untill time t, i.e. Wi(t) =∑

t (Si(t)− Ei(t)).

To jointly optimize the throughput (or equivalently the it-
eration period), latency and processor cost, we define the ob-
jective function to be a linear combination of them, i.e.

min {λ1 · Period+ λ2 · Latency + λ3 · Cost} (5)
where λ1, λ2 and λ3 are non-negative scalars to balance op-
timization across one or multiple objectives. To express the
objectives in terms of decision variables, we use

Period = T −
∑

t t · start(t) (6)
Cost =

∑
j Allocj · pcj , (7)

where Allocj is the indicator of whether processor j is occu-
pied. To represent latency, we add two sequences of variables,
namely U(t) and V (t), which are defined as step functions
that jump from zero to one in the time slot when S1(t) (for
U(t)) or SI(t) (for V (t)) makes the first increment during the
stable phase. Then we have

Latency =
∑

t (U(t)− V (t)) +
∑

j AIjdIj

+ (S1(T )− SI(T )) · Period,
(8)

where the first two summations capture the time interval be-
tween the start of the source and the end of the sink during
the stable phase, and the second product term captures their
difference in iteration numbers.

In the model above, the nonlinearity comes from the
product terms between binary and integer variables, and the
indicator functions used to define U(t), V (t) and Allocj .
These can be linearized according to [8], where the original
INLP are transformed to an ILP in a higher dimensional space
(i.e. new variables added) with more linear constraints. More



specifically, for each product term, a new variable is intro-
duced, and is bounded by the original variables and a tight
upper bound of the integer variable. The indicator functions
are equivalently expressed as two linear inequalitites.

4 Two-Stage Heuristic Optimization
Despite of its completeness and optimality, the global ILP
model is NP-hard [1], and hence efficient heuristics are de-
sired to combat the exponentially increased complexity.

In practice there are plenty of design scenarios where
optimizing the throughput and the cost is prioritized over
minimizing latency. We observe that without explicit con-
straints on memory requirement, the maximum throughput
of a mapped SDF graph is determined by the processor par-
titioning, regardless of the scheduling. Given the processor
partition, the iteration period has a lower bound determined
by the critical processor, the one that takes the longest time to
execute one iteration of all the actors mapped to it, i.e.

Period(Aij) ≥ maxj{
∑

i nidijAij} (9)
By experiment we verify that the lower bound is achievable,
provided a along enough startup phase, or enough initial to-
kens on feedback arcs for cyclic graphs. By optimizing the
above jointly with the cost over all Aij we make a first-stage
decision on processor partitioning, which is one or possibly
multiple optimal solutions of Aij . Then, in a second stage,
for each optimal processor partition a schedule that minimizes
the latency can be found and the minimum achievable laten-
cies for different partitions are compared to each other to ob-
tain the best configuration of partition and schedule. Note that
since the iteration period, the partition, and the execution time
for each actor is known in the second stage, the ILP model is
greatly simplified, with the complexity significantly reduced.

The two-stage decision process described above leads to
a straightforward heuristic to decompose the global ILP into
two sub-ILPs: a partitioning ILP that minimizes the weighted
sum of Period (as expressed in (9)) and Cost, followed by
a scheduling ILP minimizing Latency. However in prac-
tice the first ILP can only generate a single optimal solu-
tion, while there could potentially exist other processor par-
titions that achieve the same throughput and cost but smaller
latency. Therefore efficient searching algorithms are desired
in the first stage to find as many optimal solutions as possible.

We propose an EA-driven heuristic that applies the
Strength Pareto Evolutionary Algorithm II (SPEA-II) [9]
on top of the scheduling ILP to reduce the optimality gap
while maintaining a low computational complexity. A pop-
ulation of chromosomes, which are one-to-one mappings to
the processor partition, reproduces and evolves over multi-
ple generations under environmental pressure, posed by the
fitness selection based on the achievable throughput, pro-
cessor cost and latency. After a number of generations, the
population converges and the best chromosomes are obtained.

The SPEA-II algorithm is capable of generating either
a single sub-optimal mapping solution or a Pareto front for

(a) Generate a single decision. (b) Generate a Pareto front.

Fig. 2: Two-stage EA-driven heuristic algorithms.

Parameter Value
Population Size 50

Archive Size 10
Termination Condition Upon Convergence
Crossover Probablity 0.9
Mutation Probability 0.1
Crossover Method Uniform Crossover
Selection Method Roulette Wheel

Table 2: Parameters for SPEA-II.

design space exploration. Fig. 2(a) illustrates the two-stage
open-loop procedure to generate a single mapping decision.
First we use SPEA-II to generate a 2-dimensional (processor
cost vs. throughput) Pareto front. Then one or more points
on the front are fed into the scheduling sub-ILP for latency
optimization. Fig. 2(b) represents the two-stage closed-loop
procedure to generate a 3-dimensional Pareto front.

5 Experimental Results
We have evaluated our model and the heuristic approaches on
a variety of randomly generated SDF graphs and one simpli-
fied realistic example of the MP3 decoder (Fig. 3), both pro-
vided by SDF3[10]. We programmed the ILP models using
CPLEX Concert Technology for C++ and used MOGALib
Genetic algorithm framework to implement the SPEA-II. Ta-
ble 2 lists parameters chosen for the SPEA-II. The choice
of population size is according to the suggestion by [11] on
the population size of 1.5 log2N , where N is the number of
possible permutations of the chromosome. All experiments
were run remotely on a single rack mounted Dell Poweredge
2950 workstation, having 2 dualcore, hyperthreading 3.73
GHz Xeon processors and 24 GB of shared memory.

To demonstrate the run-time efficiency of the proposed
single-solution heuristics, we applied the global ILP model
(1-ILP), the two-sub-ILP model (2-ILP) and the open-loop
EA-driven heuristic (SingleEA) to the same set of homoge-
neous SDF (HSDF) graphs. We randomly generated cyclic
and acyclic HSDF graphs with the number of actors ranging
from 5 to 15, and recorded the average run-time of mapping
these graphs onto a 3-processor platform with randomized ex-
ecution profile (Fig. 4). For both cyclic and acyclic graphs,
the SingleEA exhibits much better scalability than the 1-ILP
in terms of run-time. The run-time of the 2-ILP is less than
but very close to that of the SingleEA. As will be shown in the



Fig. 3: A simplified SDF model for the MP3 decoder.

Fig. 4: Average run-time comparison for random SDF graphs
mapped to a three-processor platform with randomized execution
profiles.

following, the 2-ILP has the weakest optimality in latency.
To show the optimality gap of the SingleEA, we used

throughput as a single objective in the 1-ILP, the first stage of
the 2-ILP, and the first stage of the SingleEA. As illustrated
by Table 3, for all tested cases both the SingleEA and the
2-ILP guaranteed the best throughput. The table also shows
better or equal latency achieved by the SingleEA over the 2-
ILP, since the best solutions of the former are picked from
multiple scheduling ILPs for each of the optimal partitioning
decisions. The latency optimality gap of the scheduling ILP
in both heuristics is controlled within 10−6 in CPLEX.

For design space exploration using the proposed EA-
driven heuristic, we applied the 1-ILP and the Closed-loop
EA-driven heuristic (ParetoEA) in Fig. 2(b) to the MP3 de-
coder, which is a multirate acyclic SDF graph with 10 actors
and 13 edges. The 1-ILP took an average of 1004 seconds to
generate one optimal mapping solution. The ParetoEA took
an average of 3624 seconds to converge to the Pareto front.
Fig. 5 shows the convergence to the 3-dimensional Pareto
front. In particular, the solution pointed out by the arrow,
(26, 60, 39), is the optimal solution by the global ILP with
λ1 = 0.8, λ2 = 0 and λ3 = 0.2, which implies closeness of
the generated solution set to the optimal Pareto front.

6 Conclusion
This paper derives approaches to optimize multiprocessor
mapping of real-time streaming systems for throughput, la-
tency and processor cost. We propose both an optimal ILP
model and two heuristics to improve the run-time effciency
without compromising throughput optimality. The heuristics
can generate either a single solution or the Pareto tradeoff
curve for multi-dimensional design space exploration.

I Type Throughput Latency
1-ILP 2-ILP SingleEA 1-ILP 2-ILP SingleEA

5 acyc 1/8 1/8 1/8 39 34 34
cyc 1/12 1/12 1/12 60 47 35

10 acyc 1/20 1/20 1/20 73 58 51
cyc 1/17 1/17 1/17 50 43 35

15 acyc 1/25 1/25 1/25 74 53 38
cyc 1/25 1/25 1/25 62 33 33

Table 3: Optimality comparison for random SDF graphs with I ac-
tors mapped to a three-processor platform with randomized execu-
tion profiles.

Fig. 5: Convergence to the Pareto front for the MP3 decoder.

References
[1] S.S. Bhattacharyya, P.K. Murthy, and E.A. Lee, Software synthesis

from dataflow graphs, Springer, 1996.
[2] E.A. Lee and D.G. Messerschmitt, “Static scheduling of synchronous

data flow programs for digital signal processing,” IEEE Trans. on Com-
puters, vol. 36, no. 1, pp. 24–35, 1987.

[3] J.L. Pino, T.M. Parks, and E.A. Lee, “Automatic code generation for
heterogeneous multiprocessors,” in Proc. IEEE Int. Conf. on Acoustics,
Speech and Signal Processing, 1994, pp. 445–448.

[4] J. Zhu, I. Sander, and A. Jantsch, “Buffer minimization of real-
time streaming applications scheduling on hybrid CPU/FPGA architec-
tures,” in Proc. IEEE Conf. on Design, Automation and Test in Europe,
2009, pp. 1506–1511.

[5] A. Bonfietti, L. Benini, M. Lombardi, and M. Milano, “An efficient
and complete approach for throughput-maximal SDF allocation and
scheduling on multi-core platforms,” in Proc. IEEE Conf. on Design,
Automation and Test in Europe, 2010, pp. 897–902.

[6] N. Aslam, T. Arslan, and A. Erdogan, “Algorithmic level design
space exploration tool for creation of highly optimized synthesizable
circuits,” in Proc. IEEE Int. Conf. on Acoustics, Speech and Signal
Processing, 2007, vol. 2.

[7] E. Zitzler, J. Teich, and S.S. Bhattacharyya, “Evolutionary algorithms
for the synthesis of embedded software,” IEEE Trans. on VLSI Systems,
vol. 8, no. 4, pp. 452–455, 2000.

[8] F. Glover, “Improved linear integer programming formulations of non-
linear integer problems,” Management Science, pp. 455–460, 1975.

[9] E. Zitzler, M. Laumanns, and L. Thiele, “SPEA2: Improving the
strength Pareto evolutionary algorithm,” in Eurogen, 2001, vol. 3242.

[10] S. Stuijk, M. Geilen, and T. Basten, “SDFˆ3: SDF For Free,” in Proc.
IEEE Int. Conf. on Application of Concurrency to System Design, 2006,
pp. 276–278.

[11] J.T. Alander, “On optimal population size of genetic algorithms,” in
Proc. IEEE Int. Conf. on Comp. Sys. and Software Eng., 2002, pp. 65–
70.


