Modeling and Synthesis of Quality-Energy Optimal
Approximate Adders

Jin Miao, Ku He, Andreas Gerstlauer, and Michael Orshansky

Department of Electrical & Computer Engineering, The University of Texas at Austin

{jinmiao, kuhe, gerstl, orshansky } @utexas.edu

Abstract

Recent interest in approximate computation is driven by its poten-
tial to achieve large energy savings. This paper formally demon-
strates an optimal way to reduce energy via voltage over-scaling at
the cost of errors due to timing starvation in addition. We identify
a fundamental trade-off between error frequency and error mag-
nitude in a timing-starved adder. We introduce a formal model
to prove that for signal processing applications using a quadratic
signal-to-noise ratio error measure, reducing bit-wise error fre-
quency is sub-optimal. Instead, energy-optimal approximate addi-
tion requires limiting maximum error magnitude. Intriguingly, due
to possible error patterns, this is achieved by reducing carry chains
significantly below what is allowed by the timing budget for a large
fraction of sum bits, using an aligned, fixed internal-carry structure
for higher significance bits.

We further demonstrate that remaining approximation error is
reduced by realization of conditional bounding (CB) logic for lower
significance bits. A key contribution is the formalization of an
approximate CB logic synthesis problem that produces a rich space
of Pareto-optimal adders with a range of quality-energy trade-
offs. We show how CB logic can be customized to result in over-
and under-estimating approximate adders, and how a dithering
adder that mixes them produces zero-centered error distributions,
and, in accumulation, a reduced-variance error. We demonstrate
synthesized approximate adders with energy up to 60% smaller
than that of a conventional timing-starved adder, where a 30%
reduction is due to the superior synthesis of inexact CB logic.
When used in a larger system implementing an image-processing
algorithm, energy savings of 40% are possible.

1. Introduction

The possibility of trading computation accuracy for improved
energy-efficiency has recently been investigated for use in digi-
tal systems that naturally tolerate errors, such as signal process-
ing circuits. Error-permissive or approximate computations can be
realized at several levels and via different mechanisms. Most of
the existing research efforts have been aimed at solutions lying at
system and algorithmic levels. In [9], energy is reduced by dis-
carding algorithm steps or iterations that contribute less to the final
quality. In [10], adaptive precision of the arithmetic unit output is
used to save energy. Error-correction schemes have been proposed
that use a main computing block running at a lower voltage and
a simpler error-correcting block that runs at a higher voltage and
is thus, error-free [2], [12]. Other techniques use the properties of
specific algorithms to identify and skip unnecessary computations,
e.g. [13], [5]. Transistor-level optimization of full adder cells is

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. To copy otherwise, to republish, to post on servers or to redistribute
to lists, requires prior specific permission and/or a fee.

IEEE/ACM International Conference on Computer-Aided Design (ICCAD) 2012,
November 5-8, 2012, San Jose, California, USA

Copyright © 2012 ACM 978-1-4503-1573-9/12/11...$15.00

proposed in [1]. A general strategy for pruning out statistically-
unimportant logic nodes is studied in [6], [3].

Elementary addition lies at the heart of many signal-processing
applications, and attempts have been made to exploit error-energy
trade-offs at the component level. At the circuit level, the primary
mechanism for achieving energy savings is operating under a re-
duced timing budget via scaled Vgq4, i.e., in the regime of timing
starvation, and several efforts explored that possibility, including
[11], [7], [15]. As of now, there is no formal answer to the ques-
tion: Given a fixed amount of timing starvation, what is the optimal
design strategy for approximate adders? In this paper, we develop
a formal analysis for designing energy-optimal timing-starved ap-
proximate adders in the context of signal processing applications.
Statistical properties of carry propagation are a key part of such an
analysis. In addition, the carry path is a critical path and each bit
is potentially impacted by the carry. Hence, under starvation, some
output sum-bits become timing-inaccessible for a primary carry-in.
The typical carry chain length is, however, much smaller than the
maximum one. In fact, the likelihood of a long carry chain is quite
small. For an N-bit adder, the expected worst-case carry length is
close to logN [4], and with extremely high probability is less than
logN + 12 [11]. The lowest likelihood of errors is thus ensured
even under large timing starvation if the sum-bits are each allowed
to have their maximum possible carry chain [11], [7].

Maximally reducing error probability for each sum-bit mini-
mizes overall error frequency. Yet, in many signal processing appli-
cations the relevant metric of approximation quality is a quadratic
error measure, €.g. SNR/PSNR, that involves error magnitude as
well as frequency. As we show in Section 2.2, due to possible
error patterns, there is a fundamental trade-off between error fre-
quency and error magnitude in a timing-starved adder. Points on
a frequency-magnitude trade-off curve are generated by differ-
ent arrangements of shortened carry segments, where the PSNR-
optimal choice also depends on the statistics of operands. This
drives the first key contribution of this paper: a formal proof that
for signal processing applications assuming a uniform distribution
of operands, reducing bit-wise error frequency is sub-optimal and
that quality-optimal approximate addition is achieved by limiting
maximum error magnitude while accepting a larger error frequency.
This is realized by reducing carry chains significantly below what
is allowed by the timing budget for a large fraction of sum-bits, us-
ing an aligned, fixed internal-carry structure for higher significance
bits. Crucially, such a structure also allows for maximal sharing
of logic across all aligned carry segments, thus resulting in an area-
and energy-optimal design. To enable formal analysis, we introduce
a model of timing-starved addition, which allows us to analyze er-
ror patterns and their frequency. The model is general and applies
to ripple-carry as well as prefix/tree-type adders.

We further show that while maximum error is minimized by an
aligned fixed internal carry adder for higher significance bits, it is
crucial to further minimize average error. (In other words, just trun-
cating the adder is a bad idea). This can be achieved by using LSB
logic to produce an intentionally incorrect result that compensates
for the error due to timing starvation. We introduce logic that gen-
erates LSB bits that cap their output when an error is generated

(a) Full-budgeted (b) Timing-starved

(c) Timing-starved
adder RCA CLA

Figure 1: Timing-starved adder model (TSAM)

in the MSB, i.e. conditionally. The key insight is that energy cost
of such conditional bounding (CB) logic can be substantially re-
duced by realizing its logically inexact version. We formalize the
inexact CB logic synthesis problem and demonstrate existence of a
rich space of alternatives with different area/energy-error behavior.
Note that while other instances of bounding approximate addition
have been reported, e.g., [15], [14], they are introduced heuristi-
cally without the proof of optimality or formal synthesis methods.
Finally, we demonstrate that both under- and overestimating ap-
proximate adders are possible. We introduce several implementa-
tions of dithering approximate adders which mix the under- and
overestimating adders to produce a zero-centered error distribu-
tion. We demonstrate effectiveness of a dithering adder in reducing
accumulation errors in consecutive additions by error averaging.
In summary, the paper makes the following contributions: (1)
a timing-starvation model demonstrating that an optimal approxi-
mate adder reduces carry chains for a large fraction of sub-bits to
a length significantly below what is allowed by the timing budget,
using an aligned, fixed internal-carry (AFIC) structure for higher
significance bits; (2) a theoretical analysis concluding that the CB
logic is the optimal structure for realization of lower significance
bits in conjunction with an AFIC adder for higher significance bits;
(3) a set of models and algorithms to efficiently find Pareto-optimal
realizations of inexact CB logic; and (4) a dithering approximate
adder that mixes the under- and overestimating logic to produce a
reduced-variance zero-centered error distribution.

2. Timing-Starved Addition: Properties and
Optimality

In this section, we develop a timing-starved adder model as a tool
for analyzing the key features of approximate addition. We use it to
demonstrate a fundamental trade-off between error frequency and
error magnitude in a timing-starved adder. We conclude that for
signal processing applications in which a quadratic error measure is
used, reducing bit-wise error frequency is sub-optimal and limiting
maximum error magnitude is paramount.

2.1 Timing-Starved Adder Model

In order to formally study the error frequency and magnitude pat-
terns in approximate addition, we introduce a timing-starved adder
model (TSAM) as defined in Fig. 1. The model can represent a vari-
ety of actual adder implementations, including ripple carry and tree
adders. For ease of presentation, we discuss the ripple carry (RCA)
adder first. In TSAM model, the top-level blocks represent sum bits,
the horizontal blocks represent logic to compute each sum bit .S;,
and the rightmost point of each such segment defines the location
of the farthest accessible internal carry under a given timing budget.
Under a full timing budget, (Fig. 1(a)), all the sum-bits have access
to the correct carry-in (= 0) at bit 0. Under a reduced timing bud-
get (Fig. 1(b)) equivalent to k < N bits, some sum-bits do not have

mH nH

Figure 2: Error pattern waveforms.

enough time to be impacted by (do not “have access” to) the correct
zero-bit carry-in. The actual accessible carry, given by the shifted
rightmost point of each segment, in an operating adder depends on
the value left on the carry node by the previous computation cycle
and is treated as unknown. We represent this unknownness of the
carry in a timing-starved adder by a diamond, see Fig. 1(b). Note
that if Fig. 1 is used to model more complex adder structures, e.g.
carry look ahead adders (CLAs) or prefix types, the segments will
not be regular due to differences in paths for each bit. The carry
will propagate to higher significance bits via carry-look-ahead by-
pass logic, whereas less significant bits may still need a regular
propagation path. This shifts the adder critical path from the most
significant bit (MSB) to the less significant bits (LSBs). Thus, when
timing starvation occurs, the MSBs may, surprisingly, have an ac-
cessible internal carry that is further than even its right neighbor
bits. This is illustrated in Fig. 1(c) for the example of a CLA.

The model allows studying the behavior of error frequency and
magnitude with onset of timing starvation depending on the pattern
of access of individual sum-bits to internal carries. Specifically, we
show that depending on an arrangement of carry segments, a trade-
off curve of maximum error magnitude and error frequency exists.
The minimum error frequency solution is achieved by minimizing
bit-wise error probabilities. Because of the low probabilistic likeli-
hood of long carry chains, we conclude that to lower the bit-wise
error occurrence frequency, we need to allocate the longest possible
propagation chain for each bit position under the given timing bud-
get. This is represented by an implementation that mimics the mod-
els in Fig. 1(b) and Fig. 1(c). While in a simple ripple-carry adder
such behavior can be achieved by timing starvation directly, con-
cerns about metastability or timing-closure may require breaking
up the carry chain into over-lapping independent carry blocks. Fur-
thermore, in tree adders with non-uniform default segment lengths,
an independent implementation of identical blocks allows for cap-
turing the maximum possible carry length in all sum bits. Several
such implementations have been reported [11] and [7]. Intriguingly,
we show below that this strategy is sub-optimal for many applica-
tions because of the nature of the trade-off between error frequency
and maximum magnitude of error under a quadratic quality mea-
sure. Furthermore, implementations with independent carry blocks
carry a larger area and hence energy overhead than what can be
optimally achieved.

2.2 Error Frequency-Magnitude Trade-off

The trade-off between error frequency and maximum error magni-
tude is caused by patterns of possible errors. For a timing budget
below k bits (see Fig. 1), any bit upto the MSB bit can be false.
Thus, the largest possible error is 2" 1. However, the maximum
error is reduced if the false bit is followed by a string of false bits.
Thus, surprisingly, forcing a set of bits to be false reduces the max-
imum error, and, if this is done for every pattern, the maximum
possible error is reduced. Below we show how to achieve this ef-
fect and that its flip-side is the increased frequency of errors.

We represent error patterns by their F' and 7' bit positions,
which indicate whether a bit is incorrect (false) or correct (true),
respectively. Bit sequences are given in the form of regular expres-
sions, where ‘x’ indicates consecutive repetitions. Graphically, er-

(a) Hardwired to zero (FIC-TS) (b) Aligned carries (AFIC-TS)
Figure 3: Timing-starved adder with fixed internal carries.

ror patterns can be represented as arbitrary waveforms of correct
and incorrect bits (see Fig. 2). It can be shown that a timing-starved
adder can produce an N-bit output in which any pattern of F* and
T* is possible. Importantly, the maximum error magnitude of an
adder is defined by the location of the first left-most possible oc-
currence of an F'™* pattern; thus, the location of the first possible
pair of F*T* bounds the maximum error magnitude of an adder.
We call this the FT transition. Furthermore, an F™* pattern with a
bitwidth of m, with a right-most bit in the pattern rooted at bit po-
sition r, can result in errors with only two magnitudes: 2™" — 1 or
2". In this case, whether the error pattern leads to a large or a small
error depends both on the current adder inputs and the computa-
tional history for the internal carries. The key to our adder analysis
is the realization that if we logically fix all the internal carries, con-
ditions under which F'* would result in a large error (of magnitude
2™+ _ 1) cannot occur, i.e. F'* can only generate small errors with
a magnitude of 2”. Notice that internal carries can be fixed to either
0 or 1, leading to either lower- or upper-bounding of the result. (In
what follows, we assume for the time being that the carries are fixed
at 0). We term such an adder a fixed internal-carry timing-starved
adder (FIC-TS), Fig. 3(a).

To reduce the maximum error magnitude, we are interested in
shifting the F'T" transition to a lower bit position. In a FIC-TS adder,
the T transition can occur in the highest bit position and the
maximum error is defined by the full length of the adder with a
magnitude of 2V =1, Since we cannot avoid errors in general, the
only way to shift the F'T transition within an F*T™* pattern is to
convert as many 7 bits as possible to F.

A bit j is F' when the carry into its segment is incorrect, e.g.,
the correct carry is 1 while it’s fixed to 0, and every downstream
bit which is part of this segment has its propagate condition as true.
In order to shift the F'T transition by one bit, we need to ensure
that if bit j is F', bit j — 1 also becomes F', which can be made
true if we ensure that the segment of bit 7 — 1 also depends on the
same incorrect carry-in. This can be achieved by aligning the right
edges and hence inputs of the segments for bit j and bit j — 1. Now
the correctness/incorrectness of bits j and j — 1 depends only on
whether the accurate carry-in is zero (in which case both j and j—1
are T") or one (in which case both j and j — 1 are F).

To shift the F'T transition as far right as possible, we repeat-
edly apply the above conversion starting at bit 5 = N. This results
in aligning a set of segments of downstream bits to that of bit N.
Clearly, segments of lower bits are shorter than & (the length of the
Nth segment). Hence, it is impossible to shift the F"I" transition
beyond k. The segment length k is limited by the available tim-
ing budget, i.e. by the degree of timing starvation. However, the

—&— Uniform Inputs
—O— Small Distance Inputs

N
o
!

W
o
!

N
o
N

36.4dB

Error Frequency (%)
=
o

B4dB 33.70B 31,008 55908 i

45.6dB 39 1dB 40.9dB

o
1

25 30 35 40 45 5.0
log (Max Error)
Figure 4: Error frequency vs. maximum error magnitude.

alignment of segments also means that the effective carry chains
are reduced for the sum-bits below the MSB bit, and that increases
the probability of individual and thus overall error. Fig. 4 shows the
trade-off curve between maximum error and frequency that results
from this exploration for an increasing number of aligned segments
up to kK = 7 in a 16-bit RCA. The exact values of the Pareto-front
depend on the statistics of adder operands, where results are shown
both for an independent, uniform distribution as well as for input
pairs that exhibit a small value distance across a uniformly dis-
tributed common magnitude range. Fig. 4 also shows the PSNR
values that correspond to each configuration, which we discuss in
the next section.

2.3 Optimal Approximate Addition under the PSNR Metric

Minimizing frequency of possible errors is justified in applications
relying on error-correction. For other applications, such as in sig-
nal processing, it is the minimization of error magnitude that is
more essential. In these applications, the quadratic error measure
of adder error behavior, i.e. the quality of produced output, is most
relevant. The specific metrics commonly used are the normalized
mean squared error (MSE) and the related, peak signal-to-noise
ratio (PSNR). PSNR depends on both magnitude and frequency
of emerging errors. We now demonstrate that, for adder operands
that are uniformly distributed, i.e. where all the input values are
equally likely, PSNR is much more heavily influenced by the mag-
nitude of the maximum error rather than error frequency. To do
that, we consider a trade-off between error magnitude and fre-
quency at a fixed PSNR value. We compare two adders A; and
As, shown in Fig. 5, that produce errors of maximum magnitude
1,mae and 2, .. with a frequency of f1,,,. and fa,, .., respec-
tively. We measure the quality loss in adder ¢ as the sum of squared
errors SS; = ZN 6% over N additions, which is proportional to
the inverse of PSNR. Given maximum error magnitudes and their
frequencies, we can bound quality losses from below and above
as Nfion meaz < 88 < Néfmaz by assuming, in the best
and worst case, that only maximum errors occur or that all addi-
tions lead to a maximum error, respectively. To understand when
an adder A; has better quality than an adder A2, we need to es-
tablish the conditions under which SS; < SS,. Using the up-
per and lower bounds above for SS; and S.S2, respectively, this
is the case if SS1 < N6, .. < Nf2,..05,... < S5, ie.
fQWYL(ILE > (61’7)10/1 /62’771!1.’17)2'

In an adder, the maximum error magnitude is determined by the
position m of the most significant bit in which an error can occur,
and is equal to dpmar = 2™. If two adders differ by s bits in their
maximum error location (see Fig. 5), we can conclude that an adder
Ay with smaller error magnitude will have better quality than an
adder A, with larger error magnitude if the frequency of maximum
errors in adder Aj is at least fo,,,, > 1/4°. (Note that the inverse

| m
— >

ADD1

m+s

Figure 5: Adders A; and A with locations m and m + s and
magnitudes 2™ and 2""* of maximum errors.

is not true, i.e. f2,,,, being below this bound does not necessarily
imply that A, is better than A;.) Thus, a larger error magnitude
requires an exponential reduction in the frequency of such errors in
order to remain below the quality budget set by an adder with lower
error magnitude. This is confirmed in Fig. 4 that shows empirically
collected PSNR values that correspond to each configuration. We
see that for the uniform input distribution, the peak PSNR is indeed
achieved for a solution with the smallest maximum error magni-
tude. This is not the case, however, for all distributions: if an adder
processes input pairs that have similar values (small distance) then
the peak PSNR is achieved at a different point.

We focus in the rest of the section on the analysis of the uni-
formly distributed (equally likely) adder inputs. Based on the anal-
ysis of the trade-off curve, the adder with the smallest maximum
error is realized by aligning a set of segments of downstream bits
to that of bit V. We call the resulting approximate adder structure
an aligned fixed internal-carry timing-starved (AFIC-TS) adder.
Fig. 3(b) shows the AFIC-TS adder, where the T transition is
shifted to the dotted boundary at bit position N — k. This re-
duces the maximum error magnitude by a factor of %%1 to make

the maximum possible error 2V %, Note that the structure for the
higher significant bits (left of the dotted boundary in Fig. 3(b)) is
logically equivalent to, and can be implemented as, a regular adder,
e.g. a RCA or CLA, that spans the MSB segment length k£ with a
fixed carry in.

Using this analysis, we can determine the conditions under
which an AFIC-TS adder has better error behavior than a FIC-
TS one. The adders differ in their maximum error magnitudes
by k — 1 bit positions. Hence, an AFIC-TS adder will be better
if the maximum error frequency of the FIC-TS adder is greater
than 1/4*~!. The maximum error in an FIC-TS adder occurs if
an incorrect carry propagates into its MSB while all other output
bits are correct (7). This is the case if a carry is generated in the
k+1st bit from the leftmost bit (/N —k—1) and all higher significant
bits propagate (but not generate) while all lower significant bits are
correct. For uniform inputs, the probability of a bit to propagate or
generate is 1/2 and 1/4, respectively. Furthermore, the probability
for the lower significant bits to be correct is at least 1/2 [7].
Thus, the maximum error frequency of the FIC-TS adder is at least
1/252, In order to guarantee that the AFIC-TS adder is better,
we need to ensure that 1/2572 > 1/4%=! je. k > 4. Since k is
a function of the available timing, this condition holds in almost
all practical cases where we allow for budgets of at least 4 bit
delays. Overall, the proof establishes that a AFIC-TS or equivalent
adder (such as ETA [15]) is guaranteed to be better than a FIC-
TS or equivalent adder (such as the approximation adder in [7]),
regardless of the logic for lower significance bits (on the right side
of the dotted boundary).

The discussion thus far has focused on proofs of quality opti-
mality. Depending on the implementability of various adder struc-
tures, there may be differences in logic complexity, area and hence
energy. As such, a subset of non-quality-optimal adders can have
a better energy than the quality-optimal structure and, thus, also
be Pareto-optimal in the quality-energy space. However, impor-

tantly, since aligning of segments allows for sharing of their logic, a
maximally-aligned AFIC structure is not only optimal from a qual-
ity perspective, but also minimizes logic complexity.

When designing such optimal AFIC adders, we have remaining
choices in regards to the logic of the lower significant bits and the
value to which we fix a carry-in into the higher significance seg-
ment. Fixing the carry-in to zero or one will result in errors being
always negative or positive, respectively. Depending on the desired
behavior, we can therefore synthesize adders that over- or underes-
timate the result. This also opens the possibility of creating struc-
tures that dither to produce a zero-centered and reduced-variance
errors. This choice also dictates the synthesis of the desired upper
or lower bounding logic in the lower significance bits, as will be
discussed further in the following sections.

3. Synthesis of Conditional Bounding Logic

After the maximum error is minimized with the aligned fixed inter-
nal carry adder for higher significance bits, it is crucial to reduce
average error. We achieve this by using LSB logic to produce an
intentionally incorrect result to compensate the error due to timing
starvation. We introduce logic that generates LSB bits that bound
its correct output when an error is generated in the MSB, i.e. con-
ditionally. We further show that energy cost of conditional bound-
ing (CB) logic can be substantially reduced by realizing its logi-
cally inexact version without substantial extra quality loss. In fact,
there exists a range of Pareto-optimal adder implementations in the
quality-energy design space. In the following, we formalize this de-
sign space and develop a heuristic to synthesize adder implementa-
tions for different application requirements and target technologies.

We focus our discussion initially on the case when the timing
budget (set by the MSB segment length k) is sufficient for the
correct timing evaluation of the LSB bits, i.e., h = N — k < k.
When h = N — k > k, our synthesis approach will be able to
trade off optimality for meeting a given timing budget. We support
a hierarchical strategy that partitions the entire LSB logic into
several smaller segments that each individually meet their timing
constraints. This requires the segments, however, to be isolated
from each other with no carry propagation between them. As a
result, this solution may come at a cost of further degradation in
achievable PSNR value.

3.1 Conditional Bounding Logic Formalization

As discussed, depending on the value of the fixed (controlled) carry
into the MSBs, an AFIC adder will always over- or underestimate
the true result. An important observation is that a quality-optimal
adder implementation can be achieved by designing matching, con-
ditionally bounding LSB logic that further minimizes remaining
errors. Without loss of generality, we first assume the design of an
underestimating adder with internal carries fixed to zero for the fol-
lowing discussion. Let C' be the carry out of the LSB and carry into
the MSB logic that is discarded. If C' = 0, both MSB and LSB
logic are correct. If C' = 1, the MSB logic is incorrect, but an
unmodified LSB logic still produces a correct result. This will al-
ways lead to the largest possible, negative error of —2". With these
observations in mind, the optimal LSB logic should have the fol-
lowing properties: (a) produce a correct result when C' = 0, and
(b) produce the largest possible value (i.e. 11...1) when C = 1
to compensate for the large negative error in the MSBs as much
as possible. This behavior is equivalent to the following Boolean
equation for the desired LSB logic:

S, =SV,)

where S; is the true sum value for output ¢, C' is the carry-out of
. /. . . .
the entire LSB block, and S; is the desired sum value for bit 3.

As previously discussed, an alternative overall adder design
possibility is to fix the carry into the MSB logic to one. In this
case, the LSB logic should be reversed. It should produce a correct
output when C' = 1 and the smallest possible value (i.e. 00...0)
when C' = 0, which is logically described as:

S =S8 AC @

This allows us to design adders that are either over- or underesti-
mating while minimizing the overall quality loss.

A general concern is that in either of these cases, consistent
over- or under-estimation can result in errors that accumulate and
grow when chaining several successive additions, as is the case,
for example, in many applications that use accumulations. For
applications that are sensitive to error accumulation, we introduce a
structure that alternates between both types of logic in a dithering-
style scheme in which statistical averaging reduces error variance in
accumulation. This solution may come at an increased area cost, but
due to our ability to synthesize reduced-area approximate bounding
logic with the opportunity to share logic between both types, the
area penalty is typically small. Furthermore, since at any given time
only one block will be actively switching, there is very little energy
overhead. A dithering adder is realized by a logic expression:

S; =(DASiAC)V (DA(S:VC)), 3)

where D is an external control signal. This external signal allows
dithering to be controlled by the application, e.g. to exploit knowl-
edge about input data statistics or required error behavior. Further-
more, we can design simple, general control schemes that achieve
averaging by driving the signal from a regularly alternating clock or
through a history register that records whether a mismatch between
hardwired and actual carry occurred and, if so, triggers the opposite
bounding logic in the next addition in order to compensate.

As an alternative to external dither control, we can consider
implementations in which the choice between over- and under-
estimating, and hence between upper or lower bounding LSB logic,
is generated internally based on other, regular adder inputs. Cru-
cially, we can observe that an approximate AFIC adder will al-
ways produce a correct result iff the hardwired carry into the MSB
matches the carry-out that would be produced by a regular LSB
logic. Hence, if the LSB carry can be easily predicted from other
inputs, and if the choice between different MSB carries and cor-
responding LSB bounding logic can be adapted accordingly, error
frequency can be further minimized.

A low-overhead carry prediction can be performed based on
adder inputs Aj_1 or Bj_1 at the partition boundary bit position
h — 1. If both of these inputs are zero or one, the carry-out of the
LSBs will also be zero or one, respectively, independent of any
LSB-internal carry propagation. Hence, dithering can be controlled
via the exclusive-or of those two inputs. In all unpredictable cases,
we aim to randomly alternate for statistical averaging. For that, we
can combine both cases and simply control the choice of MSB carry
and LSB logic based on the value of one of the two inputs. Thus,
the LSB logic expression for a h — 1-dithering adder can be written
as:

SZ/ :(Ah,l/\Si/\C)\/(Zh,l/\(Si\/C)L “4)

where Aj,_1 is the h — 1 bit of input A.

We refer to the logic defined in Eq. (1), Eq. (2) and Eqgs. (3)/(4),
as Conditional Upper Bounding (CUB), Conditional Lower Bound-
ing (CLB) and Conditional Dithered Bounding (CDB) logic, re-
spectively. In general, Conditional Bounding (CB) logic, where ev-
ery sum output depends on the carry out of the complete LSB block,
is more complex than that of a correct adder. An important part of
our synthesis strategy is the idea that we can implement a logi-

cal approximation of S;, given that ultimately the entire adder will

Table 1: Row-based function changes and distances for 2-bit CUB
logic.

Input CUB Dy Do

Al | Bi | A | Bo (S750) (87 sy (57 s0)
0 0 1 0 01 00,10 11
0 0 1 1 10 01,11 00
0 1 1 0 11 10 01
0 1 1 1 11 10 01
1 0 0 0 10 01,11 00
1 0 0 1 11 10 01
1 1 0 0 11 10 01
0 0 0 0 00 01 10

still produce errors even if the CB logic implements S; exactly.
By implementing a logical (Boolean) approximation to S;, we can
achieve significant area and energy reduction with only slightly
worse error behavior. We expect a wide range of possible approxi-
mations of S; with different energy and quality values, from which
a Pareto-optimal set can be found.

3.2 Bounding Logic Synthesis

We are ultimately interested in an Pareto-optimal set of solutions
in terms of MSE/PSNR and energy. However, a direct optimiza-
tion seeking optimal points in this space appears intractable at the
moment. Instead, we propose a heuristic approach that adopts a
principle fundamental to logic synthesis: the number of literals in
the logical expression is a proxy for the complexity, and thus area
and energy (ignoring differences in switching activity), of the real-
ization of a logic function. Formally, the Pareto-optimal set is gen-
erated by the solution to the following approximate logic synthesis
problem:

/

min L(f) st. A(f) < Dvarget)

where L(f /) is the number of literals in function f "and A(f ' ,f)is
the distance between the two functions f and f. Notice that setting

the distance to zero, A(fl7 f) = 0, would make the problem
equivalent to the traditional (exact) logic minimization problem.

The problem above introduces a proxy distance metric in lieu of
PSNR allowing a more efficient implementation of the optimization
problem. The distance definition we choose is closely coupled with
a heuristic optimization we implement. The algorithm acts directly
on a specification of the Boolean function in terms of the list of its
ON-set/OFF-set minterms, i.e. on its truth table.

Without loss of generality, we continue the discussion based on
CUB logic synthesis using Eq. (1) as function f to approximate.
Synthesis of CLB and CDB logic is analogous and an identical
algorithm can be applied. Consider the truth table for the CUB
logic S; of a 2-bit adder in terms of input operands A; and B;
(Table 1). The distance measure needs to capture the difference
between the desired exact function and its approximation in a
way that captures the characteristics of the PSNR error metric.
Assuming uniform input distributions, each row in the truth table is
equally likely. Therefore, the number of rows in which a change in
function output is considered captures the frequency of errors. For
a given row, we measure its decimal distance (D) as the decimal
difference in the binary output values between the desired and
inexact CUB logic. By flipping output bits within rows, we may
produce inexact outputs with different decimal distances. Due to
the quadratic nature of PSNR, the total distance (7DD) is the sum
of squared decimal distances over all rows in which bits have been

Algorithm 1 Inexact CUB synthesis

for each row in each subset of rows of size r do
for Dj = Dpin . .. Dinae do
for each output (S;) and all (S:-I) = (S;) + D; do
Replace (S;) by (S;/>;
Run 2-level Boolean minimization;
Record min (literal, TD) pairs;
end for
end for
end for
end for

1: for #row flipsr = 1...7mqes do
2
3
4
S:
6:
7
8
9
10

11

changed (r):
TD =Y " Dj ©)
J

where D; is the decimal distance due to a change in row j. This
procedure is illustrated in Table 1, which shows a partial truth table
with decimal distances D1 = 1 and D2 = 2 for each row.

Using the TD metric defined above, we implemented the op-
timization heuristic shown in Algorithm 1 to find Pareto-optimal
solutions in the literal-7’D space. We empirically verified, as will
be shown in the next section, that the proposed proxy metrics pro-
vide good fidelity while allowing tractable optimization. We syn-
thesized solutions using Design Compiler to find true area and used
behavioral simulation to extract PSNR values, creating a mapping
between the literal-7D domain and the area-PSNR domain for a
range of functions.

It is possible to make the above algorithm more efficient by
avoiding considering all possible D; in each row. The improvement
is based on the conjecture that the Pareto set of total distance (71D)
vs. number of literals (L) solutions of the inexact functions is to
be found among solutions produced by only considering D,in
combinations for a given number of row changes (flips) r. We can
justify the conjecture by the following argument: (1) For any given
TD value at a fixed r, the minimum achievable L is a function
of the number of possible solutions to explore; (2) Due to the
smaller number of possible flips of a row for larger D;, the number
of solutions Num(D;) decreases with an increase in individual
distances being considered, i.e. Num(D;) > Num(D;) for any
i < 7; (3) It follows that TD vs. L for a fixed r is monotonic and
rising with increasing distance D;. Hence, the Pareto set is among
modifications formed by Dpin X Dmin . .. Dmin combinations
and only these solutions need to be explored. This conjecture is
verified empirically, where experiments for LSB adder logic of size
2 and 3 both confirmed the trend in (3).

Even with the described simplification, it is not feasible to use
the algorithm for more than about r,,,, = 8 row flips. Whether
this is sufficient depends on the number of rows in the truth ta-
ble, which is exponential in the width h of the LSB block. With
Tmaz = S, We can explore a sufficient range of Pareto points for
h < 3. To enable synthesis of larger adders, we adopt a hierarchical
optimization strategy that partitions the LSB block into smaller seg-

S3 S2 l S1 S0
I
C3 |C1

Si'=Si V C3 Sj=Sj Vv C1
(C1=0)

Figure 6: Hierarchical approach for partitioning of LSB logic and
recursively applying CB synthesis to each segment.

w
o

84 [] 1 []

—_ 1 L] 3.0{ m

EG [] -

3 - g 25 .

§4 m - "

g . S 2.0 2

a 2 M -

21 " 3 2 1.5 -

3 - 4 3)

=04 - 1.0 i
12 14 00 02 04 06 08 1.0

6 8 10
Literals (L)
(@)TD vs. L
Figure 7: Synthesized inexact solutions for ~ = 2 CUB block.

Area (normalized)

(b) Area vs. quality

'
16 ;; r
“2715- ,
3 T
2 Lo
S 14 i‘..
-
13 -

00 02 04 06 08 1.0

Area (normalized)
Figure 8: Inexact CUB synthesized hierarchically for 5-bit CUB
block (h = 5).

ments that are synthesized and optimized independently and sepa-
rately (Fig. 6). Segments are isolated from each other and there is
no carry propagation between them, leading to sub-optimal approx-
imations of the desired logic. However, by recursively applying the
same CB synthesis approach to each segment with discarded output
carry, the accrued errors are kept bounded, and we found results to
be acceptable. Also, as alluded to earlier, the described hierarchical
partitioning of the LSB logic can be used to meet reduced LSB tim-
ing budgets. The hierarchical approach reduces the runtime from
O(N - 4*M) to O(N) at the cost of reduced solution density. The
actual accuracy loss is limited: we found that the gap is no larger
than 3dB in the worst case.

Hierarchical exploration proceeds by first constructing the L
vs. TD Pareto fronts for LSB logic of bitwidth h = 1...3.
To construct Pareto solutions for larger bitwidths, we explore all
possible concatenations of smaller adders and their different design
points to find the best overall L vs. T'D solutions.

4. Experimental Results

We first demonstrate the results of approximate LSBs block syn-
thesis using our algorithm with Espresso [8] as the internal 2-level
Boolean minimization engine. Fig. 7(a) shows both the Pareto-
optimal solutions and selected other design points explored by
our algorithm for a 2-bit LSBs block in the 7D vs. L space. The
Boolean expressions for each of those solutions were synthesized
with Synopsys DesignCompiler using the 45nm OSU PDK. Quality
was estimated via simulation of the LSB block for 10,000 random,
uniformly distributed input samples. The final area and quality val-
ues are shown in Fig. 7(b). Overall, we observe good fidelity: the
points that are on the Pareto front in the 7D vs. L space are also
Pareto-optimal in the quality-area space. Points at the extreme high
and low ends of the L/area range thereby correspond to exact and
minimum-area realizations of the desired CUB logic, respectively.
Furthermore, Fig. 8 shows the set of solutions for the approximate
realization of a 5-bit LSB block produced by the hierarchical syn-
thesis approach. We can observe a wide range of trade-offs, with
some solutions having 1/5th of the area of the exact CUB logic at a
moderate quality loss.

AIN-1:h] BIN-1:h] Alh-1:0] ‘LB[hr1 0]

wo P

Control |

AFIC

S[N:h] 1\ S[h-1:0]

Figure 9: Dithering approximate adder.

65 T T T T
604 h=9 —v— Dither
—o—CUB e
554 —a—TS-CLA
o 50 T
Z
o
Zz 459 J
2
404
Opt. h=11 Exact .
354 Min.
30

01 02 03 04 05 06 07 08 09 10 11
Energy (normalized)
Figure 10: Quality-energy tradeoffs for different 16-bit CLAs.

As discussed previously, we can also realize adders that com-
bine over- and underestimating behavior. Fig. 9 shows the concep-
tual design of the proposed dithering approximate adder. Its bound-
ing behavior is controlled by an additional input signal, which de-
termines both the carry into the MSB as well as the matching choice
between CLB and CUB logic for the LSBs. In reality, we can syn-
thesize the dithering LSBs as a combined CUB/CLB block with
logic sharing. Overall, the overhead for a dithering-capable struc-
ture is low and its complexity remains well below that of a conven-
tional adder. Note again that the dithering selection can be exter-
nally or internally controlled, either using more complex, adaptive
schemes driven by the application or, simply, by a purely random
signal, an alternating clock, based on carry-history or as a function
of other inputs. After logic synthesis, a 24-bit RCA-based clock
dithering adder with A = 10 has a 34% area overhead compared to
a standalone, minimum-area AFIC-CUB design. For an internally
controlled A — 1-dithering adder, the area overhead compared to
a plain CUB RCA is around 30%. With increasing base complex-
ity, this relative overhead reduces to 11% and 7.8% for CLA and
Kogge-Stone based designs, respectively.

Fig. 10 shows the achievable quality-energy tradeoffs of vari-
ous 16-bit approximate CLAs using an AFIC structure with LSB
lengths h = 9 & h = 11 under varying minimum-area, optimal-
tradeoff, exact CUB and h — 1-dithering realizations of the LSB
block. We compare them against a conventional timing-starved
CLA design. We assume energy reductions through Vpp scaling
to be proportional to C'V'2. For delay scaling, we utilize a curve-
fitted model of HSPICE-simulated gate delays at different Vpp
values. Energy of AFIC adders was estimated assuming a timing
budget and Vpp value set by each nominal adder delay. Energy
results are normalized to the base energy of the unscaled, original
full-width CLA. Quality was measured by simulating adder results
under scaled Vpp for 10,000 random inputs.

Results show that the conventional timing-starved adder experi-
ences a sharp drop in quality once their timing budget is exceeded.
For AFIC adders, the base quality level as well as the timing bud-

63 T T T T
Exact
604 Dithering 1
—e—CLA
o —s— RCA 1
T 571 . opt. —aCLA
Min.
24 —e—KS
zZ .
(7]
0 544
514 cuB
T T

02 03 04 05 06 07 08 09 10
Energy (normalized)
Figure 11: Quality-energy of 16-bit AFIC adders with h = 9.

Table 2: 16-bit CLA with h = 9 and varying LSB logic.

PSNR | Rel. Err. | Rel. Err. Area Vbbb
LSB Type (dB) Full Small (qu) V) Energy
[Original [oo [0% [0% [4139 [1.00 [100% |
[Truncated H 38.9 [1.1% [100% [128.1 [0.83 [21.3%]
CUBmin 49.6 0.4% 23.5% 150.6 0.33 25.1%
CUBgpt 51.2 0.4% 18.2% 204.6 0.83 34.1%
CUBexact 529 0.3% 0% 227.6 0.92 46.5%
h — 1min 57.2 0.2% 23.4% 185.8 0.83 30.8%
h — 1opt 58.6 0.2% 17.8% 232.4 0.83 38.7%
h — lexact 61.9 0.2% 0% 264.7 0.97 60.2%

(b) Filter w/ AFIC-CUB (h = 12)
PSNR=23.7dB, Energy=0.60

(a) IDCT w/ AFIC-CUB (h = 8)
PSNR=34.57dB, Energy=0.67

Figure 12: Approximate adders in image processing applications.

get is set by the LSB and MSB widths h and N — h. Due to its
ability for preemptively predicting the correct error compensation
behavior purely from current adder inputs, a h— 1-dithering scheme
can in all cases significantly improve quality compared to its non-
dithered counterparts. However, the added complexity comes at the
cost of increased area and hence energy.

Fig. 11 compares quality and energy of RCA, CLA and Kogge-
Stone (KS) based designs of AFIC structures with h = 9, where
energy is normalized against the base energy of an unscaled, regular
RCA. Overall, even more so than the base adder structure, the
partition boundary h or the timing budget, the choice of logic in the
LSBs has a large effect on the area of the design and hence on the
maximal achievable energy savings. Savings vary by 30% to 40%
depending on the LSB logic style. This confirms the significance of
exploring the CUB/CLB design space when designing families of
approximate adders.

Table 2 summarizes results for a 16-bit AFIC CLA with h = 9
and different non-dithering and dithering LSB realizations. For
comparison, we include a truncating adder with an empty LSB

(a) IDCT w/ Truncated Adder (h = 10)
PSNR=16.9dB, Energy=0.61

(b) Clock-dithering adder (h = 10)
PSNR=33.15dB, Energy=0.62

Figure 13: IDCT quality and energy of a truncated adder (a), and different dithering schemes (b-d).

block. Results show that a significant difference in achievable qual-
ity between different synthesized CUB designs. Specifically, dither-
ing adders improve PSNR considerably. Some CUB designs show
very poor relative error metric which can be an important metric
for realistic DSP systems. We show relative errors for two different
uniform distributions of input with a full and a reduced range of
magnitudes. For inputs that are smaller than the partition bound-
ary, the design of the LSB logic has a large influence. In contrast to
other realizations, an exact CUB realization will be error-free for
such inputs. Overall, depending on application requirements, there
exists a non-trivial tradeoff in finding a good compromise between
quality and energy, as realized by the optimal CUB,p instance for
the uniform input case.

To demonstrate feasibility for practical scenarios, we applied
adder concepts to an IDCT image decompression and an image
sharpening design, where the latter realizes a high-pass filter as
a 2D convolution operation in the pixel domain. Fig. 12 shows
the images and quality-energy tradeoffs under scaled Vpp when
replacing a conventional 24-bit RCA in both designs with our
minimal-area AFIC-CUB structure. Results are compared to the
original IDCT and sharpening designs with a normalized energy
of 1.0 and a PSNR of 44.6dB and 23.9dB, respectively.

While significant energy reductions can be achieved for a com-
monly accepted image quality above 30dB in the IDCT, error ac-
cumulations in the AFIC-CUB design lead to visual artifacts in the
form of horizontal stripe patterns. By contrast, application of vari-
ous dithering schemes provides both a much better PSNR as well
as perceived quality. As shown in Fig. 13, by increasing the parti-
tion boundary h and hence decreasing the timing budget, this qual-
ity gain can be traded off for further energy savings. We compare
our designs against a traditional approach that works with reduced
precision (i.e. truncation) to achieve similar energy savings. Both
from a PSNR and subjective image quality standpoint, the h — 1-
dithering scheme is superior to truncation and any randomized ex-
ternal control. Dithering also leads to a reduction in the variance of
observed errors. For the IDCT, we measured the error distributions.
For an AFIC-CUB adder it has a mean of -0.95 and a variance of
5.16. By contrast, the clock-dithering adder produces errors with a
mean of -0.1 and a variance of 0.94. Distribution of errors is not a
concern in the sharpening filter. Here, a simpler AFIC-CUB adder
with h = 12 already achieves similar results (Fig. 12(b)). In both
cases, around 40% energy savings can be achieved while maintain-
ing good image quality.

5. Conclusions

In this paper, we presented a theoretical approach for analysis and
synthesis of approximate adders. Our approach is general and we
formally prove the existence of optimal AFIC adder structures
in which higher significance bits are implemented using regular,

(c) History-dithering adder (h = 10)
PSNR=35.52dB, Energy=0.63

(d) h — 1-dithering adder (b = 10)
PSNR=36.92dB, Energy=0.62

aligned carry additions. Within the space of AFIC adders, we fur-
ther demonstrated that a rich set of design alternatives at varying
quality-energy tradeoffs can be synthesized. This includes variants
with overestimating, underestimating or dithering approximation
behavior for use within different classes of application require-
ments. Our results show that energy savings of up to 60% are possi-
ble at the individual adder level. Integrating the developed approx-
imate adders into realistic image processing designs allows more
than 40% total energy savings while maintaining excellent image
quality.

References

[1] V. Gupta, D. Mohapatra, S. P. Park, A. Raghunathan, and K. Roy.
IMPACT: imprecise adders for low-power approximate computing.
In ISLPED, 2011.

[2] R. Hedge and N. R. Shanbhag. Soft digital signal processing. TVLSI,
9(6), 2000.

[3] Z. Kedem, V. Mooney, K. Muntimadugu, and K. Palem. An ap-
proach to energy-error tradeoffs in approximate ripple carry adders.
In ISLPED, 2011.

[4] D. R. Kelly and B. J. Phillips. Arithmetic data value speculation. In
ACSAC, 2005.

[5] F. Kurdahi, A. Eltawil, K. Yi, S. Cheng, and A. Khajeh. Low-power
multimedia system design by aggressive voltage scaling. TVLSI,
18(5), 2010.

[6] A.Lingamneni, C. Enz, J.-L. Nagel, K. Palem, and C. Piguet. Energy
parsimonious circuit design through probabilistic pruning. In DATE,
2011.

[7] S.-L. Lu. Speeding up processing with approximation circuits. Com-
puter, 37(3), 2004.

[8] P. McGeer, J. Sanghavi, R. Brayton, and A. Vincentelli. Espresso-
signature: A new exact minimizer for logic functions. In DAC, 1993.

[9] S. H. Nawab, A. V. Oppenheim, A. P. Chandrakasan, J. M. Winograd,
and J. T. Ludwig. Approximate signal processing. VLSI Signal
Processing, 15, 1997.

[10] A. Sinha and A. P. Chandrakasan. Energy efficient filtering using
adaptive precision and variable voltage. ASIC SOC Conference, 1999.

[11] A. K. Verma, P. Brisk, and P. Ienne. Variable latency speculative
addition: a new paradigm for arithmetic circuit design. In DATE,
2008.

[12] L. Wang and N. R. Shanbhag. Low-power filtering via adaptive error-
cancellation. [EEE Transactions on Acoustics, Speech, and Signal
Processing, 51(2), 2003.

[13] T. Xanthopoulos and A. Chandrakasan. A low-power dct core using
adaptive bitwidth and arithmetic activity exploiting signal correlations
and quantization. J. Solid-State Circuits, 35(5), 2000.

[14] N. Zhu, W. L. Goh, G. Wang, and K. S. Yeo. Enhanced low-power
high-speed adder for error-tolerant application. In ISOCC, 2010.

[15] N. Zhu, W. L. Goh, W. Zhang, K. S. Yeo, and Z. H. Kong. Design of
low-power high-speed truncation-error-tolerant adder and its applica-
tion in digital signal processing. TVLSI, 18(8), 2010.

