
Approximate Logic Synthesis
under General Error Magnitude and Frequency Constraints

Jin Miao, Andreas Gerstlauer, and Michael Orshansky
Department of Electrical & Computer Engineering, The University of Texas at Austin

{jinmiao, gerstl, orshansky}@utexas.edu

Abstract
Recent interest in approximate circuit design is driven by its poten-
tial for large energy savings. In this paper, we address the problem of
approximate logic synthesis (ALS). ALS is concerned with formally
synthesizing a minimum-cost approximate Boolean network whose
behavior deviates in a well-defined manner from a specified exact
Boolean function, where in this work, we allow the deviation to be
constrained by both the magnitude and frequency of the error.

We make two contributions in solving this general ALS problem:
The first contribution is to establish that the approximate synthe-
sis problem un-constrained by the frequency of errors is isomorphic
with the Boolean relations (BR) minimization problem. That equiva-
lence allows us to exploit recently developed fast algorithms for BR
problems to solve the error magnitude-only constrained ALS prob-
lem. The second contribution is an efficient heuristic algorithm for
iteratively refining the magnitude-constrained solution to arrive at a
solution also satisfying the error frequency constraint.

Our combined greedy approximate logic synthesis (GALS) ap-
proach is able to operate on any Boolean network for which the de-
viation measures can be specified and is most immediately applica-
ble to arithmetic blocks. Experiments on adder and multiplier blocks
demonstrate literal count reductions of up to 60% under tight error
frequency and magnitude constraints.

1. Introduction
Energy minimization has become the major concern in the design of
VLSI systems. One way to reduce energy consumption is to exploit
the trade-off between reduced computation accuracy and improved
energy efficiency for digital systems that naturally tolerate errors,
such as signal processing circuits. Many recent approaches have
studied the possibility of approximate computation at different levels
ranging from algorithms [5, 18] and architectures [8, 9, 11] to the
logic [4, 22] and transistor levels [7].

One class of techniques seeks to realize approximate computa-
tion by deriving approximate, or inexact, versions of specified com-
binational Boolean functionality. Essentially, this is accomplished
by modifying some outputs of a function’s truth table such that
the produced error is tolerable. Such modifications typically result
in logic implementations of reduced complexity, smaller area, de-
lay, and energy. Such logic-level optimizations have been applied
to several arithmetic building blocks, such as adders and multipli-
ers [1, 14, 16, 23]

Most efforts in this area so far have been ad hoc. There is a need
to develop effective rigorous techniques for automated approximate
logic synthesis. Designing approximate circuits in an ad hoc manner
is not a viable option as there exists a large design space with trade-
offs between acceptable accuracy and energy, where acceptable er-
rors may vary from application to application. Importantly, depend-
ing on the application, error tolerance is primarily a function of either
the frequency of errors, the magnitude of errors, or both. For exam-
ple, in applications that can not directly accept erroneous results, the
frequency of triggering correction mechanisms determines ultimate
overhead. By contrast, in image and video processing applications, if
the produced pixel values have small error magnitudes, a human will

not be able to distinguish such subtle changes. In typically employed
Peak Signal-to-Noise Ratio (PSNR) metrics, a quadratic relationship
between error frequency and magnitude is used to assess perceived
quality. For a high-quality PSNR value of 50dB at 8-bit pixel depth,
this can, for example, be translated into a frequency constraint of
7% for error magnitudes no more than 3 or up to 65% errors if pixel
values have error magnitudes no more than 1.

Thus, overall, there is a need for rigorous automation to per-
form approximate logic synthesis (ALS) under both types of con-
straints. Existing ALS approaches thus far have focused on single
error metrics only. A two-level approximate logic synthesis algo-
rithm was introduced in [19]. In that work, the objective was to syn-
thesize a minimized circuit under constrained error frequency. The
algorithm did not consider constraints on error magnitude. More-
over, it suffers from high runtime complexity, especially, at large
error frequencies. By contrast, in [16] and [20], absolute and rela-
tive error magnitude constraints were set without limiting error fre-
quency. Both techniques are built upon an unmodified conventional
logic synthesis flow, which is not as efficient as integrating support
for approximation into the logic synthesis engine directly. In [4, 13],
the authors consider both error frequency and relative error metrics.
However, distinct solutions are provided and the two constraints are
never explored jointly. Furthermore, due to the nature of the pro-
posed pattern-driven approach, the optimization space is restricted
to only a small subset of inputs.

In this paper, we address the problem of approximate logic syn-
thesis (ALS) under arbitrary error magnitude and error frequency
constraints. We develop a two-level logic minimization algorithm
that rigorously synthesizes a minimum-cost cover of a Boolean func-
tion that is allowed to deviate from an exact Boolean function in a
constrained manner. We adopt a two-phase approach to solve the
minimization. The first phase solves the problem that is constrained
only by magnitude of error. In the second phase, this frequency un-
constrained problem is iteratively refined to arrive at a solution that
also satisfies the original error frequency constraint.

We make two major contributions. The first contribution is the
realization that the approximate synthesis problem un-constrained
by the frequency of errors is isomorphic with the Boolean relations
minimization problem. A Boolean relation is a one-to-many, multi-
output Boolean mapping, R : Bn → Bk. Thus, Boolean relations
are a generalization of Boolean functions. We show how error mag-
nitude constraints can be formulated as constraints on the possible
values of Boolean function outputs and thus be equivalent to Boolean
relations. That mapping allows us to exploit recently developed fast
algorithms for BR problems to solve the error magnitude-only con-
strained ALS problem.

The second contribution is an efficient heuristic algorithm for
iteratively refining the magnitude-constrained solution to arrive at a
solution also satisfying the error frequency constraint. The algorithm
(a) finds the optimal set of function minterms on which the exact
outputs must be enforced, and (b) systematically corrects, in a greedy
fashion, the erroneous outputs of the BR solution that lead to the
smallest cost increase until the error frequency constraint is met.

In summary, we describe an efficient algorithm, which we call
greedy approximate logic synthesis (GALS), that can rigorously

handle both error magnitude and frequency constraints as part of
synthesizing an approximate two-level Boolean network. Experi-
ments on adders and multipliers demonstrate literal count reductions
of up to 60% under tight magnitude and frequency constraints.

2. ALS Constrained by Error Magnitude Only
In this section, we discuss the approximate logic synthesis problem
when constraining the magnitude of allowed error only. Thus, we
consider only the patterns of allowed errors that the function may
produce, but not how often the errors occur.

We focus on our first contribution, which is the realization that
the approximate synthesis problem un-constrained by the frequency
of errors is isomorphic with the Boolean relations problem.

2.1 Isomorphism between Frequency-Unconstrained ALS and
Boolean Relations

The most immediate domain of application of ALS is in synthesiz-
ing approximate arithmetic blocks for error-tolerant computing al-
gorithms and applications. In applications that involve approximate
arithmetic functions, such as in the signal processing domain, it is
typically important to satisfy constraints on the magnitude of the
possible error as well as the frequency of such errors. Here, fre-
quency is defined as the number of minterms on which an error oc-
curs as a fraction of the total number of minterms.

Constraining the magnitude of error is the most natural approach
to limiting the outputs of arithmetic circuits, since a clear notion
of distance is available for these functions. Consider a multi-output
Boolean function F : Bn → Bk that defines a combinational net-
work of an arithmetic circuit, e.g., an adder. First, we consider con-
straining the magnitude of possible errors. The output of F is the
result of binary arithmetic computation. We aim to synthesize its
magnitude-constrained approximate version Fm, such that the only
constraint is that |F −Fm| ≤M . Here, | · | is the absolute value op-
erator, and thus we constrained the range of possible output values of
the approximate function to be no greater thanM . Note an important
implicit aspect of our definition. The frequency-unconstrained func-
tion Fm will have an arbitrary error frequency. Specifically, there is
no implication that it has an error on every input.

To explicitly account for the error frequency (rate) of an approxi-
mate function, we introduce a modified notation and denote as Fm,r

an approximate version of F with exactly r minterms in error and
with the constraint on the magnitude of error (no greater than M).
Let the error frequency constraint be R indicating that no more than
R minterms are allowed to be in error. With that, the full approxi-
mate logic synthesis problem is:

min L(Fm,r)

s.t. r ≤ R,
|F (x)− Fm,r(x)| ≤M ∀x ∈ Bn

(1)

where L(F) is the number of literals in a sum-of-products represen-
tation of function F .

One possible strategy for solving the above problem is to start
with an exact function F and gradually introduce errors while con-
trolling both the frequency and magnitude of allowed errors.

However, the strategy we pursue in this paper is based on a
two-phase solution. In the first phase, the frequency unconstrained
problem is solved. In the second phase, the unconstrained solution is
iteratively refined to arrive at the solution that satisfies the original
error frequency constraint. The frequency un-constrained problem is
given by:

min L(Fm)

s.t. |F (x)− Fm(x)| ≤M ∀x ∈ Bn (2)

where F and Fm are the exact and approximate functions, respec-
tively.

The key observation is that the above ALS problem constrained
only by error magnitude is isomorphic with minimization of Boolean
relations, which is a known and extensively-studied problem in
traditional synthesis. A Boolean relation can be formally defined as
follows [3]:

Definition 2.1. Boolean relation. A Boolean relation is a one-
to-many, multi-output Boolean mapping, R : Bn → Bk. A set
of multi-output Boolean functions, fi, each compatible with R, is
associated with a relation. A Boolean relation is specified by defining
for each input x ∈ Bn a set of equivalent outputs, Ix ⊆ Bk.

Thus, Boolean relations are a generalization of Boolean func-
tions, where each input corresponds to more than one output. An
incompletely specified logic function with don’t care is a special
case of a single-output Boolean relation.

To establish the equivalence of ALS with the Boolean relation
problem, we observe that the constraint |F − Fm| ≤ M can be re-
written minterm-wise: for each minterm xi of function F , allow the
value of Fm(xi) to take values in the set F ∪ Ei, where Ei is the
specified output error set for xi. Thus, Ei represents the additional
values that the function can take while satisfying the error magnitude
constraint. Now, each input corresponds to more than one output.
The new formulation is given by:

min L(Fm)

s.t. Fm(xi) ∈ F (xi) ∪ Ei(xi) ∀xi ∈ Bn (3)

Example 2.1. We use the simple example of an adder to illustrate
the concepts being introduced. For a 1-bit half adder, the equivalence
is illustrated via a tabular representation for M = 1:

F
a, b c, s
00 {00}
01 {01}
10 {01}
11 {10}

Fm

a, b c, s
00 {00, 01}
01 {01, 00, 10}
10 {01, 00, 10}
11 {10, 01, 11}

It is clear that the above tabular form sets up a Boolean relation
(BR) representation, according to Def.2.1, where each input corre-
sponds to more than one output.

2.2 Boolean Relation Solvers
We have established the equivalence between the error frequency-
unconstrained approximate logic synthesis problem and the Boolean
relation minimization problem. This is advantageous as there exist
several exact and heuristic approaches for solving the BR problem.
Here, we give a brief overview of the available BR minimization
techniques. The exact method reported in [3] employs an approach
similar to the Quine-McCluskey procedure [17]. The minimization is
formulated as a binate covering problem and solved by integer linear
programming. Other exact methods are [12] and [10]. As is common,
the exact approaches are limited to solving small and medium-size
BR instances due to the algorithm complexity. Heuristic solutions
trade result optimality for computational tractability. Herb [6] is
based on the two-level minimization algorithm of ESPRESSO [15]
and test pattern generation techniques. Gyocro [21] also relies on
ESPRESSO. While it improves on some of the weakness in Herb, it
still remains slow.

We adopt a recently developed heuristic algorithm BREL [2].
BREL is a recursive algorithm that uses a branch-and-bound solu-
tion strategy. It first over-approximates (using the maximum flexi-
bility provided by the relation) the BR into a multi-output Boolean

function where each output is minimized independently using stan-
dard techniques for function minimization. If the minimized Boolean
function is compatible with the original Boolean relation, then it is
accepted as the solution. Otherwise, the algorithm splits the origi-
nal Boolean relation R into two sub-BRs R1 and R2. This is done
by selecting one conflict minterm such that each sub-BR operates
on one output component of this minterm. Sub-BRs are then solved
independently following the same procedure recursively. BREL sub-
stantially outperforms the earlier tools in terms of runtime and result
quality.

3. Frequency-Constrained ALS Algorithm
This section describes our second major contribution: the develop-
ment of an effective heuristic logic optimizer that accepts the so-
lution of the frequency-unconstrained ALS and carries out further
optimizations to guarantee the solution feasibility with respect to the
frequency of errors.

Because the result of solving the Boolean relation minimization
for Fm does not constrain the number of minterms in error, the
solution may not satisfy the constraints on error frequency. Let the
result of solving the Boolean relation be the function FM,k, where k
refers to the resulting actual error frequency. If the error frequency
constraintR is smaller than k, then we need to reduce the number of
minterms on which the function is different from the exact one.

3.1 Mapping to Min-Cost Increase Problem
We first clarify an important property of the solution of the Boolean
relations problem. As a solution to the problem of Equation (3), the
function FM,k has the minimal cover (in terms of literals) among all
functions that satisfy FM,k ∈ F ∪ Ei. Therefore, we know that the
following holds:

Theorem 3.1. For any function FM,r

L(FM,r) ≥ L(FM,k), for any r < k.

Proof. If there is an r such that L(FM,r) < L(FM,k), then the BR
solver reports FM,r as the BR solution since FM,r also satisfies the
specified Boolean relation and has fewer literals.

We now reformulate the problem to be solved in the second
phase. To solve the problem in Equation (1), we need to find the
function FM,R that minimizes the literal increase L(FM,R) −
L(FM):

min L(FM,R)− L(FM)

s.t. |FM,R − F | ≤M
(4)

We propose an iterative and greedy algorithm that searches for
FM,R by repeatedly identifying the minterms on which the correct-
ness of the function should be enforced. The algorithm proceeds by
making localized changes to the function by accepting steps that
minimize literal increase while reducing the maximum number of
error-minterms and guaranteeing that the magnitude constraint re-
mains satisfied.

3.2 Formalization of the Frequency-Constrained ALS
Algorithm

The algorithm works with a set of minterms on which the function
FM , produced by the frequency-unconstrained minimizer, is in error.
We first formally describe all such minterms and distinguish the
types of error that they exhibit.

Definition 3.1. DIFF minterm and DIFF set. A minterm x on
which F (x) 6= FM (x) is called a difference minterm and is referred
to as the DIFF minterm. The difference set for a function, which we
call the DIFF set, contains all DIFF minterms regardless of the type
of error.

Definition 3.2. Error types. We designate the error type by ET .
If for a given minterm and for a single output bit, F (x) = 0 and
FM (x) = 1, the error is of the 0 → 1 type. It is encoded as a two-
bit value ET = 01. If for a given minterm and for a single output
bit, F (x) = 1 and FM (x) = 0, the error is of the 1 → 0 type. It is
encoded as as two-bit valueET = 10. If there is no error,ET = 00.
Let ETi,j be the two-bit encoding of the error type for an output bit
i on the minterm j. Let CETj be the concatenation of ETi,j for
i = 1 to k, where k is the number of outputs. CETj encodes the
entire error pattern for function F on the minterm j.

Example 3.1. We illustrate the definitions with an example below.
The shaded minterms x′1x′0, x1x′0 in Table 1 form the DIFF set
for the 2-input, 2-output Boolean function. Minterm x′1x

′
0 has an

error on the output bit y0, which is an ET = 01; while there is no
error for y1 on this minterm. Minterm x1x

′
0 has errors on both y1

and y0 output bits, where y1 has the ET = 01 error and y0 has the
ET = 10 error.

Table 1: Example of DIFF minterms (shaded).
F

x1x0 y1y0
00 {00}
01 {01}
10 {01}
11 {10}

FM

x1x0 y1y0
00 {01}
01 {01}
10 {10}
11 {10}

CET
y1y0

{ET = 00, ET = 01}
{ET = 00, ET = 00}
{ET = 01, ET = 10}
{ET = 00, ET = 00}

The algorithm we construct seeks to find FM,R by enforcing
correctness on some of the minterms of F that have been modified
by the solution to the Boolean relations problem. The key part of
the algorithm is therefore the notion of correcting the function on a
given minterm. To correct an ET = 01, the minterm needs to be
moved from the ON-set of the function for this output bit back to the
OFF-set. We call this a correct-to-0 change. To correct anET = 10,
the minterm needs to be moved from the OFF-set of the function for
this output bit to the ON-set, which we call a correct-to-1 change.
The result of minterm correction is a change in the literal count in
the cover of the function FM,r . It should be noted that both types of
corrections may result in a literal count increase. Also, note that at an
equal literal count increase, the algorithm will accept both types of
corrections equally as long as the magnitude of error is not increased.

The algorithm we develop is greedy and gradually identifies the
best minterms to correct. One possible approach is to correct one
DIFF minterm at a time by selecting a minterm that causes the
least literal cost increase. However, this is sub-optimal. Instead, our
algorithm is based on the principle that at each step the largest
number of DIFF minterms should be corrected for the minimum
available literal increase.

The central challenge of the algorithm is in identifying the opti-
mal changes to the ON/OFF-sets of the function such that the cover
is minimized. (Note the difference between the conventional logic
minimization (LM) and the above problem. Conventional LM is to
find the minimum cover for given ON/OFF-sets. Our problem is its
dual and seeks to find the optimal change to the ON/OFF-sets for a
minimum cover increase.)

First, consider a single-output function F . The set of possible
correction decisions, which is represented by the DIFF set, can be
represented separately by a pair of correction functions: one for
correct-to-1 and one for correct-to-0, where a correction function
is 1 iff the given minterm is a member of the corresponding DIFF
set and thus a candidate for correction. We define the correct-to-1
function CT1 by the set of its minterms, which are the DIFF set
minterms with ET = 10. Correspondingly, we define the correct-
to-0 function CT0 by the set of its minterms, which are the DIFF set
minterms with ET = 10.

The key aspect of the algorithm is the idea that the identification
of minterms to correct should proceed by first constructing a min-
imial cover for the two correction functions (CT0, CT1) and by us-
ing the prime implicants (PIs) of the covers to seek optimal changes
to the ON/OFF-sets of the function. We call the prime implicants of
the minimum cover of a correction function the DIFF primes.

The following notion of cost is used to compare the effectiveness
of correcting a specific DIFF prime j of a function:

costj =
literal increase due to correction of DIFF prime j

number of minterms covered by DIFF prime j
(5)

The greedy decision-making is driven by selecting at every itera-
tion the best decision understood as the decision with the least cost,
as defined above. We can formalize this principle in the following
theorem, which is proven later in the derivation after the function
update strategy is fully explained:

Theorem 3.2. For a single-output function F , the optimal set of
minterms to add to the ON/OFF-set at the minimum literal increase
in the cover of function FM,r lies among the prime implicants of the
minimum cover of correction functions CT0 and CT1.

The above results can be extended to multi-output functions and
their corresponding correction functions. An important aspect of the
allowed corrections for multi-output functions is that the magnitude
of error cannot be increased. This can be guaranteed only if either the
entire function is corrected on a given minterm or the entire output
is not modified at all. This constraint, combined with the result of
Theorem 3.2 that directs us to seek optimal decisions among the
minimum covers, leads to us to define the correction function for a
multi-output case not by the individual DIFF minterms but by sub-
sets of DIFF minterms. The sub-set, referred to as the DIFF group,
is defined as:

Definition 3.3. DIFF group A DIFF group is a set of all DIFF
minterms with identical CET .

Example 3.2. Table 2 shows an example of grouping the DIFF
minterms, where four DIFF minterms are grouped into three DIFF
groups.

Table 2: Example of DIFF groups.
DIFF min. F FM CET Group
x1x0 y1y0 y1y0 y1y0 #

00 {01} {10} {ET = 01, ET = 10} 1
01 {00} {11} {ET = 01, ET = 01} 2
10 {10} {00} {ET = 10, ET = 00} 3
11 {11} {01} {ET = 10, ET = 00} 3

The correction function for a multi-output case is defined in
the same way as before, i.e., by its constituents DIFF minterms.
In this case, the minterms of a correction function belong to the
same DIFF group. Each group contains minterms with identical
error behavior on all outputs and thus logic minimization of each
correction function individually allows us to find the least cost ways
of carrying out the same change to function FM,r . The result of the
above definition is that for a multi-output function with k outputs,
we may have up to 3n distinct correction functions.

Each correction function is minimized using 2-level Boolean
minimization. We use the standard Boolean minimization tool
ESPRESSO to generate a minimum cover of all DIFF minterms
within each correction function. Algorithm 1 summarizes the proce-
dure of getting the DIFF groups and DIFF primes.

Example 3.3. See Table 3, where the shaded DIFF prime covers the
two shaded DIFF minterms in Table 2.

Table 3: Example of DIFF primes.
DIFF prime CET Group
x1x0 y1y0 #

00 {ET = 01, ET = 10} 1
01 {ET = 01, ET = 01} 2
1- {ET = 10, ET = 00} 3

Algorithm 1: Correction Function Minimization.
Input: Frequency unconstrained approximate function FM

Output: DIFF primes for every correction function

// identify DIFF minterms and their error

structure

foreach minterm in F do1
foreach output bit j do2

compare F and FM ;3
record error type ET at bit j: 00, 01, 10;4

end5
end6

// determine DIFF groups and correction

functions they define

group all DIFF minterms with identical error behavior;7

// determine the DIFF primes

foreach DIFF group do8
call ESPRESSO to minimize the correction function for9
this DIFF group and return DIFF primes;

end10

3.3 Function Updates and Cost Calculation
The algorithm repeatedly eliminates the best candidate DIFF primes
in the current DIFF set and modifies the function FM,r . The follow-
ing sequence is thus executed repeatedly: (1) the best correction is
identified, (2) the ON/OFF-sets of function FM,r are updated, and
(3) all correction functions impacted by the current change are up-
dated. The multi-output FM,r is algorithmically treated as a union
of single-output functions whose ON/OFF-sets are defined individu-
ally. However, the procedure outlined in the previous section means
that when the best DIFF prime is selected for a correction, the func-
tion FM,r needs to be updated on all of its outputs.

In the following, we discuss along with the update strategy a re-
lated issue of efficient cost computation. The restriction of the search
space to the primes of correction functions reduces the number of
possible solutions. Despite that, we still need to evaluate candidates
based on the specific increase in the literal count they produce.

The denominator of Equation (5) refers to how many DIFF
minterms are simultaneously corrected by correcting the single DIFF
prime j. It is easily computed as 2n−s, where n is the number of in-
put variables in function F and s is the number of literals in the
DIFF prime j.

Unfortunately, evaluating the numerator is difficult. Only after we
complete Boolean minimization on the updated FM,r can we know
the literal changes exactly, where a function update is the update
of the ON/OFF-sets of FM,r for all outputs that are prescribed by
the correction function currently being evaluated. However, since the
cost computation needs to be done often, running a 2-level minimizer
for each evaluation is too expensive in terms of computation time. To
address this issue, we propose a proxy metric for estimating literal
changes. One approximation that our proxy metric adopts is that
the literal cost increase is the sum of literal cost increases for each
output individually. In other words, an n-output function is treated
as a collection of n single-output functions. This is a conservative

assumption that ignores the sharing of terms in the covers of multi-
output functions.

Before we describe the details of our function update strategy, we
need to introduce a basic encoding scheme for performing operations
on prime implicants.

Definition 3.4. Positional-Cube Notation. The positional-cube no-
tation is a binary encoding of implicants. The symbols used in the
input part are {0,1,-}. The positional-cube notation encodes each
symbol by 2-bit fields as follows:

Ø 00
0 10
1 01
- 11

where the symbol Ø means none of the allowed symbols, i.e. the
presence of Ø means this implicant is void and should be removed.

The proxy computation to estimate the corresponding literal
changes depends on whether the candidate update is a correct-to-0 or
a correct-to-1 update. We first discuss the correct-to-0 update strat-
egy. Consider estimating the literal changes for a candidate DIFF
prime pdifi . First, we identify the subset of primes in the current
cover of FM,r that has a non-zero intersection (where the intersect
operation is defined in Def. 3.5) with pdifi . Let this subset be P f

and denote each specific prime in this subset as pfj , where the upper-
case P indicates a set, and lowercase p indicates a single prime. Let
pintr
j = pdifi ∩ pfj be the result of each intersection.

Definition 3.5. Intersection of two implicants. The intersection of
two implicants is the largest cube contained in both. It is computed
by the bitwise product using a positional-cube encoding. If the result
contains Ø, i.e. a void implicant, the two implicants do not intersect.

To perform the update, we modify all the primes in P f , since
they are modified after we remove the candidate DIFF prime. For
a correct-to-0 update, we need to keep all and only those minterms
covered by the pfj and not pintr

j . This can be done by performing a
sharp operation (defined in Def. 3.6) on pfj and pintr

j . The resulting
prime(s) replace pfj as the new prime(s). If the resulting prime is
void, i.e. if pfj = pintr

j , then pfj is removed entirely.

Definition 3.6. Sharp Operation. The sharp operation, when ap-
plied to two implicants, returns a set of implicants covering all and
only those minterms covered by the first one and not by the sec-
ond one. The sharp operator is denoted by #. Let α = a1a2 . . . an,
and β = b1b2 . . . bn, where ai, bi, i = 1, 2, . . . , n, represents their
fields. The sharp operation can be defined as:

α # β =

a1b
′
1 a2 . . . an

a1 a2b
′
2 . . . an

.

a1 a2 . . . anb
′
n

(6)

Given the replacement of primes pfj with the results of the sharp
operation, let N be the number of inputs in function F , dj be the
cardinality of pfj XOR pintr

j , and Mj be the number of variables
for pfj . Then, the literal change δL01

j to correct an error of type
ET = 01 on a single output is:

δL01
j = (dj − 1)×Mj + dj (7)

Proof. Let the set of literals corresponding to pfj be X . Then, pintr
j

must have the formXa1a2 . . . ad. (Obviously, pintr
j ⊂ pfj , i.e. there

are more variables in pintr
j than in pfj). Then the Boolean subtraction

of X − Xa1a2 . . . ad reduces to Xa′1 + Xa′2 + . . . + Xa′d. By
counting the literal changes before and after the Boolean subtraction,
we get Equation (7).

To estimate the total change in the literal count due to elimination
of the DIFF prime pdifi , we sum up individual costs for every output
that has an error of type ET = 01. Let h be the number of outputs
with error of type ET = 01 and let the cardinality of P f be l:

∆L01
i =

h∑ l∑
δL01

j (8)

We now discuss the update strategy for a correct-to-1 update and
describe a way to efficiently estimate the literal changes after adding
a new prime to FM,r . We start by finding a subset of primes P f

of FM,r that are adjacent to the DIFF prime pdifi . Adjacency is
an important criterion since it indicates that the selected primes can
be merged to a larger prime (i.e., a prime with fewer literals). The
adjacency information is acquired by using an intersect operator on
pdifi and pfj . If the result contains only one empty field (Ø), then the
two implicants are adjacent. If P f is empty, i.e. there are no primes
that are adjacent to the DIFF prime pdifi , then the literal change δL10

j

is equal to the number of literals in pdifi itself. However, the when
P f is not empty two possibilities exist:

• pdifi and pfj together form a new single prime, which reduces the
current literal counts;

• pdifi becomes larger (has fewer literals) due to the adjacency with
pfj ;

Therefore, we need to count the literal changes by selecting one
pfj that causes the minimum literal increase out of all primes in this
P f . To compute the literal increase for each pair of pfj and P f , we
evaluate the literals of the consensus of the two primes, which we
denote by pconsen

j . Because the two primes intersect, there is only
a single implicant for the consensus operation, which is defined in
Def. 3.7. Then, the literal increase is computed as:

δL10
j = L(pconsen

j) (9)

Definition 3.7. Consensus Operation. The consensus operation
is defined as follows. The consensus returns void when the two
implicants have a distance larger than or equal to 2. The consensus
returns a single implicant when the two implicants are adjacent. The
consensus returns more than or equal to 2 implicants, when the two
implicants are intersecting. The consensus operator is denoted by∇.

α∇ β =

a1 + b1 a2b2 . . . anbn

a1b1 a2 + b2 . . . anbn

.

a1b1 a2b2 . . . an + bn

(10)

The overall literal change due to a correct-to-1 update is the sum
of costs for all output bits with error type ET = 10. Notice that for
each of the output bits, we pick the minimum δL10

j out of all primes
in P f . For h output bits with error type ET = 10, the overall literal
increase as a result of an update due to pdifi is:

∆L10
i =

h∑
min {δL10

j } (11)

Once we identify the pconsen
j with the minimum literal increase,

we add the resulting consensus prime to the erroneous output bit
function of FM,r . Importantly, if pfj is covered by pconsen

j , it is
removed. This happens under the first scenario considered above for
the case of P f not being empty.

The overall literal change for a candidate DIFF prime pdifi is the
sum of ∆L01

i and ∆L10
i :

∆Li = ∆L01
i + ∆L10

i (12)

So far we discussed the proposed proxy metrics to estimate the
literal changes due to the DIFF prime corrections. After eliminat-
ing a candidate DIFF prime, we simultaneously modify the corre-
sponding primes in FM,r . This change affects the cost values of the
remaining primes. Thus, we need to update the cost values of all re-
maining DIFF primes that are impacted by the just-modified prime.
To achieve this, we store dependency information for each prime of
FM,r that records all DIFF primes that use this prime to compute
their cost values. Once a prime of FM,r is modified, we immediately
get a list of the associated DIFF primes for which cost updates are
needed.

We are now in a position to prove Theorem 3.2, which we repeat
here for the ease of reading.

Theorem. For a single-output function F , the optimal set of
minterms to add to ON/OFF-set at the minimum literal increase
in the cover of function FM,r lies among the prime implicants of the
minimum cover of correction functions CT0 and CT1.

Proof. Consider a correction function CT1 and its minimum cover.
Let pj be a prime in that cover. Let pj 3Mj = {m1,m2, . . . ,mh}
be the set of minterms covered by pj . The theorem is true if the literal
increment of correcting any subset ofMj is larger than correcting the
entireMj , i.e. the pj . Letting lit(·) be the literal number in a cube, it
is clear that lit(pj) < lit(Mj,i) for any i. For pj that has error type
ET = 10, the literal increment is smaller when adding pj to ON-set
rather than any subset of Mj .

Now consider a correction function CT0 and its minimum cover.
Let pj be a prime in that cover. To correct an error of typeET = 01,
the minterms covered by pj are to be removed from the cover of
FM,r . For the prime implicants of FM,r that have non-zero inter-
section with pj we have the following: the larger is the intersection
between pj and primes of FM,r , the fewer non-overlapping variables
there are between pj and a prime of FM,r . This results in smaller dj
in Equation (7) and hence a smaller literal increment.

A complete description of GALS algorithm is in Algorithm 2.

4. Experimental Results
We have implemented GALS in a C++ environment using BREL [2]
as the embedded BR solver engine for the first phase of the al-
gorithm. To evaluate the capability of GALS for significant literal
reductions under general magnitude and frequency constraints, we
have used GALS to generate a range of approximate solutions of
adders and multipliers. All experiments were performed on an Intel
3.4GHz Core i7 workstation.

We first demonstrate the basic operation of the algorithm on a
simple 2-bit adder example with 4 inputs (a1, a0 and b1, b0) and
3 outputs (sum bits S0 and S1 and the carry C). Figure 1 shows
the resulting logic equations for the exact adder (F), the frequency
unconstrained solution (FM), and both frequency and magnitude-
constrained (FM,R) approximate adder variants. In all cases, we
applied a magnitude constraint of M = 1. We applied frequency
constraints of one or two erroneous outputs out of the 24 = 16 total
minterms, i.e., R = 1/16 = 6.25% or R = 2/16 = 12.5%. As
expected, the frequency unconstrained solution (F1) has the smallest
literal count. The expression complexity increases with a decreasing
frequency constraint. It is interesting to point out that the evolution
of the logic does not follow an obvious pattern.

To further evaluate the effectiveness of the second-phase of
GALS based on Theorem 3.2, which operates with the primes of

Algorithm 2: Approximate logic synthesis algorithm.
Input: frequency-unconstrained approximate Boolean

function
Output: minimized boolean function with constrained error

magnitude and error frequency

// get the DIFF primes

call “Correction Function Minimization” subroutine;1
// initialize the current solution, k is the

initial error frequency by BR solver

FM,r = FM,k;2
// get the initial error count for FM,r

ErrorCount = k;3

if ErrorCount ≤ Error Frequency Constraint then4
return FM,r;5

end6

// initialize the Cost-List

foreach DIFF prime pi do7
compute the cost and push pi to Cost-List;8
foreach prime in FM,r that are associated with pi do9

push pi to association list of this prime;10
end11

end12

sort Cost-List by cost values with ascending order;13

// main loop

while ErrorCount > Error Frequency Constraint do14
pop the DIFF prime with least cost value in Cost-List;15
modify the FM,r after eliminating this DIFF prime;16
update all associated DIFF primes due to modifying the17
FM,r;
Sort Cost-List by cost values with ascending order;18
update ErrorCount;19

end20

return FM,r;21

F1 =

C = a1b1;

S1 = a1b′1 + a′1b1;

S0 = 1;

F1, 2
16

=

C = a1b1;

S1 = a1b′1 + a′1b1 + a0b0;

S0 = a1b′1b0 + a′1b1b0 + a0b′0 + a′0b0;

F1, 1
16

=

C = a0b1b0 + a1b1;

S1 = a′1b1b
′
0 + a′1a

′
0b1 + a0b′1b0

+a1a0b0 + a1b′1;

S0 = a1b′1b0 + a0b′0 + a′0b0;

F =

C = a0b1b0 + a1a0b0 + a1b1;

S1 = a′1a0b
′
1b0 + a1a0b1b0 + a1b′1b

′
0

+a′1b1b
′
0 + a1a′0b

′
1 + a′1a

′
0b1;

S0 = a0b′0 + a′0b0;

Figure 1: Synthesized 2-bit adder variants.

the correction functions, we compare its performance against an al-
ternative implementation that greedily corrects only the single best
minterm in each iteration. We refer to this alternative implementa-
tion as Single-GALS. Figure 2 plots the literal reductions achieved

0 2 4 6 8 10

500

1,000

1,500

2,000

2,500

3,000
L

it
e

ra
ls

Error Frequency (%)

 Single-GALS

 GALS

Figure 2: Effectiveness of GALS for 6-bit adders with a magnitude
constraint of M = 1.

0 20 40 60 80 100

2,000

4,000

6,000

8,000

10,000

12,000

Error Frequency (%)

L
it

e
ra

ls

 M=1

 M=3

Figure 3: Synthesis results for 8-bit adders by GALS.

0 5 10 15 20

10,000

20,000

30,000

40,000

50,000

60,000

Error Frequency (%)

L
it

e
ra

ls

 M=1

 M=3

Figure 4: Synthesis results for 10-bit adders by GALS.

by both algorithms when applied to a 6-bit adder with a magnitude
constraint of M = 1 and varying frequency constraints. Results
validate the effectiveness of the proposed strategy: our algorithm
substantially outperforms the naive approach. On average, it pro-
duces 20% fewer literals while also being 37x faster.

Next, we use GALS to synthesize 8-bit and 10-bit approximate
adders under magnitude constraints of M = 1 and M = 3 (Fig-
ures 3 and 4). Independent of the adder size, the frequency uncon-
strained solution at the output of the first phase BR solver results in
an error frequency of 50% and 100% at literal reductions of around

0 1 2 3 4 5

20,000

40,000

60,000

80,000

100,000

120,000

140,000

Error Frequency (%)

L
it

e
ra

ls

 Fast-GALS

 GALS

(a) Literals for 10-bit adders with M = 1.

0 5 10 15 20

100

1,000

10,000

Error Frequency (%)

R
u

n
ti

m
e

 (
s

)

 GALS, M=1

 Fast-GALS, M=1

 GALS, M=3

 Fast-GALS, M=3

(b) Runtime for 10-bit adders.
Figure 5: Comparison of GALS and Fast-GALS algorithms.

55% and 80% for M = 1 and M = 3, respectively. Results after
further constraining error frequencies using GALS show that similar
literal reductions can be maintained all the way down to error rates
as low as 1-2%. Note that at extremely tight frequency constraints,
literal counts of synthesized solutions for M = 3 grow faster than
those for M = 1. We conjecture that this is caused by the use of
proxy cost metric in the second phase of GALS and the resulting
sub-optimality of the greedy decision-making. We note that this ef-
fect is limited to only very small frequencies (below 0.6% for the
10-bit adder).

Runtimes for the first-phase BR solver range between 1s and 5s
for 8-bits and between 50s and 2.5m for the 10-bit adder. Runtimes
of the second-phase of GALS range between 2s and less than 5m for
8-bit adders, and between 30s and more than 3h for 10-bit designs.
To further reduce runtime, we investigated the use of a speed-up
technique. One of the computationally expensive steps in GALS is
the cost-updating routine that is repeatedly executed in the main loop
of the algorithm (lines 17 - 18 in Algorithm 2). We find that using the
Cost-List that is initialized once but is not updated on every iteration
leads, in most cases, to a relatively small loss of optimality in the
choice of a DIFF prime to be removed. Yet the runtime of the second-
phase of the algorithm can be reduced significantly. We developed
such a Fast-GALS algorithm. Results of the comparison between
GALS and Fast-GALS for the 10-bit adder are shown in Figure 5.
We observe that in most cases, resulting literal counts are very close
while the runtime of Fast-GALS is one order of magnitude lower
than GALS (Figure 5b). At tight frequency constraints, however,
the cost updating mechanism plays a vital role. As a result, at very
low frequencies, Fast-GALS produces solutions substantially worse

0 2 4 6 8 10

5,000

7,500

10,000

12,500

15,000

Error Frequency (%)

L
it

e
ra

ls

 MD = + 1

 MD = - 1

 MD = +/- 1

Figure 6: 8-bit adders under different error directions by GALS.

0 10 20 30 40 50 60 70 80

0

50,000

100,000

150,000

200,000

250,000

300,000

350,000
 GALS, M=1

 Fast-GALS, M=1

 GALS, M=3

 Fast-GALS, M=3

Error Frequency (%)

L
it

e
ra

ls

Figure 7: Synthesis results for 8-bit truncated multipliers.

than those of GALS, and in some cases even worse than the exact
solution.

Depending on the application, not only error magnitude but also
the error direction can be of importance. GALS supports setting
different output relations during the first BR solving phase. We
constructed experiments on 8-bit adders in which the direction of
error is further constrained to be only positive or negative. Results
are shown in Figure 6, where MD is the value of the allowed adder
error. It can be observed that for addition logic, allowing negative
errors (exclusively or combined in both directions) results in circuits
that are synthesized to have smaller literals.

Finally, we applied GALS and Fast-GALS algorithms to the
larger test-case: an 8-bit truncated multiplier (Figure 7). Runtimes
for the first-phase BR solver range between 4m and 5m. Runtimes
for the two algorithms range between 20m and 3.3h for GALS and
between 5m and 13m for Fast-GALS. Fast-GALS produces solutions
that can be up to 20% worse in terms of literal count to the ones
obtained with the slower GALS algorithm. Note that in the case of
the multiplier, there is a significant dependence of literal count on
error frequency over nearly entire range of frequencies. This further
motivates the need for an application-specific synthesis solution.

5. Conclusions
In this paper, we presented a heuristic approach for solving a gen-
eral approximate logic synthesis problem. We first address the error
magnitude-only constrained problem by casting it to a Boolean re-
lation minimization, which is solved using recently proposed fast
algorithms. The frequency-constrained problem is further solved

by a novel greedy algorithm that finds the optimal set of function
minterms on which the exact outputs must be enforced, and sys-
tematically corrects erroneous outputs until a given error frequency
constraint is met. The proposed algorithm is capable of synthesizing
approximate circuits for arbitrarily specified error deviations, and is
most immediately applicable to arithmetic blocks, for which exper-
iments demonstrate the effectiveness in achieving significantly re-
duced literal counts across a wide range of flexible error frequency
and magnitude constraints.

Acknowledgements
This work was supported by NSF grant CCF-1018075.

References
[1] P. Albicocco, G. C. Cardarilli, A. Nannarelli, M. Petricca, and M. Re.

Imprecise arithmetic for low power image processing. In Signals,
Systems and Computers (ASILOMAR), 2012.

[2] D. Baneres, J. Cortadella, and M. Kishinevsky. A recursive paradigm
to solve boolean relations. In DAC, 2004.

[3] R. Brayton and F. Somenzi. An exact minimizer for boolean relations.
In ICCAD, 1989.

[4] L. Chakrapani and K. Palem. A probabilistic boolean logic for energy
efficient circuit and system design. In ASP-DAC, 2010.

[5] V. Chippa, A. Raghunathan, K. Roy, and S. Chakradhar. Dynamic effort
scaling: Managing the quality-efficiency tradeoff. DAC, 2011.

[6] A. Ghosh, S. Devadas, and A. Newton. Heuristic minimization of
boolean relations using testing techniques. In ICCD, 1990.

[7] V. Gupta, D. Mohapatra, S. P. Park, A. Raghunathan, and K. Roy.
IMPACT: imprecise adders for low-power approximate computing. In
ISLPED, 2011.

[8] K. He, A. Gerstlauer, and M. Orshansky. Controlled timing-error
acceptance for low energy idct design. In DATE, 2011.

[9] R. Hegde and N. Shanbhag. Soft digital signal processing. TVLSI01.
[10] S.-W. Jeong and F. Somenzi. A new algorithm for the binate covering

problem and its application to the minimization of boolean relations. In
ICCAD, 1992.

[11] F. Kurdahi, A. Eltawil, K. Yi, S. Cheng, and A. Khajeh. Low-power
multimedia system design by aggressive voltage scaling. TVLSI10.

[12] B. Lin and F. Somenzi. Minimization of symbolic relations. In
ICCAD90.

[13] A. Lingamneni, C. Enz, J. L. Nagel, K. Palem, and C. Piguet. En-
ergy parsimonious circuit design through probabilistic pruning. In
DATE2011.

[14] S.-L. Lu. Speeding up processing with approximation circuits. Com-
puter, 2004.

[15] P. McGeer, J. Sanghavi, R. Brayton, and A. Vincentelli. Espresso-
signature: A new exact minimizer for logic functions. In DAC, 1993.

[16] J. Miao, K. He, A. Gerstlauer, and M. Orshansky. Modeling and
synthesis of quality-energy optimal approximate adders. In ICCAD12.

[17] G. D. Micheli. Synthesis and Optimization of Digital Circuits.
McGraw-Hill Higher Education, 1994.

[18] S. H. Nawab, A. V. Oppenheim, A. P. Chandrakasan, J. M. Winograd,
and J. T. Ludwig. Approximate signal processing. VLSI Signal Pro-
cessing, 15, 1997.

[19] D. Shin and S. K. Gupta. Approximate logic synthesis for error tolerant
applications. In DATE, 2010.

[20] S. Venkataramani, A. Sabne, V. Kozhikkottu, K. Roy, and A. Raghu-
nathan. Salsa: systematic logic synthesis of approximate circuits. In
DAC, 2012.

[21] Y. Watanabe and R. Brayton. Heuristic minimization of multiple-
valued relations. TCAD, 1993.

[22] T. Xanthopoulos and A. Chandrakasan. A low-power dct core using
adaptive bitwidth and arithmetic activity exploiting signal correlations
and quantization. J. Solid-State Circuits, 2000.

[23] N. Zhu, W. L. Goh, W. Zhang, K. S. Yeo, and Z. H. Kong. Design of
low-power high-speed truncation-error-tolerant adder and its applica-
tion in digital signal processing. TVLSI, 2010.

