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Abstract
We address the problem of multi-level approximate logic synthesis.
Our strategy assumes existence of an optimized exact Boolean net-
work, which is critical in practice since arithmetic blocks are rarely
synthesized from 2-level representation automatically. The goal is
to produce minimum cost circuits whose logic function deviates in a
controlled manner from the exact function with deviations quantified
by the magnitude and frequency of errors.

We rely on network simplifications allowed by external don’t
cares (EXDCs). We formulate the error-magnitude constrained prob-
lem by using Boolean relations to capture the allowed error behavior
in a more general manner compared to incompletely specified func-
tions. Our key contribution is in finding sets of external don’t cares
that maximally approach the Boolean relation. The algorithm starts
with an EXDC set that is overly relaxed and iteratively, and in a
greedy fashion, identifies a feasible EXDC set by solving a series
of conventional EXDC-based network optimizations. The algorithm
then ensures compliance to error frequency constraints by recovering
the correct outputs on the sought number of error-producing inputs
while aiming to minimize the network cost increase.

We applied the algorithm to several well-known adder and multi-
plier designs of varying bit-width. Even for small error magnitudes,
the algorithm produces networks with gate count reduced by 30-
50%, when the error frequency constraint is loose. This is up to 20%
fewer gates than a naive EXDC-based approach.

1. Introduction
Trading off computation accuracy for improved energy efficiency
has attracted significant attention in recent years. Many studies have
demonstrated the possibility of approximating computations for dig-
ital systems that are computationally expensive but naturally tol-
erate errors, such as in signal processing, machine learning and
data mining applications. Existing approaches range from the algo-
rithm [6, 16] and architecture [9, 10, 12, 19] to the logic [7, 11, 22]
and transistor levels [8].

In hardware, many efforts have been focused on addressing this
problem by deriving approximate versions of basic combinational
logic circuits that can be implemented with reduced logic complex-
ity and hence smaller area, delay and energy. Initial work in this
domain has been concerned with hand-crafting approximate version
of fundamental arithmetic building blocks, such as adders and mul-
tipliers [1, 7, 11, 15, 22, 23]. However, manually re-designing ap-
proximate circuits for each new type of logic block and application
is not feasible. As previous results have demonstrated, there exists a
large design space with non-obvious trade-offs between acceptable
accuracy and energy, which are in turn specific to a particular appli-
cation. In general, the error tolerance of an application is determined
by the frequency (rate) or magnitude of produced errors. In reality,
most application-level quality metrics, such as Peak Signal-to-Noise

Ratios (PSNRs) used in image and video processing applications,
depend on a combination of both.

Overall, there is a need to develop effective techniques for sys-
tematic and automatic approximate logic synthesis with the ability of
constraining general error types. Several approximate two-level and
multi-level logic synthesis approaches have recently been proposed.
Most of the techniques thus far have focused on constraining a sin-
gle error type only. In [18], a heuristic algorithm was presented for
synthesizing a minimized approximate Boolean function under er-
ror frequency constraints. In [5, 13], the authors propose approaches
for pruning a multi-level Boolean network according to input vec-
tor statistics given by an application context. Distinct solutions are
presented for dealing with error frequency or error magnitude con-
straints, but those two aspects are never jointly explored. Further-
more, their approach can only perform redundancy pruning rather
than structural optimizations. In [20], the authors mapped the multi-
level approximate logic synthesis problem into a conventional logic
synthesis with external don’t care (EXDC) sets. The original circuit
is combined with a wrapper that models the constraints. The allowed
EXDC set used for optimizations at the original circuit’s outputs is
then extracted as the internal Observability Don’t Care (ODC) set of
this combined circuit. Although the authors claim the ability to flex-
ibly model various error constraints, only error magnitude-type con-
straints are actually permitted, and error frequency constraints can
not be handled in their framework. Furthermore, EXDC sets cannot
capture correlated error patterns across multiple outputs. By con-
trast, we aim to support definition of flexible, general and precise
error constraints directly as part of the problem specification itself.

In [14], we demonstrated synthesis of approximate logic circuits
under both magnitude and frequency types of constraints. Our previ-
ous work was aimed at solving the problem in two-level form, i.e. to
find the simplest approximate Boolean function. However, an opti-
mal two-level solution will not necessarily lead to an optimal multi-
level Boolean implementation. This is especially important for com-
plex logic blocks, such as arithmetic units, that are typically realized
through carefully tuned macro libraries instead of being synthesized
from their original Boolean function.

In this paper, we address the problem of multi-level approximate
logic synthesis (MALS) under arbitrary error magnitude and error
frequency constraints. We develop a heuristic that effectively synthe-
sizes approximate Boolean networks with reduced gate count whose
errors deviate from an exact network in a constrained way. We make
two major contributions:

(1) We formulate the magnitude constrained MALS using Boolean
relations to capture the allowed error behavior. This formulation is
more general than relying on incompletely specified functions and
leads to better solutions. Our strategy uses network simplifications
allowed by EXDCs. Our core contribution is an algorithm that iden-
tifies an EXDC set that maximally approaches the Boolean relation.
It starts with an EXDC set that is overly relaxed and iteratively, and



in a greedy fashion, identifies an optimal EXDC set by solving a
series of conventional EXDC-based network optimizations.

(2) The algorithm then ensures compliance to error frequency
constraints by recovering the correct outputs on the sought number
of error-producing inputs while aiming to minimize the network cost
increase. We introduce a novel network cost minimization principle
for dealing with the multi-output case. It is based on the observation
that in many networks there is a variation in the degree to which
network outputs are dependent on the rest of the network. It is rea-
sonable to expect that enforcing correctness on outputs with lower
embeddedness leads to a lower network cost increase as it requires
modifications to a smaller region of the network.

We applied the algorithm to several well-known adder and multi-
plier designs of varying bit-width. Even for small error magnitudes,
the algorithm produces networks with gate count reduced by 30-
50%, when the error frequency constraint is loose. This is up to 20%
fewer gates than a naive EXDC-based approach.

The rest of this paper is organized as follows: Section 2 presents
the formulation of the MALS problem. Section 3 describes our algo-
rithm for dealing with the MALS problem under general error con-
straints. Section 4 shows the experimental results, while Section 5
concludes the paper with a summary.

2. MALS Formulation
Consider an n-input, k-output combinational logic network G real-
izing a Boolean function F : Bn → {0, 1,−}k, where − refers to
a don’t care. A multi-level approximate logic synthesis problem is
concerned with formally synthesizing a minimum-cost (gate count)
network whose behavior deviates in a controlled manner from the
specified exact Boolean function F . The deviations can be specified
in terms of error magnitude and error frequency. The error magni-
tude constraint specifies the outputs that the approximate circuit is
allowed to produce for each input xi ∈ Bn. The total number of in-
puts that produce approximate outputs is described by the error fre-
quency constraint. We denote Gm,r to be an approximate version of
Gwith r inputs in error and with the largest magnitude of error being
m. Let R be the maximum number of inputs allowed to be in error
and letM be the maximum allowed deviation for a given output. We
assume that a circuit produces a multi-bit output for which an arith-
metic distance metric can be used to establish the degree of differ-
ence between the outputs. We use the notation |Gm,r(xi)−G(xi)|
to represent the absolute value of the arithmetic difference of the out-
puts produced by an exact and an approximate network. With this,
the full multi-level approximate logic synthesis problem is:

min C(Gm,r)

s.t. |Gm,r(xi)−G(xi)| ≤M, ∀xi ∈ Bn

r ≤ R
(1)

where C(Gm,r) is the cost function, taken to be the gate count of
Gm,r .

The problem defined in (1) captures the general constraints of
both error types. The primary goal in problem (1) is to utilize the al-
ternative outputs to simplify the circuit complexity when the outputs
are constrained to take on specific patterns.

3. MALS under Error Magnitude and Frequency
Constraints

We first discuss solving the problem of (1) when the error frequency
constraint is not imposed. As shown in [14], the error magnitude
constraint in (1) can be viewed as implicitly defining a Boolean re-
lation (BR), where each input can be mapped to multiple outputs.
A Boolean relation is a generalization of an incompletely specified

Boolean function (ISF). It allows capturing a wider class of con-
straints on the outputs and thus allows for better solutions. Boolean
relation minimization has been previously studied in the context of
two-level optimization with the goal of identifying the minimum-
cost two-level realization of a Boolean function compatible with a
given Boolean relation [2, 4, 21]. In this paper, we focus on simplify-
ing an initial multi-level Boolean network by exploiting the flexibil-
ity captured by the Boolean relation. Such optimizations on an exist-
ing Boolean network are especially important for arithmetic blocks,
which are often available directly in canonical form (e.g., various
prefix adders).

There are currently no effective techniques to directly synthesize
a Boolean network that satisfies a given Boolean relation. Therefore,
we adopt the well-known principle of using external don’t cares to
simplify Boolean networks. In the context of approximate synthe-
sis, such an approach has been proposed in [20]. In [20], the exter-
nal don’t care (EXDC) sets are based on conventional single output
don’t care extraction. However, a single-output approach does not
exploit the full flexibility that may be permitted by the error specifi-
cation. For instance, a function that allows two outputs {11, 00} on
some input can never be captured via single-output don’t cares.

The contribution of our paper is in demonstrating that it is pos-
sible to find non-trivial better sets of external don’t cares to drive
multi-level optimization. The essence of the algorithm is that it iden-
tifies an EXDC set that maximally approaches the Boolean relation.
Specifically, the algorithm starts with an EXDC set that is overly
relaxed and iteratively, and in a greedy fashion, identifies an op-
timal EXDC set by solving a series of conventional EXDC-based
network optimizations. The original Boolean network is ultimately
minimized by using the optimal EXDC. To drive the algorithm, we
use the multi-level synthesis tool as a black box and rely on its abil-
ity to exploit the flexibility offered by EXDC. (As detailed later, we
use SIS [17] for network optimization.)

The central challenge is to identify an EXDC set that maximally
approaches the Boolean relation. Such a set has the following prop-
erties. First, it maximally shares the flexibility for network simplifi-
cation described by the Boolean relation. Because the sought EXDC
set is based on single-output don’t cares, we use the difference be-
tween a relaxation of a BR into a multi-output ISF and a candidate
EXDC as a measure of such flexibility. Second, it defines a func-
tion compatible with BR. We call this EXDC set a Relation-Aware
EXDC (RA-EXDC) set.

We give an outline of the algorithm first. The algorithm to find
RA-EXDC is based on a relax-and-recover strategy: we first relax
the error constraints of the original problem, captured via a BR, to
produce an EXDC set that permits more than the original deviations
specified by BR. This EXDC is an upper bound for RA-EXDC. Be-
cause the network simplified by this EXDC violates the original er-
ror constraints, we use an iterative recovery procedure to minimally
refine EXDC until violations are removed. Along with the upper
bound, we show that a lower bound on the sought EXDC is available
and can also be extracted from BR. Both bounds are used during the
recovery phase. Next we discuss a strategy to compute both bounds.

3.1 Extracting Lower and Upper Bounds
We are interested in finding the least upper bound and the greatest
lower bound. The least upper bound EXDC is the minimum superset
of BR that can be expressed using ISFs. As the lower bound for the
extraction of the optimum EXDC we utilize the maximum subset of
BR that can be expressed as an ISF and that contains the original
function. In doing this, we assume that such an ISF provides the
largest flexibility for network simplification among all possible ISFs.
We note that the stated principle for finding the “best” ISF was used
earlier in [4]. The choice of this ISF as a useful bound is justified
via an assumption of a monotonic relation between the size of the



EXDC and the potential complexity reduction of a network under
this EXDC.

Some preliminary definitions are first provided. Hereafter, we
indistinctly use the incompletely specified function (ISF) and the
corresponding don’t care set described by this ISF.

A Boolean relation can also be specified by a characteristic func-
tion R : Bn ×Bm → B, such that (x, y) ∈ R ⇐⇒ R(x, y) = 1.
Here, the Bn and Bm are the input and output sets of R, respec-
tively. We use the characteristic function R for the following discus-
sion.

Definition 3.1. MISF. A multi-output ISF (MISF) is a function
f : Bn → (B ∪ {−})m, which is a vector of ISFs f = (f1, f2, ..., fm).

Definition 3.2. Natural join [2]. The natural join over the input set
X between two relations R and S is defined as

R(X,Y ) ./X S(X,Z) = {(x, y, z)|(x, y) ∈ R ∧ (x, z) ∈ S} (2)

where we use X = (x1, x2, . . . , xn) to denote the set of inputs and
Y = (y1, y2, . . . , ym) and Z = (z1, z2, . . . , zm) for outputs of two
relations, respectively.

Definition 3.3. Projection of a Boolean relation [2]. The projec-
tion of a relation R(X,Y ) onto an output yi is another function
(R ↓ yi) such that

(R ↓ yi) ={(X, z)|∃y1, . . . , yi−1, yi+1, . . . , ym

such that (X, y1, . . . , yi−1, z, yi+1, . . . , ym) ∈ R}.
(3)

The projection of a relation R onto an output yi defines an ISF
for that output.

Definition 3.4. MISF covering a Boolean Relation [2]. For a
given Boolean relation R, an MISF covering R can be obtained as
follows:

MISFR(X,Y ) = ./X
i∈{1,...,m}

(R ↓ yi) (4)

It can be proved [2] that the MISFR is the minimum superset
of Boolean relation R that can be expressed by ISFs, i.e. an MISF.
Hence, the least upper bound EXDC is MISFR. We refer to MISFR

as an over-approximated EXDC (O-EXDC).
We now illustrate the extraction of O-EXDC from the Boolean

relation table via a simple example. Consider a 2-input, 3-output
multi-level Boolean network with error magnitudes as specified in
Table 1. The first output in each row refers to the correct output of
the network.

Table 1: Boolean relation
Inputs Outputs
x1, x0 y2, y1, y0

00 {000, 001}
01 {010, 011, 100}
10 {100, 101, 010}
11 {110, 100, 101}

It takes two steps to derive O-EXDC.

1) Project the Boolean relation onto each output yi, i = 0, 1, 2. (see
Table 2).

Table 2: Projections of BR on yi
x1, x0 R ↓ y2 R ↓ y1 R ↓ y0

00 {0} {0} {0,1}
01 {0,1} {0,1} {0,1}
10 {0,1} {0,1} {0,1}
11 {1} {0,1} {0,1}

2) Perform a natural join on each projection of (R ↓ yi) to form
MISFR. The {-} implies a don’t care condition. We encode a
don’t care condition by a “1” and a care condition by a “0” to
form O-EXDC, as shown in Table 3. For example, O-EXDC for
y2 is {x

′
1x0, x1x

′
0}, O-EXDC for y1 is {x1x0, x

′
1x0, x1x

′
0}, and

O-EXDC for y0 is the full set of inputs.

Table 3: MISFR and corresponding O-EXDC
Inputs MISFR O-EXDC
x1, x0 R ↓ y2 R ↓ y1 R ↓ y0 y2 y1 y0

00 0 0 - 0 0 1
01 - - - 1 1 1
10 - - - 1 1 1
11 1 - - 0 1 1

Note that O-EXDC allows greater flexibility than BR. In Table 3,
since all output bits are insensitive to input 01, the output of, for in-
stance, 111 is also allowed by O-EXDC but not by Boolean relation
in Table 1.

We now discuss the greatest lower-bound EXDC that can be
extracted from BR. As stated above, we use the maximum subset
of BR that can be expressed by an ISF and that contains the original
exact function. It can be acquired using the following procedure:

1) For an input x, we have an output set Y : (x, Y ) ∈ R. Identify
the maximum prime implicant px of set Y that contains the orig-
inal output. For instance, consider an input x and Y ={001, 011,
111}: we have px={0-1}. The prime px provides the maximum
number of output bits insensitive to x.

2) Repeat the above step for all x ∈ Bn. Hence, we acquire a set
of independent ISFs, each for one output bit. These ISFs together
form an MISF f .

Theorem 3.1. f is a maximum subset of BR that can be expressed
as an MISF.

Proof. We first prove that f is contained by BR. Since px ⊆ Y, ∀x ∈
Bn, we haveR(x, px) = 1,∀x ∈ Bn. By definition, we have MISF
f : x→ px, ∀x ∈ Bn, therefore R(X, f) = 1.

We now prove by contradiction that f is the maximum subset of
BR. Assume there is another MISF h with a larger cardinality than
f , i.e., |f | < |h|. Here, the cardinality refers to the number of don’t
cares contained by the MISF h. We denote qx as the prime implicant
of set Y that contains the original output for h. By definition, we
have |px| ≥ |qx|, ∀x ∈ Bn. Hence, we have

∏
x∈Bn

|px| ≥
∏

x∈Bn
|qx|.

Consider |f | =
∏

x∈Bn
|px| and |h| =

∏
x∈Bn

|qx|, we have a contradic-

tion against the assumption. Therefore, f is the maximum subset of
BR.

We denote the DC-set of f as a conservative EXDC (C-EXDC).
We summarize the relation between C-EXDC, RA-EXDC, and O-
EXDC as:

C-EXDC ⊆ RA-EXDC ⊆ O-EXDC (5)
Note that there is no obvious containment relation between RA-
EXDC and the original Boolean relation. Table 4 illustrates the
relation between C-EXDC, RA-EXDC, and O-EXDC through an
example.

3.2 Recovering Magnitude Conflicts
Optimizing the initial network with O-EXDC results in a mini-
mal complexity network for the magnitude-only constrained MALS
problem. However, the resulting network may produce outputs not
allowed by the original Boolean relation. We refer to inputs for



Table 4: Boolean relation, C-EXDC, and O-EXDC
Inputs Boolean Relation C-EXDC O-EXDC
x1, x0 y2, y1, y0 y2, y1, y0 y2, y1, y0

00 {000, 001} 001 001
01 {010, 011, 100} 001 111
10 {100, 101, 010} 001 111
11 {110, 100, 101} 010 011

which the error constraint is violated as conflict inputs. Notice that
the network simplified by C-EXDC is guaranteed to be free of con-
flicts. This indicates that all conflicts fall in the complement of C-
EXDC in O-EXDC, i.e. O-EXDC\C-EXDC. We introduce a notion
of candidate inputs to denote those inputs that can potentially cause
conflicts.

Definition 3.5. Candidate inputs. A candidate input x is defined
as {x|x ∈ O-EXDC \ C-EXDC}.

Each candidate input x may correspond to more than one output
with possible conflicts. These outputs together form the candidate
outputs for input x. For example, in Table 4, y1, y2 are candidate
outputs for input 10.

It is important to see that not every candidate input is a conflict
input. In other words, a network simplified with an EXDC set that
contains a candidate input will not necessarily produce a conflict on
this input. That happens for two reasons. First, not every allowed
flexibility is actually utilized for simplifying the network. Whether
a flexibility is eventually utilized depends on the network structure.
Second, even if the changes are made, the simplified network may
produce outputs compatible with the Boolean relation and thus re-
main conflict-free. For example, in Table 4, candidate input 10 may
be used to simplify the network and result in output 010 which is
compatible with the original Boolean relation.

We now discuss how we modify O-EXDC to remove conflicts.
Let us first consider the example in Table 5. Suppose that after sim-
plifying the original Boolean network using O-EXDC, the shaded
two inputs produce outputs beyond the error magnitude constraint.
In order to remove these conflicts, we need to remove the flexibil-
ity currently given to the candidate outputs of the shaded inputs; for
brevity, we denote this operation as removing these candidate inputs
from their candidate outputs. For instance, input 11 produces output
101, which conflicts with the error specification. We observe that
O-EXDC and C-EXDC differ for y1 and y0. Therefore, outputs y1
and y0 (but not y2) are the candidate outputs for this input. Input 11
is, in turn, considered for removal from the EXDC of each of these
outputs (y1 and y0).

However, it may not be necessary to remove 11 from don’t
care sets of both y1 and y0. We assume that the gate count of
the simplified network increases monotonically with a decrease in
EXDC. The goal of the algorithm is to ensure that some allowed
output is produced while removing the least flexibility from EXDC,
e.g., by reducing EXDC minimally in each iteration. That means we
need to change as few don’t cares in EXDC for a candidate input as
possible. This is achieved by aiming to match an allowed output that
is least distinct from the output produced by the current network.
The example of Table 5 illustrates this by showing that the number
of conflicting outputs for a given input, say input 11, depends on the
allowed output being considered. The current approximate output
101 has a difference in only one output when compared with 111
but it has two erroneous outputs when compared with 011 or 110.

Hamming distance provides the appropriate metric. We only dis-
allow (remove) the don’t cares from the candidate input of those er-
roneous outputs that intersect with the candidate outputs. This guar-
antees the search space is restricted to lie within the given lower and
upper bound, i.e., C-EXDC and O-EXDC. Since C-EXDC contains

Algorithm 1: MALS under general error constraints
Input: NL: Original Boolean network, BR: Error magnitude

constraint, R: Error frequency constraint, N : number
of input bits

Output: Minimized Boolean network with constrained error
magnitude and error frequency

1 EXDCn = EXDC o = MISFR(BR); EXDCc = ISF(BR);
2 NLn = Optimize(NL,EXDCo);
3 Conf = {xi|NLn(xi) /∈ BR(xi), xi ∈ Bn};
4 r = |{xi |NLn(xi) 6= NL(xi), xi ∈ Bn}|/2n;
5 j = 0;
6 while (Conf 6= Φ) or (r > R) do
7 while Conf 6= Φ do
8 yapprox = NLn(xi);
9 foreach xi : NLn(xi) /∈ BR(xi) do

10 a = BR(xi);
11 do
12 yallow = argmina Hamming(yapprox, a);
13 yremov = (yallow ⊕ yapprox ) ∧

Candidate(EXDC o,EXDC c);
14 a = a− yallow ;
15 while yremov 6= 0;
16 foreach non-zero bit b of yremov do
17 EXDCn ← Remove input xi from output b;
18 end
19 end
20 NLn = Optimize(NL,EXDCn);
21 Conf = {xi|NLn(xi) /∈ BR(xi)};
22 end
23 r = |{xi |NLn(xi) 6= NL(xi)}|/2n;

24 k = Difference inputs # for output bit j;
25 while r > R do
26 c = 0; Flag = True;
27 foreach xi : (NLn(xi)[j ] 6= NL(xi)[j ]) do
28 EXDCn ← Remove input xi from the jth bit;
29 c = c+ 1;
30 if c > αk then
31 Flag = Flase; Break;
32 end
33 end
34 if Flag then
35 j = j + 1;
36 end
37 NLn = Optimize(NL,EXDCn);
38 Conf = {xi|NLn(xi) /∈ BR(xi)};
39 if Conf 6= Φ then
40 Break;
41 end
42 r = |{xi |NLn(xi) 6= NL(xi)}|/2n;
43 end
44 end
45 return NLn ;

the original network outputs, there is always at least one allowed
output, i.e., the correct output, that has a non-empty intersection with
candidate outputs (in this case, the intersection contains all candidate
outputs).

We summarize the strategy for selecting the candidates for re-
moval from EXDC. For each input with conflicting outputs:



Table 5: Error magnitude recovery example

Inputs Outputs C-EXDC O-EXDC Approx.
Outputs

Candidate
Outputs

Updated
EXDC

x1, x0 y2, y1, y0 y2, y1, y0 y2, y1, y0 y2, y1, y0 y2, y1, y0 y2, y1, y0
00 {000, 001} 001 001 001 000 001
01 {010, 011, 100} 001 111 101 110 001
10 {110, 101, 010} 100 111 101 011 111
11 {011, 111, 110} 100 111 101 011 101

1) Find the Hamming distance between the approximate output and
each allowed output.

2) Identify as target output the output with the minimum Hamming
distance for which at least one output bit is contained in the output
candidate list (this is the output whose bitwise XOR difference
from the approximate output also intersects with the candidate
output set.)

3) Change all the output bits that are in the intersection from 2) to
be sensitive to the input, i.e. remove the current input from the
EXDC of each such output. Repeat this process for all inputs that
produce conflicts.

Note that there can be multiple allowed outputs satisfying the
strategy described in 2) and 3). We select the one that is first found
among the allowed outputs which are listed in an arithmetic ascend-
ing order. In Table 5, by comparing the approximate output 101 for
input 01 with all allowed outputs {010, 011, 100}, we know output
100 has the minimum Hamming distance with a difference only on
y0. However, y0 is not a candidate output for this input. Therefore,
we select 011 as the targeted allowed output: it has the next mini-
mal Hamming distance but it has outputs that are candidate outputs.
In this case, the allowed output 011 differs from the current approxi-
mated output 101 in y1 and y2 both of which are in the candidate list.
Therefore, we modify y1 and y2 to be sensitive to input 01, i.e., we
remove input 01 from O-EXDC of y1 and y2. Similarly, we remove
input 11 from O-EXDC of y1. The non-shaded elements of EXDC
remain the same as there are no other conflicts in this iteration.

Applying the updated EXDC set to the original Boolean net-
work produces another version of the approximate Boolean network.
However, while the conflict outputs found in the previous iteration
have been removed, new conflict outputs may be produced. We fol-
low the above steps to iteratively correct those conflicts. The algo-
rithm clearly implements a greedy approach: in every iteration, we
correct all conflicts manifest at this iteration by making the mini-
mum possible changes to EXDC. This heuristic solution strategy is
observed to behave reasonably well. On the benchmarks that we uti-
lized, we find that the number of iterations is typically small (3 to
4). We also find that the behavior is monotonic: with each iteration,
as the number of conflict inputs is reduced, the network gate count
monotonically increases. The algorithm stops when no conflict out-
put exists. In the theoretical worst case, it stops when there are no
candidate outputs left, i.e., O-EXDC is reduced to C-EXDC. On our
benchmarks, we find that the algorithm stops earlier and produces
a substantial improvement over using C-EXDC. Section4 provides
more details of experiments and results. The above algorithm is sum-
marized in Algorithm 1 up to Line 22.

An approximate network produced by the above algorithm is
compatible with the original Boolean relation and satisfies the error
magnitude constraint. Next, we show how to extend the above algo-
rithm to solve the general MALS problem (1) that jointly considers
error magnitude and frequency constraints.

3.3 Resolving Frequency Violations
The approximate Boolean network resulting from the above algo-
rithm has an arbitrary error frequency (often close to 100%), and

thus, typically, violates the constraint. We now develop a recovery
procedure to produce a feasible solution with respect to error fre-
quency.

Consider an input x for which the simplified Boolean network
produces an output different from the exact output. We call such an
input a difference input and the corresponding output a difference
output. The error frequency reduction is based on recovering the
correct outputs on some or all of the difference inputs while aiming
to minimize the network cost increase. Corrections are achieved by
updating EXDC to enforce the correct outputs on selected inputs.

We start by discussing the strategy to deal with a single-output
case. Suppose that the number of difference inputs is N and the
target error frequency isR. The goal is to identify at least k = N−R
difference inputs to correct out of the set of N possible inputs. The
fact thatN is typically very large andR is small makes identifying a
good set of k inputs to correct very difficult. It is infeasible to try all
possible sub-sets. We adopted a heuristic strategy that minimizes the
dependence on the choice of a sub-set by picking an arbitrary smaller
sub-set of αk inputs, where α is, typically, 0.2 to 0.5. Notice that
aiming to correct k inputs does not mean that the resulting network
has exactly R − k difference outputs since new errors may appear.
Thus, depending on the error frequency constraint R, the procedure
requires several, typically 6 to 10 iterations to remove all difference
inputs.

The network cost minimization principle is further extended to
handle multiple outputs. This is crucial, since an input remains a dif-
ference input as long as one or more outputs are in error. In dealing
with the multi-output case, we observe that in some cases, forcing
correctness on different outputs may predictably lead to different
network cost increases. This is based on the fact that in many net-
works, there is a variation in the degree to which network outputs are
dependent on the rest of the network. In other words, there is varia-
tion in the degree of embeddedness of an output in the network. This
can be quantified by finding the ratio of the gates that are in the fan-
in cone of an output over the overall network gate count. A higher
ratio indicates a higher value of embeddedness. It is reasonable to ex-
pect that enforcing correctness on outputs with lower embeddedness
leads to a lower network cost increase as it requires modifications
to a smaller region of the network. Our work is primarily concerned
with arithmetic circuits where the degree of embeddedness is eas-
ily ascertained from basic arguments and therefore does not require
explicit extraction. In arithmetic circuits, the outputs corresponding
to the lower-significance bits (LSBs) naturally have a lower degree
of embeddedness. Therefore, we prioritize enforcing correctness on
network outputs corresponding to LSBs, which should lead to the
smallest gate increase. The algorithm iteratively corrects difference
inputs on outputs moving from LSB to MSB until the entire network
satisfies the error frequency constraint. We summarize the strategy
for error frequency recovery:

1) For an output i, identify all of its ki difference inputs;

2) Remove αki fraction of difference inputs from the EXDC;

3) Repeat 2) until error frequency is satisfied or ki = 0;

4) Repeat for output i = i + 1 from LSB to MSB until error
frequency constraint is met.



See the example in Table 6 for an illustration of a single iteration
of the algorithm. We find that altogether there are two difference
inputs (00 and 10). Suppose the error frequency constraint is 25%.
Therefore, in this iteration we would aim to correct one input. Be-
cause the difference output for 00 is the LSB, we choose this input
to be corrected and modify y0 to be sensitive to input 00.

We summarize the complete approach in Algorithm 1.

Table 6: Error frequency recovery example

Inputs Exact
Output

Old
EXDC

Approx.
Outputs

Updated
EXDC

x1, x0 y2, y1, y0 y2, y1, y0 y2, y1, y0 y2, y1, y0
00 {000} 001 001 000
01 {010} 100 010 100
10 {110} 110 010 010
11 {011} 101 011 101

4. Experimental Results
We have implemented the MALS algorithm in a C++ environment
using ABC [3], SIS [17] and Design Compiler as the synthesis tools.
To evaluate the capability of the proposed algorithm for significant
gate count reduction under general error magnitude and frequency
constraints, we used it to generate a range of approximate solutions
of different types of adders and multipliers with different bitwidth.
All experiments were performed on an Intel 3.4GHz workstation.
Table 7 shows the circuit-specific information for the adders and
multipliers we used.

Table 7: Circuits used for MALS algorithm

Name Function I/O Gates
RCA8 8-bit Ripple Carry Adder 16/9 323

RCA16 16-bit Ripple Carry Adder 32/17 411
CLA16 16-bit Carry Lookahead Adder 32/17 412
KS16 16-bit Kogge Stone Adder 32/17 465

RCA32 32-bit Ripple Carry Adder 64/33 834
Wallace8 8-bit Wallace Multiplier 16/16 1259
Dadda8 8-bit Dadda Multiplier 16/16 1128

We first applied the MALS algorithm to several types of adders
and multipliers with different bitwidths (Table 7). For the 32-bit
RCA, we applied our algorithm to the lower 18 bits. The runtime
varies from a few seconds for a small adder to more than 20 hours
for large adders and multipliers.

We first demonstrate the effectiveness of the proposed MALS
algorithm compared to synthesizing networks using lower bound C-
EXDC when only the magnitude of error is constrained. Figure 1(a)
shows two types of 16-bit adders and an 8-bit Wallace multiplier
synthesized by both the C-EXDC and RA-EXDC identified by our
algorithm for several magnitudes of allowed error. The error magni-
tude is shown as the percentage of the maximum output value (since
circuits have different bitwidths, errors of the same absolute magni-
tude indicate varying relative significance). We find that the network
simplified by the proposed RA-EXDC outperforms the approach us-
ing C-EXDC by up to 20% in terms of achieved gate count reduc-
tion. Figure 1(b) shows the gate count and conflict inputs changes
over each iterations. Each curve refers to the iteration history of one
network, where each point refers to one iteration. All iterations start
from the O-EXDC (the point with the largest conflicts number) and
monotonically reduce to zero conflicts. For the given benchmark cir-
cuits, our algorithm converged within 4 iterations in all cases. We
also mark the solution identified by C-EXDC in this figure.

In order to give an intuition of how the network evolves over
iterations, we show successive optimizations performed on the fan-
in cone of the sum bit 4 of a simple 8-bit RCA adder (Figure 2). The
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Figure 1: Networks simplified by C-EXDC and RA-EXDC

process converges in iteration 3. Compared to an C-EXDC based
approach, 4 gates are saved by using RA-EXDC.

In Figure 3, we show the results of synthesizing approximate
networks jointly under both types of constraints. We first synthe-
sized each network with error magnitude constraints equal to 300
and 1000 (corresponding to different relative error magnitudes). We
further perform an error frequency sweep by running the algorithm
and recording every possible frequency achieved during the error
frequency recovery phase. Results show that depending on the er-
ror magnitude and circuit, gate count reductions ranging from 5%
to 50% can be achieved if frequency is unconstrained. Achievable
gate count reductions decrease with stricter error frequency con-
straints. The results indicate that in some cases, the space of solu-
tions is sparse in terms of achievable error frequencies. Note that
this sparsity reduces with increased flexibility offered by larger error
magnitude constraints.

5. Summary and Conclusions
In this paper, we address the multi-level approximate logic synthesis
(MALS) problem under general error constraints. We formulate the
error magnitude constrained MALS using Boolean relations to cap-
ture the allowed error behaviors. This formulation is more general,
grants better flexibilities on error constraints and hence leads to bet-
ter solutions than approaches based on incompletely specified func-
tions. We further presented an algorithm to solve the MALS problem
under general error magnitude and frequency constraints. The algo-



Figure 2: Logic cone of sum bit 4 in an 8-bit RCA as it changes over algorithm iterations
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Figure 3: Error magnitude and frequency constrained solutions for adders and multipliers

rithm starts with a solution that is overly relaxed. In an iterative and
greedy fashion, it then first identifies a solution satisfying the mag-
nitude constraint by successively applying a series of less and less
relaxed conventional multi-level network optimizations. The algo-
rithm further ensures compliance to the error frequency constraint
by recovering the correct outputs on error-producing inputs to mini-
mize the network cost increase until the frequency constraint is met.
Experiments on a range of arithmetic circuit blocks demonstrated the
effectiveness in achieving large gate count reductions across flexible
error magnitude and frequency constraints.
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