
Learning-Based Power Modeling of System-Level
Black-Box IPs

Dongwook Lee∗, Taemin Kim†, Kyungtae Han†, Yatin Hoskote†, Lizy K. John∗ and Andreas Gerstlauer∗
∗The University of Texas Austin †Intel Corporation

{dongwook.lee, ljohn, gerstl}@utexas.edu {taemin.kim, kyungtae.han, yatin.hoskote}@intel.com

Abstract—Virtual platform prototypes are widely utilized to
enable early system-level design space exploration. Accurate
power models for hardware components at high levels of ab-
straction are needed to enable system-level power analysis and
optimization. However, the limited observability of third party
IPs renders traditional power modeling methods challenging
and inaccurate. In this paper, we present a novel approach for
extending behavioral models of black-box hardware IPs with an
accurate power estimate. We leverage state-of-the-art-machine
learning techniques to synthesize an abstract power model. Our
model uses input and output history to track data-dependent
pipeline behavior. Furthermore, we introduce a specialized en-
semble learning that is composed out of individually selected
cycle-by-cycle models to reduce overall complexity and further
increase estimation accuracy. Results of applying our approach
to various industrial-strength design examples shows that our
models predict average power consumption to within 3% of a
commercial gate-level power estimation tool, all while running
several orders of magnitude faster.

I. INTRODUCTION

Energy efficiency has become a critical design concern.
Fast and accurate system-level power estimation approaches
are needed to drive associated validation and optimization.
Virtual platform models capable of simulating whole systems
are widely utilized to enable rapid system-level design space
exploration. Within this context, fast functional transaction-
level models (TLMs) of hardware components are utilized as
an alternative to slow co-simulation with low-level RTL. At
the same time, a continued increase in system complexities
has brought an increasing reuse of pre-designed hardware
components acquired from third party vendors rather than
being developed from scratch. Such black-box IPs are not
usually well documented, and only functional simulation mod-
els without detailed architecture descriptions are provided
together with pre-synthesized gate-level implementations. This
limited observability makes power modeling for black-box IPs
challenging.

Previous work in high-level power estimation has relied on
accurate, data-dependent activity estimation using a fine-grain
micro-architecture, register-transfer level (RTL) or IR level
model [1–6]. Unfortunately, models provided for black-box IPs
are usually only functionally equivalent ones, and necessary
architectural information for fine-grain modeling is usually not
available. The absence of internal architecture information lim-
its power estimation to coarse-grained simulation techniques
using state-based models. Such models only support capturing
average power transitions between different operating modes,
which makes them inherently inaccurate.

In this paper, we propose a novel power model for black-
box IPs that is aimed at capturing accurate power consumption
using state-of-the-art-machine learning techniques. We extract
a data-dependent, invocation-by-invocation power model from

gate-level cycle-by-cycle power traces, which enables fast yet
accurate fine-grain data-dependent power estimation. To syn-
thesize the power model, we develop a specialized ensemble
learning approach in which power models are decomposed
into individual cycle-by-cycle models for efficient training and
accurate prediction. The decomposed models use transaction-
level I/O activity to estimate cycle-level behavior, which results
in an overall high accuracy with low prediction overhead.

The rest of the paper is organized as follows: following a
discussion of related work, Section III introduces an overview
of our proposed methodology, while Section IV elaborates
on each step in more detail. Section V shows experimental
results of applying the flow to a set of industrial-strength
design examples. Finally, Section VI concludes the paper with
a summary and an outlook on future work.

II. RELATED WORK

To generate higher level power estimation models of white-
box IPs, learning based approaches have most recently been
utilized [4, 6–8]. In such approaches, power traces and ac-
tivity data are obtained from a lower-level and higher-level
simulation, respectively, to train a regression-based model.
A key concern in learning-based approaches is managing
model complexities to reduce generalization error and training
overhead. Many previous approaches rely on a manual or
trial-and-error based sampling of key signals or state vari-
ables [4, 6]. Other approaches decompose the full power
model into several parts based on architectural information or
manual decisions [7, 9]. To apply existing decomposition and
feature sampling approaches, detailed architectural knowledge
or designer insight is required, which is not usually available
for black-box IPs. By contrast, we decompose the power model
without any pre-assumed knowledge of the architecture, which
also leads to better accuracy while reducing learning and
estimation overhead.

Most of the previous work in high-level power modeling
for black-box has relied on a coarse-grain estimation using
a state-based component model [8, 10–12]. The projection
of either given, documented states [10, 12], or state infor-
mation estimated from external transaction events [8, 11]
only supports capturing coarse-grain power transitions between
different operating modes, such as read and write modes in
memories or buses. To take in account data-dependent effects
in power estimation of black-box components, a corresponding
extension of coarse-grain state-based models was recently
proposed [13]. In this approach, the authors first identify
and refine states in which significant data-dependent power
variations are observed. Cycle-level input switching activity
information is then utilized to estimate data-dependent power
consumption using a simple linear regression. This requires
augmenting state-based models with the ability to capture

Power Model Synthesis

Model Decomposition

Learning

Invoc. Power Model

Transaction-level I/O Trace

Cycle-Level Power Trace

Gate-level
Simulation

TLM Model
Control

Reg

Test vector
[1,2]
[3,4]
…

Black-Box IP
 Gate Module

Simulation

DOUT
DIN

CLK

Start
Done

ADDR
1 2 3 4

3 7 0

0

I/O Trace nsec

mW

Invoc.

mW
Invoc. Power Trace

DOUT

DIN 1 2

3

3 4

7

Invoc. Transaction-level
I/O Activity

nsec

Prediction

Invoc.

Invoc. Invoc.

Fig. 1: Overview of power model synthesis flow.

cycle-by-cycle activity, which introduces a significant overhead
in the simulation. Furthermore, a simple linear regression is
inherently limited in accuracy. By contrast, our approach only
requires capturing transaction-level activity and instead uses
advanced learning methods to estimate component-internal
power at cycle-level accuracy.

III. POWER MODEL SYNTHESIS FLOW

Figure 1 shows an overview of our proposed power model
synthesis flow. A given black-box gate-level model and cor-
responding TLM of a hardware IP are simulated with the
same input vectors. Power synthesis then utilizes data I/O and
control signal traces from TLM simulation together with cycle-
level power traces from gate-level estimation to learn a power
model. Based on the captured traces, we extract an invocation-
by-invocation power model that enables fast yet accurate fine-
grain data-dependent power estimation. Instead of building
a single invocation-by-invocation power model, the synthesis
flow decomposes power models into multiple models and indi-
vidually trains them. In the prediction phase, the decomposed
models are combined into an ensemble estimation model that
predicts invocation-level power traces based on transaction-
level I/O activity vectors. The synthesized power models are
able to compute data-dependent power consumption estimates
from online or offline activity traces captured in high-level
TLM simulations.

Internal signal switching activity estimation is a key for
data-dependent power modeling. In system-level black-box
IPs, the internal signal activity is indirectly observed from
switching activity of input and output signals. Internal signal
activity for pipelined and multi-stage hardware architectures
in the current cycle can be approximated from future and past
switching activities of output and input ports, respectively. In a
system-level model, re-arrangement of transactions and cycle-
by-cycle I/O tracking is usually required to estimate cycle-level
switching activity on input and output ports. However, such
Hamming distance and switching activity computation is typi-
cally the most significant bottleneck for power estimation, and
it is often much slower than actual functional simulation [14].
By contrast, our approach directly computes power estimates
from unmodified high-level transaction-by-transaction activity,

which significantly reduces computational overhead.
We assume that I/O interface mapping information between

system-level transactions and the black-box data ports is given.
System-level hardware models are usually written in system-
level design languages (SLDLs), such as SystemC or SpecC.
In such TLMs, communication interfaces are approximately
modeled, and the detailed computation architecture is fully
abstracted out. Models can also be purely functional, where
no timing information is available. However, even a functional
model has interfaces that map to corresponding data I/O
ports. In general, we can find such mapping information
in documents or test benches for gate level simulation. We
assume that data port mapping, bitwidths and information
about control signals is given, but internal architecture details
are not available. Another assumption regarding observability
in the system-level hardware model is that some important
control registers or control ports are available. Such control
dependencies are also necessary to model functional or perfor-
mance behavior. The activities of control signals, such as mode
selections, do not by themselves affect power consumption.
However, their value is utilized to estimate operating mode
dependent power variations.

IV. POWER MODEL SYNTHESIS

In the following, we describe our power model and the
proposed power model synthesis process utilizing state-of-the-
art machine learning techniques. As indicated in Figure 1, this
process consists of two steps: decomposing power models and
learning with training data.

A. Power Model

Many previous approaches for power estimation at the
RTL or micro-architecture level choose a linear function to
model relation between the internal signal switching activity
and power consumption of a hardware component. Given the
internal and external signal switching activity vector a(t) at
time t, power consumption p(t) can be modeled as

p(t) = cT · a(t), (1)

where c denotes a coefficient vector. Note that, to simplify
the model, we assume that related pins, e.g. of buses are

X

+
a1(t) a2(t)

a5(t)

a7(t)

+
a4(t)a3(t)

a6(t)

Correlated

Fig. 2: I/O switching activity correlation.

grouped and Hamming distances within a group are utilized
as alternative to individual bit-wise switching activity.

Ignoring glitching or asynchronous activities, we can con-
vert the continuous power function into a discrete cycle-level
model. In general, average power consumption pC(n) in cycle
n can be modeled as

pC(n) =
1

T

∫ nT

(n−1)T
p(t)dt = cT · a(nT) = cT · â(n), (2)

where â(n) is a discrete activity vector. The activity vector
can be further refined into

â(n) = HD(d(n),d(n− 1)), (3)

where HD() is the Hamming distance function and d denotes
the column vector of signal groups.

Instead of internal signal switching activities not available
in a black-box model, we only utilize switching activity of I/O
signals for power modeling. The input and output switching
activity of arithmetic operators such as adders and multipliers
are linearly correlated [13]. This means that input switching ac-
tivity of an operator can be modeled as a linear function of the
input switching activity of the driving ancestor. For example,
following equation (1), the power consumption of the dataflow
graph in Figure 2 can be formulated as p(t) ≈

∑7
i=1 c

T
i ·ai(t).

Using such a linear input-output relationship, we can simplify
this equation to p(t) ≈

∑1,2,3,4,7
i=1 c′Ti · ai(t).

For pipelined or multi-stage architecture, we leverage past
input and future output switching activities for prediction.
Input activity and activity of the first pipeline stage register
are linearly correlated. We can therefore propagate input
switching activities through the pipeline and leverage such
linear correlations across multiple stages by considering the
input activity history. However, activity of inputs and registers
deep in the pipeline, i.e. far away from the input are weakly
correlated or not correlated at all. Instead, they are likely to be
correlated to activity at the outputs leaving the pipeline. Hence,
to handle deeply pipelined logic and improve accuracy, we also
similarly consider future output activities for prediction. For a
given pipeline of depth D, we can formulate its power as

pC(n) =

D−1∑
i=0

ciTi · aI(n− i) + coT
i · aO(n+ i), (4)

where aI(n) and aO(n) denote the input and output activity
vectors, respectively, and cii and coi are corresponding stage-
specific coefficient vectors.

In this paper, we target prediction of average power con-
sumption per invocation. As such, power estimation does

not have to compute cycle-level information, which reduces
estimation overhead. Given a per-invocation execution latency
L and assuming that, without loss of generality, the invocation
starts in cycle 0, we can compute the invocation power

1

L

L∑
j=1

pC(j) =
1

L

L∑
j=1

D−1∑
i=0

ciTi ·aI(j−i)+coT
i ·aO(j+i) (5)

To simplify the equation, we assume the following initial
condition of the concatenated input and output data:

dIO(n) = ~0, n <= 0 or n > L (6)

Switching the first and second summation and considering
the initial condition, we can remove the summation over the
pipeline by introducing a new coefficient vector ċ in the
following way:

1

L

L∑
j=1

pC(j) =
1

L

L∑
j=1

ċTj · aIO(j) =

1

L

L∑
j=1

ċTj ·HD(dIO(j),dIO(j − 1)) (7)

Given the I/O data matrix DIO = (dIO(0), . . . ,dIO(l)), we
can define the invocation-level power model pI(DIO) as

pI(DIO) =
1

L

L∑
j=1

P−1∑
p=0

ċj,p ·HD(dp,j , dp,j−1), (8)

where P denotes the total number of I/O signal ports. Equa-
tion (8) indicates that the invocation-level power model does
not need pipeline-level or cycle-accurate data transition infor-
mation.

If there is no transition in cycle n, the HD(dp,n, dp,n−1)
result will be zero, which indicates that we can model the
invocation-level power consumption by finding the contributed
coefficient factors (c̈) purely from transaction-level activity
vectors (atr):

pI(atr) = c̈T · atr (9)

Transaction-level activity vectors are computed using Ham-
ming distances over transaction data traces in a similar manner
as in (3) and (8), where atr is a concatenated vector composed
over all transactions in an invocation. The worst case dimen-
sion of atr is a P · L, which may create generalization errors
in learning processes. In the following section, we will reduce
the model complexity by decomposition.

B. Power Model Decomposition

The complexity of the power model in (9) is directly
proportional to the total number of transactions during a
single invocation. To avoid overfitting, feature sampling, which
reduces model dimensions by selecting a key subset of signals,
can be a good approach. Unfortunately, a global power model
using primary I/O signals as model features is not suitable
to apply feature selection. The importance of various ports
for estimating the power consumption can be a time-varying
function depending on the internal IP state in a given cycle,
which precludes feature selection to be applied at the port level
without a significant loss in accuracy.

+

X X

X

s1

s2

s3 +

p1[n]=c1T•aa,b,c,d,e,f[n]

p2[n]=c2T•ac,d,f,g,h,i[n]

p3[n]=c3T•ag,h,i[n]

RTL
x x

REG REG

+

FSM

CTRL

a b c d

e f

g h

i

Fig. 3: Example of power model decomposition.

As an alternative to traditional feature selection, model
decomposition can be applied by utilizing architectural in-
formation to reduce unnecessary signals. Such decomposition
based on architectural information has previously been applied
in white-box hardware models [9]. In white-box models, the
hardware can be described as a finite state machine with
datapath (FSMD). Given a finite set of FSMD states S =
{s1, . . . , sn}, the FSM state in cycle n can be defined by
a trace function t : n → S. The power consumption in a
given cycle n is thereby dependent on resource utilization
in FSM state t(n). Given a finite set of hardware resources
R = {r1, . . . , rm}, a resource scheduling and binding function
can be defined as m : S × R → {0, 1}. For instance,
m(r1, s1) = 1 indicates that resource r1 is utilized in state
s1. With such scheduling and binding information, we can
formulate the power consumption in a given cycle n in the
following manner:

pC(n) =
∑
i∈R

ct(n),i
T · ai(n) ·m(i, t(n)), (10)

where ct(n),i denotes the coefficient vector corresponding to
resource i in state t(n), and ai(n) denotes the switching
activity vector corresponding to resource i at time n. In this
equation, the coefficient vector ct(n),i is not only resource
dependent, but also state-dependent. It is possible that the
operand of the resource as well as connected glue and control
logic is dependent on the state.

With resource scheduling and mapping information corre-
sponding to m(ri, si), we can decompose equation (10) based
on the given state information t(n). We illustrate this with
the help of a small example. Figure 3 shows a hardware
where three resources are allocated. The power consumption
of the complete hardware processor can be estimated using
equation (1) with all switching vectors connecting to the
resources. The power model pi(n) of a given control state
si thus utilizes the much smaller subset of signals connecting
the resources scheduled in the given state only. For example,
the power consumption of state s3 (p3(n)) can be estimated
with three signals instead of all 9 switching vectors.

Based on this idea, we can decompose the power model
into separate and independent models for each state. However,
this is not possible in black-box IP components, where state
composition as well as scheduling and binding information is
not available. Instead, since the current state is a function of
the cycle count n, we can indirectly capture the state based
on n and additional control data dC . We thereby assume that
control signals dC , if any, determine the IP operating mode on
a per invocation basis, but remain constant over one invocation.
With this, we decompose the power model into separate and
independent cycle-level models. In the process, we convert

coefficients c̈ of equation (9) into c̈j(dC):

pE(atr,dC) =
1

L

L∑
j=1

pj(atr,dC), (11)

pj(atr,dC) = c̈j(dC)
T · atr (12)

The dimension of each cycle-level model pj is the same
as the invocation-level power model, i.e. the models use the
complete transaction activity atr at their input. However, only
a small part of the transaction activities actually contribute to
the power consumption in any given cycle, which results in
most of the elements in c̈j(dC) being zero or small. To prune
away such unimportant features, we additionally leverage a
decision tree based feature selection for each decomposed
model [15]. As a result, the uncertainty of the models is
improved and there is less chance to run into generalization
errors.

In (11), we assume that the execution latency L is a
fixed value. In reality, however, hardware can have varying
execution delays across invocations. In this case, we first
decompose the power model based on execution latencies and
then hierarchically perform the cycle-level decomposition.

Overall, the total number of models to learn is increased.
However, each decomposed model uses the same input vectors,
which enables parallel learning and prediction. Nevertheless,
the decomposed models are not in linear form, which requires
a proper model selection for learning.

C. Model Selection and Training

In general, linear regression over a set of training vectors
has been widely employed to find coefficient of power models.
If there is a linear correlation between the power consumption
trend and control data, equation (12) can be converted into
a linear form. However, the control data may have non-
linear correlations with power consumption. Depending on
how control signals are assigned to each mode, control data
and power consumption trends can be linear or not. To handle
such problems, models could be further decomposed along
control inputs. By decomposing based on control signals, the
power consumption behavior of each model would potentially
become a linear function of the activity. The control data space,
however, is exponential in the number of control signals, which
results in tremendous learning overhead. Moreover, power
behavior of complex arithmetic units is generally still not
linear [2].

To find the individual model coefficient vectors for given
control data dC , we instead leverage a decision tree based
learning model. Decision tree learning is a technique com-
monly used in data mining to predict a target by learning
decision rules from given training data. Training builds a
tree by choosing features and splitting data based on selected
feature values to reduce the standard deviation of the total
training set. One can then predict the target value by traversing
the trained tree along paths where most of the important
features are located, where leaves then represent the predicted
value. A decision tree learning model can find non-linear
correlations, which is suitable for learning of non-linear power
consumption patterns. Moreover, the diversity of the model is
an important factor for reducing the total error in the final
ensemble-based invocation-level model, as will be discussed in
detail in the following section. A decision tree learning model

provides more diversity than linear regression even with the
same training vectors, which is also one of the reasons why
we choose such a model [16].

D. Ensemble Estimation Model

Trained cycle-level models are combined to predict the
invocation-level execution power of the hardware IP. In equa-
tion (12), the individual models take the same transaction-
level I/O activity vector atr to predict each corresponding
cycle power. By averaging the predicted cycle powers, we
can estimate the data-dependent execution power consumption,
which is a form of ensemble learning. Ensemble learning uti-
lizes diversity over multiple learning models to achieve better
accuracy. Traditional ensemble methods introduce diversity
by dividing the training set, training each model with the
partitioned training set, and then predicting the target value
as the average over the prediction values of each model. By
contrast, we introduce diversity by decomposing the model into
cycle-level models. As such, we train each individual model
with the same feature vectors, but inherently achieve diversity
since individual model targets (cycle powers) are different.

Ensemble models are well known for providing better
performance than single models in many cases [17]. In our
case, we can prove that the proposed ensemble model in (11)
shows better performance than the single invocation model
from (9). We can define the error-free perfect target function
as h(atr). The sum-of-square errors of the single invocation
model (EI) can then be defined as

EI = Eatr [{pI(atr)− h(atr)}2] = Eatr [ε(atr)
2], (13)

where Eatr
denotes the expectation with respect to the dis-

tribution of the input vector atr, and the control parameter is
ignored for simplification. In the same way, the sum-of-squared
error of the ensemble model (EE) can be given by

EE = Eatr

[
{ 1
L

L∑
j=1

pj(atr,dC)− h(atr)}2
]

= Eatr

[
{ 1
L

L∑
j=1

εj(atr)}2
] (14)

To simplify the problem, we assume that errors have zero mean
and are uncorrelated,

Eatr
[εm(atr)] = 0, Eatr

[εm(atr)εl(atr)] = 0, m 6= l
(15)

We further assume that all models are trained well and the
sum-of-square errors of individual models are the same for
simplification. We can obtain

EE =
1

L
EI (16)

Hence, the error of the ensemble model can be reduced by a
factor of L when the assumption that errors are uncorrelated
is satisfied. In general, each decomposed model predicts a
corresponding cycle power, which implies that individual cycle
errors may not be highly correlated. Moreover, we utilize
decision tree learning to prevent correlations between models.
As such, we can expect that the ensemble model always
provides better accuracy than the single invocation one.

In the same manner, we can prove that the ensemble model
has better accuracy than averaging over a single cycle-level
model. A single cycle-level model estimates cycle-by-cycle

TABLE I. Benchmark summary.

Gates Total I/O Exec.
I/O Ports Delay Cycles

GEMM 964 2/1 12 436
DCT 6309 4/4 64 96

QUANT 1456 3/1 4 410
R2Y 1757 4/1 6 806/742
HDR 7887 11/1 57 825

TABLE II. Training and test summary.

Train Test Total
Invoc. Invoc. Test Cycles

GEMM 1250 5000 2,180,000
DCT 2700 10800 1,015,200

QUANT 10000 36864 5,038,080
R2Y 1200 3600 2,786,400
HDR 900 1300 1,072,500

power behavior using a single model instead of multiple de-
composed ones. The sum-of-squared errors of the single cycle-
level model can be formulated as equation (14). However,
since each error is generated from the same model, i.e. is
highly correlated, it cannot satisfy the assumption in (15). As
a result, we can also expect that the ensemble model shows
better prediction accuracy than a single cycle-level model.

V. EXPERIMENTAL RESULTS

We have implemented our power synthesis flow utilizing
the scikit-learn [18] machine learning library. We applied the
flow to generate models for black-box hardware designs of a
6x6 general matrix- matrix multiplication (GEMM), a 2D dis-
crete cosine transform (DCT), a quantizer (Quant), an RGB to
YUV color converter (R2Y), and a weight computation block
of a high dynamic range (HDR) imaging application [19]. The
quantizer has two control inputs for choosing a quantization
table and the image scaling quality. The RGB to YUV con-
verter has a control input for switching the sampling mode.
All benchmarks were synthesized using industry-standard EDA
tools with the Nangate 45nm Open Cell Library [20] at
200Mhz clock frequency. I/O traces were collected from cor-
responding high-level functional implementations. Gate-level
power was estimated using a commercial EDA tool with VCD
files generated from full gate-level simulation. All experiments
were performed on a quad-core Intel i7 linux workstation
running at 3.5 GHz. Table I summarizes benchmarks and
synthesis results including the total input and output port
numbers, input to output delays, and execution cycles for a
single invocation. Note that the invocation latency for the
R2Y benchmark varies as a function of the chosen sampling
parameter.

To generate test vectors, GEMM and HDR designs were
simulated with 5000 random test matrices and a 200x100
24-bit RGB image, respectively. The R2Y design converts a
512x512 24-bit RGB image to a 512x512 YUV image for two
different sampling modes. A 640x320 24-bit RGB image are
used to generate DCT and QUANT test vectors. Three different
quality factors and two different table setting are utilized to
generate the test set for the QUANT design. To learn each
power model, we used training sets generated from different
random seeds or images. All models are trained with sufficient
training data. In each case, we were able to synthesize power
models within 21 minutes including trace generation. Depend-
ing on the trace length, model synthesis takes between 6 and

Size of a training set
0 2000 4000 6000 8000 10000 12000 14000 16000

M
AE

 [%
]

0

5

10

15

20

25

30

35

40
C-L
CH-L
I-L
E-L
C
CH
I
E

Fig. 4: Learning overhead and model accuracy comparison for QUANT.

19 minutes for one-time gate-level simulation plus 20 to 120
seconds for total training time. Table II summarizes the size
of training and test sets.

Figure 4 shows the learning overhead and accuracy of the
proposed ensemble power model (E) as compared to other
learning models. We measure the data-dependent invocation-
by-invocation mean absolute error (MAE) of values predicted
by each model compared to gate-level simulations, normalized
against average power over the full simulation. The major
learning overhead is collecting gate-level simulation results
to construct the training vectors. By increasing the size of
training sets, we explore trade-offs between learning overhead
and accuracy of the models. We compare between a single
cycle-level power model utilizing the current input switching
activity (C), a single cycle-level power model utilizing the
Hamming distance input history (CH), a single invocation-level
power model (I), and the proposed ensemble power model (E).
All of these models utilize either the decision tree regression
or a least squared linear regression (-L).

In most cases, power models considering the pipelined
structure (CH, I, E) show better accuracy compared to the
model only considering current I/O activity (C). Models uti-
lizing decision tree regression always show better results than
simple linear ones. We can observe that ensemble learning
utilizing the decision tree regression (E) provides the best
accuracy for the same size of the training set, reaching more
than 99% accuracy for a training set with 4000 vectors.
Ensemble and single-invocation models with linear regression
(E-L and I-L) show the same accuracy, which indicates that
individual linear regression models in the ensemble model are
highly correlated. We utilize CH, I and E power models for
further analysis.

Figure 5 and Figure 6 compare model accuracy and speed
across various benchmarks. For our ensemble power model,
we compared a decision tree regression (E-DT), a linear Bayes
ridged model (E-BR), a gradient boosting regression composed
of multiple decision trees (E-GB) and a non-linear support vec-
tor regression with a Gaussian radial basis function kernel (E-
SVR). An SVR with a high order polynomial kernel function
was not able to generate a stable model (producing errors of

0.0%$

2.0%$

4.0%$

6.0%$

8.0%$

10.0%$

12.0%$

GEMM$ DCT$ R2Y$ QUANT$ HDR$

M
AE

$[%
]$

CH$ I$ E8DT$ E8GB$ E8BR$ E8SVR$

Fig. 5: Invocation-by-invocation power model accuracy.

0.00#M#

#0.10#M#

#0.20#M#

#0.30#M#

#0.40#M#

#0.50#M#

#0.60#M#

GEMM# DCT# R2Y# QUANT# HDR#

Cy
cl
es
/s
ec
.)

CH# I# E8DT# E8GB# E8BR# E8SVR#

Fig. 6: Estimation speed of models.

more than 50%). For all benchmarks, ensemble power models
utilizing the decision tree (E-DT) or the gradient boosting
(E-GB) show better accuracy than others. The support vector
regression shows the worst results among all ensemble models.
When comparing speed (Figure 6), the single invocation model
is faster than the others. Among ensemble power models, linear
Bayes ridged (E-BR) and decision tree (E-DT) regressions
are fastest. The decision tree model is thereby faster than a
gradient boosting (E-GB) one at similar accuracy. Overall,
when comparing different regression methods and models,
results confirm that the ensemble power model utilizing a
decision tree regression provides the best trade-off between
accuracy and speed.

Table III and Table IV further summarize and detail accu-
racy and speed of models across benchmarks. We measure the
data-dependent invocation-by-invocation mean absolute error
(MAE), maximum error, and total average error across a full
estimation. All error metrics are normalized against average
power. Overall, we can observe that the ensemble model
using decision tree regression (E) improves accuracy over
the single invocation model (I) by a factor of 3x on average
across all error metrics. The single invocation and cycle-level
models show the worst estimation result in R2Y and QUANT
benchmarks, respectively. By contrast, the ensemble model is
able to capture cycle- and invocation- level power variations,
which results in a better accuracy for R2Y and QUANT power
estimation than the others. Estimation accuracy for GEMM,
DCT and HDR designs with large input to output (I/O) delays
is worse than for others, which indicates that the remaining
errors in the ensemble model are related to the inherently
limited external observability for designs with deep logic.
Overall, our ensemble models estimate invocation-level power
consumption to within 3% MAE and 15% maximum error
compared to gate-level power results. In all cases, average
errors across the whole simulation are below 2%.

Table IV summarizes the estimation speeds of high-level

TABLE III. Accuracy of modeling.

MAE Max. Error Avg. Error
CH I E CH I E CH I E

GEMM 3.0% 4.4% 2.3% 19% 23% 12% 0.6% 0.5% 0.2%
DCT 2.1% 2.5% 1.4% 26% 31% 13% 0.5% 0.3% 0.0%
R2Y 3.7% 7.6% 0.9% 13% 37% 5% 1.5% 3.0% 0.8%

QUANT 6.8% 4.0% 0.5% 40% 28% 4% 0.5% 1.8% 0.1%
HDR 4.2% 4.1% 2.2% 18% 28% 13% 3.8% 2.0% 1.7%
Avg. 4.0% 4.5% 1.5% 23% 29% 9% 1.4% 1.5% 0.6%

TABLE IV. Estimation speed [Cycles/Sec.].

CH I E Gate
GEMM 38.5K 252.8K 189K 378

DCT 16.0K 224.3K 168K 188
R2Y 24.6K 548.8K 378K 2099

QUANT 46.3K 330.7K 304K 1518
HDR 27.4K 319.1K 319K 199
Avg. 30.5K 368.7K 273K 876

models as also compared to a gate-level simulation. Overall,
both the ensemble (E) and cycle-level (CH) power models
estimate at a cycle-by-cycle level, but the ensemble model
is on average 9 times faster. This shows that transaction-
level estimation improves simulation throughput significantly.
Compared to the single invocation model (I), the ensemble
power model (E) is on average 1.3 times slower. It is, however,
nearly 312 times faster than gate-level estimation.

Finally, Figure 7 shows the invocation-by-invocation power
traces of estimated versus measured power waveforms for the
benchmark designs using the ensemble model. As traces show,
our synthesized models can accurately track power behavior
within each invocation, as well as data-dependent effects across
different invocations of the same design.

VI. SUMMARY AND CONCLUSIONS

In this paper, we presented a novel approach for extending
behavioral, transaction-level models of hardware IPs with ac-
curate power estimates. Our power model synthesis flow lever-
ages state-of-the-art machine learning techniques to synthesize
an invocation-level power model. The power model directly
utilizes transaction-level I/O activity and control information
for fast estimation. The proposed model decomposition and
ensemble estimation enable accurate data-dependent power
prediction. Our flow has been evaluated on several industry-
strength benchmark designs and generated models. Results
show that our proposed power model is able to achieve 9x
faster prediction compared to cycle-level power models, and
orders of magnitude speedup compared to gate-level power
simulation, all while estimating power with less than 3%
invocation-by-invocation and less than 2% average error. In
future work, we plan to integrate such fast and accurate
power models with virtual platform or full-system simulators
to support system-level architecture exploration.

REFERENCES
[1] S. Ravi et al., “Efficient RTL power estimation for large designs,” in

VLSID, 2003.
[2] A. Bogliolo et al., “Regression-based RTL power modeling,” TODES,

vol. 5, no. 3, pp. 337–372, Jul. 2000.
[3] S. Gupta and F. Najm, “Power modeling for high-level power estima-

tion,” TVLSI, vol. 8, no. 1, pp. 18–29, Feb. 2000.
[4] D. Sunwoo et al., “PrEsto: An FPGA-accelerated power estimation

methodology for complex systems,” in FPL, Aug. 2010.
[5] Y. Park et al., “A multi-granularity power modeling methodology for

embedded processors,” TVLSI, vol. 19, no. 4, pp. 668–681, Apr. 2011.

Invocations
0 50 100 150 200 250 300

m
W

0

0.5
measured
estimated

Invocations
0 100 200 300 400 500 600 700

m
W

0

1
measured
estimated

(a) GEMM simulation

Invocations
0 50 100 150 200 250 300

m
W

0

1

2

measured
estimatedInvocations

0 100 200 300 400 500 600 700

m
W

0

1
measured
estimated

(b) DCT simulation

Invocations
0 100 200 300 400 500 600 700

m
W

0

0.2
measured
estimated

Invocations
0 100 200 300 400 500 600 700

m
W

0

1
measured
estimated

(c) R2Y simulation

Invocations
0 50 100 150 200 250 300

m
W

0

0.5
measured
estimatedInvocations

0 100 200 300 400 500 600 700

m
W

0

1
measured
estimated

(d) QUANT simulation

Invocations
0 100 200 300 400 500 600 700

m
W

0

1
measured
estimatedInvocations

0 100 200 300 400 500 600 700

m
W

0

1
measured
estimated

(e) HDR simulation

Fig. 7: Invocation-by-invocation power traces.

[6] C.-W. Hsu et al., “PowerDepot: integrating IP-based power modeling
with ESL power analysis for multi-core SoC designs,” in DAC, 2011.

[7] Y.-H. Park et al., “System level power estimation methodology with
H.264 decoder prediction IP case study,” in ICCD, Oct. 2007.

[8] S. Schürmans et al., “Creation of ESL power models for communication
architectures using automatic calibration,” in DAC, May 2013.

[9] D. Lee et al., “Dynamic power and performance back-annotation for fast
and accurate functional hardware simulation,” in DATE, 2015.

[10] I. Lee et al., “PowerViP: SoC power estimation framework at transaction
level,” in ASP-DAC, 2006.

[11] E. Copty et al., “Transaction level statistical analysis for efficient micro-
architectural power and performance studies,” in DAC, 2011.

[12] C. Trabelsi et al., “A model-driven approach for hybrid power estimation
in embedded systems design,” EURASIP, vol. 2011, no. 1, Mar. 2011.

[13] D. Lorenz et al., “Data-and state-dependent power characterisation and
simulation of black-box rtl ip components at system level,” in DSD,
2014.

[14] M. Pedram, “Advanced power estimation techniques,” in Low power
design in deep submicron electronics, W. Nebel and J. Mermet, Eds.
Kluwer Academic Publishers, 1997.

[15] C. Ratanamahatana and D. Gunopulos, “Feature selection for the naive
bayesian classifier using decision trees,” AAI, vol. 17, no. 5-6, pp. 475–
487, 2003.

[16] M. S. Gashler et al., “Decision tree ensemble: Small heterogeneous is
better than large homogeneous,” in ICMLA, Dec. 2008.

[17] C. Bishop, Pattern Recognition and Machine Learning. Springer, 2007.
[18] F. Pedregosa et al., “Scikit-learn: Machine Learning in Python,” JMLR,

vol. 12, pp. 2825–2830, 2011.
[19] T. Mertens et al., “Exposure fusion,” in PG, Oct. 2007.
[20] Nangate, “Open Cell Library,” http://www.nangate.com.

