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Abstract—Runtime circuit delay variations due to degrada-
tion effects like temperature are traditionally protected against
using worst-case timing guardbands. Such an approach leads
to a permanent performance overhead even though effects may
only be transient. Recently, approximate computing has been
proposed as a technique to trade off quality for various metrics.
Existing approaches, however, do not target reductions in circuit
delays and guardbands, or have only been applied statically.
In this paper, we propose a novel design paradigm in which
adaptive approximations are employed to dynamically trade
off transient, degradation-induced variations in circuit delays
and associated worst-case timing guardbands for permanent
performance improvements with minimal quality loss. A key
challenge is to design circuits that exhibit a significant delay
profile across approximation levels while maintaining a high
base performance. To achieve that, we introduce and implement
two approaches for synthesizing arbitrary dynamic quality-
versus delay-configurable circuits at fine temporal and spatial
granularities while exploring associated area, speed and quality
trade-offs. We apply our approach specifically to temperature
variations and guardbands. Results for an IDCT image decoding
example show up to 21% speedup with less than 2% area
and energy impact compared to traditional guardbanding while
maintaining a worst-case transient PSNR of at least 39 dB.

I. INTRODUCTION

Designers traditionally employ worst-case timing guard-
bands to overcome runtime degradations, e.g. due to tempera-
ture. Such degradations increase circuit delays. To compensate,
the design’s clock period Tclk is typically extended by a timing
guardband TGB that accommodates for the maximum delay
increase that can be induced by degradations [8]:

Tclk = TCP (↵max) = TCP (↵nom) + TGB , (1)

where TCP denotes the critical path delay under worst-case or
nominal degradation conditions ↵max and ↵nom, respectively.
Guardbands lead to a reduced frequency and hence perfor-
mance loss. Many approaches to narrow guardbands have been
introduced in the past, but they typically come at the cost of
other circuit overheads, such as transistor size and area.

For inherently error-tolerant applications, such as in image
processing or machine learning, approximate computing has
emerged as a paradigm to trade off quality losses for various
metrics, such as power, performance or temperature [5]. More
recently, approximate computing principles have also been
applied to target critical path delay and timing guardband re-
ductions in the specific context of aging [3]. A simple approach
to do so is to run the design at a faster than worst-case clock

Tclk < TCP (↵max) while accepting resulting timing errors.
Although this method enables performance improvements,
timing errors due to insufficient guardbands have been shown
to result in non-deterministic and unacceptable quality losses
already for small guardband reductions [3].

To reduce clocks and trade off guardbands for deterministic
and controlled quality losses, dedicated logic approximations
can instead be applied. Lowering quality q, e.g. through
precision scaling in arithmetic units can be used to reduce
logic complexity and critical path delays, which can in turn
be exploited to run the design at a faster clock

Tclk = TCP (↵max, q) < TCP (↵max, qexact) (2)

compared to an exact realization at full precision qexact. At
the same time, the absolute delay increase due to degradations
is smaller and remaining guardbands are reduced. Such an
approach thus trades off guardbands for quality losses. How-
ever, existing work applied such tradeoffs only statically at
design time [3]. Although providing a speedup, the permanent
quality loss associated with a static approach has several dis-
advantages: (1) it sacrifices quality even with no degradations
present, and (2) it is limited to small degradations requiring
only small and thus permanently tolerable quality losses, as is
the case for aging as demonstrated in their work [3].

In this paper, we instead propose to dynamically apply

approximations and adaptively lower quality in order to com-

pensate for transient degradation-induced critical path delay

increases under permanently reduced timing guardbands. In
our approach, such occasional lowering of quality will be
imposed only as necessary, and limited only to periods in
which larger disturbances are experienced at runtime in return
for a permanent speedup. This makes our approach applicable
to a wider range of potentially significant disturbances. In
this paper, we specifically target temperature-induced degra-
dations. For typical technology parameters in which reverse
conditions do not occur [17], temperature variations can result
in slowdowns of up to 42% (at 75 �C compared to 25 �C) [2].
At the same time, as opposed to the permanent aging, their
transient nature allows for a temperature-aware runtime with
the capability to adaptively compensate for such slowdowns
through equivalent quality (and hence delay) reductions.

Approximations have been dynamically and adaptively ap-
plied in the past to target metrics including power and tem-
perature [13], [12]. However, instead of lowering quality to



reduce temperature, our aim is to adapt to temperature-induced
degradations in circuit delays by dynamically lowering quality
in exchange for reduced critical path delays. This can in turn
also help to limit further temperature increases and degrada-
tions similar to prior work. Achieving such dynamic delay
vs. quality configurable designs, however, is more challenging
than targeting other metrics: (1) Datapaths need to be designed
in a way that makes dynamic delay scaling a possibility.
Lowering of quality must result in a reduced dynamic worst-
case path delay of the circuit that is able to compensate for the
increase in circuit delays due to degradations; (2) The delay
overhead associated with dynamic configurability must not
exceed the delay reductions achieved due to quality scaling.
Specifically, while delay configurability is easy to achieve
in simple circuit structures, such as ripple-carry adders, base
delays of configurable designs must be competitive in terms
of achievable clock rates; and (3) Area and power overheads
associated with such a design need to be justifiable.
We make the following contributions towards these goals:
(1) We propose and implement two approaches to synthesize
quality- and delay-configurable variants of arbitrary basic data-
path units at a range of different speed, area and energy trade-
offs: (i) a duplication approach that is general in supported
approximation techniques and combines instantiation of data-
path units at different quality levels with appropriate muxing,
control and glue logic, and (ii) an approach for synthesizing
standalone datapath units that share logic but provide dedicated
delay profiles across different quality modes.
(2) Using such dynamically quality- and delay-configurable
components, we propose a methodology to synthesize com-
plete RTL designs that support dynamic adaptation at different
quality, delay and degradation levels.

The remainder of this paper is organized as follows: Sec-
tion II first presents an overview of the related work. Sec-
tions III and IV then describe our duplication and standalone
approaches for component and entire register-transfer level
(RTL) designs, respectively. Section V applies the provided
techniques to a real life IDCT design, and further conducts
a comparative analysis of the two approaches on this design.
Finally, Section VI lists our conclusions and future plans.

II. RELATED WORK

Various approaches have been proposed to reduce guard-
bands [8]. Our work is orthogonal to existing design time
solutions that loose the potential for runtime adaptivity. Several
approaches compensate for degradations by dynamically ad-
justing frequency or voltage. For example, in [2], temperature-
aware cell libraries are created and employed to perform static
timing analysis at different circuit temperatures. Such analysis
is used later to optimize and adapt the timing guardband
dynamically. However, switching frequency at runtime can
take several cycles and still incurs performance overheads.

The idea to apply approximations in the context of guard-
banding was recently introduced in [3]. As mentioned before,
however, their approach replaces guardbands with equivalent
permanent quality reductions statically at design time. By

contrast, our approach is aimed at minimizing quality losses
by applying quality scaling dynamically and adaptively in the
presence of transient and temporary circuit degradations.

Approximate computing has been employed in many forms
at the hardware level [5]. A wide range of approaches have
been proposed to improve performance or reduce energy
through approximations in basic arithmetic units, such as
adders and multipliers [6]. However, in most existing ap-
proaches, the accuracy is set at design time and runtime con-
figurability is lacking. The work in [14], [10], [11] proposes
general accuracy-configurable adder and multiplier designs,
but they remain focused on static design-time exploration for
specific component types.

Ye et al. [18] and Kahng et al. [7] proposed dynamically
accuracy-configurable adders. This, however, requires redun-
dant units or is limited to specific architectures in addition to
the overhead for configuration. Furthermore, their work only
targets adders. By contrast, our approach is general and can be
applied to any arithmetic unit. The authors in [13], [16], [15],
[9] propose approaches to arrive at quality configurable units
for general designs. However, their work targets energy, not
delay. These approaches incur significant delay penalties or do
not provide delay benefits under approximations, which makes
them unsuitable for guardband trade-offs. The work in [12]
uses input-dependent approximations to reduce temperature
under quality goals. It similarly does not target circuit-level
delay reductions in reaction to temperature changes.

III. QUALITY-CONFIGURABLE COMPONENT SYNTHESIS

In this section, we explain two different approaches used
to arrive at quality-configurable arithmetic units (with deter-
ministic precisions) as the building blocks of our systems. We
aim to design components and datapath stages that can operate
at M quality levels qm with different worst-case dynamic
path delays TDP experienced at runtime. The clock that each
component can be operated at will then be determined as:

Tclk = max
m

TDP (↵m, qm). (3)

Here, ↵m denotes the degradation point at which the design
will switch from quality level qm to the next lower one
qm�1. In other words, ↵m specifies the maximal amount of
degradation that is tolerated and experienced by the design
for it to stay in quality level qm, i.e. until it switches to the
next lower quality. Note that at the lowest quality (q0), the
design needs to be able to sustain worst-case degradations,
i.e. ↵0 = ↵max. Without loss of generality, we simplify and
limit discussions to designs with two quality levels for the
rest of the paper. Using only exact (E) and approximate (A)
modes, Eq. (3) becomes:

Tclk = max(TDP (↵s, qE), TDP (↵max, qA)), (4)

where ↵s defines the switching point between modes.
To maximize achieved speedup, we aim to minimize Tclk.

We can mainly focus on the delay in approximate mode as the
primary determiner of the clock in Eq. (4). This is because
its worst-case is determined by ↵max, which is an external
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Figure 1: Duplication example with qA < qE . wE and wA

denote exact and approximate unit bitwidths, respectively.

constraint on the design. By contrast, we can freely set ↵s to
guarantee that the delay in exact mode will never exceed the
approximate mode delay. In practice, we want to maximize
quality and ↵s, i.e. stay in exact mode as long as possible.
Hence, we set ↵s such that TDP (↵s, qE) = TDP (↵max, qA).

In the following, we describe two approaches for synthesiz-
ing components with different quality modes. An approach us-
ing duplicate but optimal component instances for each mode
will result in the best delay trade-offs, but suffers from energy
and area overheads. We propose an alternative approach for
synthesizing a standalone component instance with different
delay and quality modes. This allows for circuit sharing across
quality levels resulting in lower area and energy overheads
but also worse delay profiles compared to duplication. In
all cases, we compare against a traditional design that is
aggressively synthesized and optimized for best delay and
minimal guardbands.

A. Duplicate Design

Duplication is capable of generating design points at dif-
ferent quality and delay trade-offs allowing for configurability
at runtime. In such an approach, multiple units of different
quality levels are muxed together as shown in Fig. 1, where
the subunit selected by the mux determines overall output
quality and delay. This approach is general in approximation
techniques for each subunit. Without loss of generality, we use
truncation of least significant bits (LSBs) for this example.
Duplication and muxing-based approaches have been applied
for quality configuration in the past [13], [15], [18]. However,
existing work does not target configurability for delay, where
the challenge is in achieving both a fast base delay and a
significant delay profile between the different units and modes.

A simple setup instantiates pre-synthesized subunits con-
nected by a mux. This ignores opportunities for the synthesis
tool to optimize across subunit and mux boundaries. An
approach in which the whole design is synthesized together
is desired instead. To arrive at a design with different delays
across modes, each subunit needs to be constrained separately.
Since external input nets are in general shared, we need to
apply constraints at the level of internally separated subunit
inputs. We force the synthesis tool to not flatten the design,

Algorithm 1 Dual Mode Synthesis
1: function ITERATIVE SEARCH(RTL, CE,U ,CE,L, CA,U ,CA,L)
2: for CE := CE,L to CE,U step : sweep step size do
3: NetC  Ext BS(RTL,CA,L, CA,U , CE)
4: Net bests.append(NetC)
5: end for
6: Net pareto get pareto(Net bests)
7: end function
8:
9: function EXT BS (RTL, CA,L, CA,U , CE)

10: NetC  synthesize(RTL,CE)
11: Netbest  NetC
12: while CA,L  CA,U do . iterate while bounds not equal
13: CA  avg(CA,L, CA,U )
14: for counter 2 {0, ..., R� 1} do
15: NetC  resynthesize(NetC , CE , CA)
16: TA  report timing(NetC)
17: if TA  Tbest A then
18: Netbest  NetC
19: end if
20: if TA  CA then . if timing met,update upper bound
21: CA,U  TA

22: break
23: end if
24: end for
25: if TA>CA then . if timing didn’t meet, update lower bound
26: CA,L  TA

27: end if
28: Netc  Netbest
29: end while
30: end function

i.e. keep subunits decoupled, and then apply constraints to
each subunit separately. Note that this will also prevent the
synthesis algorithms from sharing logic across units, which
allows minimizing delays associated with each unit and mode
separately. Due to interferences, sharing of logic otherwise has
a negative impact on delay trade-offs between modes. Further
details on optimization of units are in Section III-B.

1) Duplicate Synthesis

We apply an iterative approach to synthesize a duplicate
design while minimizing delays in each mode. Assuming
degradations affect circuit delays monotonically [2], we mini-
mize delays under nominal conditions ↵nom, which minimizes
delays at any ↵. We denote the delay in approximate and exact
mode under nominal degradations as TA = TDP (↵nom, qA)
and TE = TDP (↵nom, qE), respectively. To find the actual
Tclk and ↵s associated with a design, delays are later re-
characterized under actual degradations.

Algorithm 1 shows the pseudo code of the iterative search
used to explore the timing constraint space across both modes.
The Iterative Search() function takes as its inputs upper (U)
and lower (L) search bounds denoted as CE,U and CE,L

for exact and CA,U and CA,L for approximate modes. We
find these bounds using a preprocessing step. To determine
lower bounds CE,L and CA,L, we use the lowest delay that
we can find when synthesizing a standalone subunit at the
desired level of accuracy1. We set CA,U = CE,L because a

1A binary search similar to the one presented later is used to find designs.



Table I: Traditional guardbanding vs. duplicate approach.

Metric Adder Multiplier
Trad. Duplicate Trad. Duplicate

TDP

[ps]
TA 149 167 (12.1%) 519 485 (-6.6%)
TE 175 (17.4%) 553 (6.6%)

Tclk [ps] 211 237 (12%) 737 690 (-6%)
Energy
[pJ]

qA 0.25 0.51 (103%) 11.2 14.3 (27%)
qE 0.56 (123%) 17.3 (54%)

Area [um2] 532 1,080 (103%) 9,038 14,203 (57%)

quality-configurable design whose approximate delay exceeds
the delay of a standalone exact design is not worth using (since
the latter would then win both in quality and delay at all times).
For CE,U , we use the exact mode’s best delay at ↵max since
otherwise the speedup would be less than 1.

Exact Constraint Exploration: The top-level
Iterative Search() function sweeps the timing constraint
space associated with the exact mode, invoking an extended
binary search (Ext BS()) per iteration to find a design
with the lowest delay associated with both modes. The
sweep step size is thereby chosen according to the number
of exact mode constraints to be explored.

Approximate Constraint Exploration: The Ext BS() function
finds the lowest delay associated with the approximate mode
given a constraint on the exact mode. Approximate mode
bounds passed to the top-level search determine the search
space. A binary search is used to quickly narrow down upper
and lower constraint bounds. Within each iteration, an inner
loop is used to iteratively re-synthesize the gate-level netlist R
times to arrive at an optimal design for the given constraints.

Logic Synthesis and Static Timing Analysis: In each iteration
of the inner loop, the current gate-level netlist (NetC) is re-
synthesized given a set of constraints and the delay information
for the generated design is reported. As a starting point, the
unit’s RTL is first synthesized using only its exact mode
constraints (line 10). Within the loop, the resynthesize() step
(line 15) then uses the previously generated gate-level netlist,
imposes a separate constraint on each subunit, and resynthe-
sizes the design. Finally, a report timing() function returns the
delay associated with the approximate mode in the generated
netlist of the design to feed back into the binary search.

The complexity of the synthesis algorithm is O(kRn logm),
where n is the number of exact mode constraint steps explored
in the outer Iterative Search() (n = b CE,U�CE,L

sweep step size c), m is
the number of approximate mode constraints with distinct
delay results in the inner binary search, and k depends on
the complexity of the logic synthesis and timing analysis step
as a function of the design size.

2) Duplicate Results

Table I shows results targeting temperature degradations of
up to ↵max = 75 �C for duplicate multiplier and adder designs
as compared to a traditional guardbanding approach (Trd)
synthesized for best CE,L. The designs use 32x32 and 24x24
bits in exact and approximate mode, respectively. Energy and
worst-case critical/dynamic path delays TDP are reported for
reference at a nominal ↵nom = 25 �C. By contrast, Tclk is the
clock period that guarantees operation across the whole tem-
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Figure 2: Standalone quality-configurable design approach.

perature range according to Eqn. (1) or (4). While the nominal
delay in exact mode is larger than in traditional designs, the
delay in approximate mode at high temperatures should be
lower than a corresponding guardbanding. Using the duplicate
approach, we achieve such a 6% speedup for the multiplier.
In case of the adder, however, no speedup is possible. The
mux and glue logic overheads exceed any delay reductions
in the approximate subunit. Furthermore, the duplication of
subunits incurs energy and area overhead. At the same time,
the duplication approach allows for independent and arbitrary
designs and approximation techniques to be employed in exact
versus approximate subunits. Energy in approximate mode
(qA) is generally smaller than in exact mode (qE) since we
assume that the LSB inputs are approximated to zero in this
case and do not change.

B. Standalone Design

Reducing the redundancy and the overhead associated with
the duplicate approach requires sharing part of the data path
across different accuracy levels. This is possible for arithmetic
units, such as adders and multipliers, in which one can
embed an entire level of accuracy within another given the
right precision scaling technique, such as LSB truncation or
rounding. For example, a 32x32 multiplier can be turned into
an approximated 24x24 multiplier by simply muxing the 8
input LSBs to zero and only using the upper 48 output MSBs
(Fig. 2). In practice, we replace muxes, reduce overhead and
provide equivalent functionality by raising (and maintaining)
the reset signal of the LSB bits of the connected input registers.
In theory, this should also reduce the delay since critical paths
in arithmetic circuits start from LSBs, and such paths are
disabled when hardwired2. In reality, however, synthesis tools
will normally strive to balance all paths and use available
slack to optimize the gate netlist for area and energy such
that all paths have similar delays [4]. As such, no delay gain
is obtained when muxing input LSBs to zero without changes
to the synthesis flow.

1) Standalone Synthesis

Similar to the duplicate case, we therefore propose an
approach in which standalone units are synthesized under
different constraints for each mode. We again combine an
iterative search space exploration with logic synthesis using

2Note that in the cycle switching to approximate mode, the worst-case will
be determined by all paths until changes have rippled through the muxes.



Figure 3: Example of gate-level logic with path sharing.

industry-standard tools. The search algorithm is the same
as presented in Algorithm 1. However, the complexity of
imposing two constraints on a shared design requires an
extended and more complicated logic synthesis step.

Logic Synthesis and Static Timing Analysis: As before, the
purpose of this step is to generate a gate-level netlist given a set
of constraints and report delay information for the generated
design. The main difference is in finding the correct paths
corresponding to the approximate mode in order to impose a
tighter constraint on them. In the duplicate approach, paths
were confined to the subunits for each mode and thus easily
separated. By contrast, in a shared design, approximate paths
are entirely embedded within the exact ones. Since switching
to a lower precision means forcing LSBs to zero, only paths
starting from non-zeroed inputs (shown in red in Fig. 2) can
possibly be on the critical approximate paths once muxes
have settled. Since such paths can be easily identified, we can
impose the tighter approximate constraint on them externally
while treating the design as a black box.

However, some of these paths can be further excluded from
being optimized for approximate mode to release pressure
during synthesis. As is well known and shown for the simple
example in Fig. 3, paths emanating from different inputs can
internally re-converge and partially share the same logic. If
input a in this example is externally muxed to zero, output x
of the AND gate will be forced to zero, the path from input
b will be disabled, and only paths through other inputs (e.g.
c) will contribute to delays. We provide a method to precisely
guide the synthesis tool to find only those paths contributing
to the approximate mode while discarding any such paths that
are internally masked.

We first derive a version of the design in which the
approximate mode is emulated. To do so, approximated LSBs
are hardwired to zero directly in the gate-level netlist of the
design. This involves parsing the netlist and introducing assign

to zero statements appropriately. Our algorithm then uses the
static timing analysis of the synthesis tool to request the delay
associated with the paths going through each cell in the design.
The synthesis tool will in turn report any cells whose output
ends up being hardwired due to the input zeroing. We modify
Algorithm 1 to consider any paths going through such cells
as masked and discard them. Hardwiring of LSB inputs is
removed and tighter delay constraints are only imposed on the
undiscarded paths (i.e., paths going through cells whose output
is changing) when the design is synthesized. We perform
this selection for a gate-level netlist NetC as part of the
resynthesize() step in Algorithm 1.

Figure 4: Standalone multiplier delay trade-offs.

2) Standalone Results

Fig. 4 shows the trade-offs between exact and approximate
mode delays obtained for the example of a 32x32/24x24
multiplier using our approach. We plot the design points
and the resulting Pareto fronts found by our iterative search
with (white-box) and without (black-box) discarding internally
masked paths. In case of standalone units, there is a clear
Pareto trade-off between approximate and exact delays. Due
to remaining logic sharing between unmasked approximate
and exact paths, optimizing paths associated with the lower
precision mode generally increases delays on exact paths, and
vice versa. Note that with inputs and subunits separated in
the duplicate case, there is no logic sharing and such trade-
offs do not exist3. The figure shows that using a white-box
approach reveals extra points on the Pareto front not found
by a pure black-box approach. This is because the white-box
method allows for more paths to be discarded, and thus more
opportunities for approximate mode optimization.

Table II and Table III summarize results for standalone
32x32/24x24 adder and multiplier designs targeting temper-
ature degradations of up to 75 �C as compared to a traditional
guardbanding approach. For each standalone design, we report
selected points I through IV on the Pareto front. We are able
to achieve a 8% and 4% speedup for the adder and multiplier,
respectively which is less than that of the duplicate approach
in case of the multiplier. Note that the standalone approach
still incurs area and energy overhead to support dynamic
configurability, but overheads are significantly smaller than
in the duplicate approach. At the same time, in case of the
multiplier, significantly reduced switching activity from LSB
gating results in overall energy savings in approximate mode.
Final energy consumption will be determined by the fraction
of time the system spends in exact versus approximate mode.

Since approximate delays determine the clock (and hence
speedup) while exact delays determine switching points, the
trade-off between delays translates into a trade-off between
speedup and switching point. These trade-offs are shown for

3A duplicate black-box approach that only constrains external inputs would
synthesize the subunits under both constraints resulting in similar trade-offs.



Table II: Traditional vs. standalone approach (adder).

Metric Trad. Standalone Configurable
I II III IV

TDP

[ps]
TA 149

134
(-10%)

135
(-9.4%)

137
(-8.1%)

141
(-5.4%)

TE
180

(20.8%)
176

(18.1%)
170

(14.1%)
164

(10.1%)

Tclk [ps] 211 194
(-8%)

195
(-7.5%)

196
(-7%)

202
(-4%)

Energy
[pJ]

qA 0.25
0.285
(13%)

0.277
(9%)

0.296
(17%)

0.293
(16%)

qE
0.336
(33%)

0.320
(26%)

0.347
(37%)

0.354
(40%)

Area [um2] 532 688
(29%)

650
(22%)

697
(31%)

711
(34%)

Table III: Traditional vs. standalone approach (multiplier).

Metric Trad. Standalone Configurable
I II III IV

TDP

[ps]
TA 519

497
(-4.2%)

499
(-3.9%)

503
(-3.1%)

506
(-2.5%)

TE
626

(21%)
618

(19.1%)
574

(10.6%)
546

(5.2%)

Tclk [ps] 737 707
(-4%)

708
(-4%)

714
(-3%)

720
(-2%)

Energy
[pJ]

qA 11.2
10.944
(-3%)

10.471
(-7%)

10.689
(-5%)

8.85
(-21%)

qE
15.83
(41%)

14.931
(26%)

15.109
(35%)

11.79
(5%)

Area [um2] 9038 13982
(55%)

12784
(41%)

13278
(47%)

9589
(6%)

Figure 5: Speedup vs. switching temperature trade-offs.

the adder and multiplier in Fig. 5. As can be observed, the
higher the speedup, the lower the temperature at which the
design must switch to approximate mode. Note that in this
figure, each line represents a different maximum temperature
that the design is expected to tolerate.

Overall, in comparison to duplication, the standalone ap-
proach achieves comparable or better speedups with lower area
overhead and potential energy savings. However, it does not
support independent unit designs for each mode and is limited
to LSB truncation or rounding as approximation technique.

IV. DEGRADATION-ADAPTIVE RTL DESIGN

In the following, we explain how configurable units syn-
thesized using one of the approaches in Section III can be
employed as building blocks of the entire RTL designs that
can adapt to degradations dynamically. One can either apply
the iterative search described in Algorithm 1 on the entire

design or synthesize each configurable unit in isolation and
then introduce them into the design. Although the former
approach is simple and can be applied with only minor
changes to the algorithm, it requires repeated resynthesis of
the complete design and the result will only have as many
modes as provided by each configurable unit. By contrast, an
isolated approach, although more involved, can provide a finer
granularity of up to P

2 quality levels and switching points
for a design with P units each with 2 modes. Furthermore,
each iteration of synthesizing an isolated unit has significantly
reduced synthesis complexity. However, since the total number
of combined iterations is larger, an overall runtime comparison
depends on the specific design space.

A. Synthesis of the Entire Design

This approach applies the Iterative Search() from Algo-
rithm 1 to the entire design. This means that the combined RTL
of the design is explored and repeatedly resynthesized. Doing
so requires minor changes to be applied to the logic synthesis
and timing analysis step described in Section III. The resyn-

thesize() step needs to be modified to apply the constraints to
every datapath stage whether that stage contains a quality-
configurable unit or not. Non-configurable stages thereby
need to be synthesized to meet the tightest constraints. This
means applying the approximate constraint (CA) on quality-
configurable units as well as all non-configurable stages, while
applying the exact constraint (CE) only to the configurable
units. The report timing() step also needs to be adjusted to
report the wort-case delay among all the non-configurable
stages and all the configurable stages in approximate mode.
Since the same constraints are applied to all configurable units,
they will end up with similar delays, clocks Tclk and switching
points ↵s, where the worst case among all components will
determine the clock and switching point for the whole design.
In other words, individual units will all switch at the same
time and ↵, i.e. for a design with two modes, all quality-
configurable units will either be in exact or approximate mode
at any given point in time.

B. Synthesis in Isolation

This approach allows for the design of systems supporting
a combination of modes across different units, i.e. systems in
which units can switch modes independently. This requires ex-
ploring the design space for each configurable unit in isolation
following one of the approaches in Section III. Units are then
combined together in an optimal fashion and embedded back
into the design to arrive at a complete configurable system as
Fig. 6 demonstrates.

Preprocessing: A preprocessing step similar to the one in
Section III-B is used to find the bounds CA,U,i, CA,L,i, CE,U,i

and CE,L,i, associated with each configurable unit i.
Finding Pareto Fronts: This step iterates over the config-

urable units in the design and generates Pareto fronts PFi

(similar to Fig. 4) associated with each unit i. This is achieved
by calling the Iterative Search() in Algorithm 1 with bounds
obtained from the preprocessing step and the unit’s RTLi.



Figure 6: Synthesis in isolation.

As a result, each unit’s Pareto front PFi contains a list of
design points j associated with an optimal netlist Neti,j and
its approximate delay TA,i,j .

Finding Optimal Combinations: We then find optimal com-
binations of individual unit design points to arrive at a list
of optimal configurations for the configurable portion of the
design. Each configuration cn is given as a mapping cn(i) that
selects a particular design point jn for each unit i.

Finding possible cn involves iterating over each point j of
every unit i. In each iteration n = (i, j), we use the j

th

design point of unit i as the seed for a new configuration
cn in which cn(i) := j. We then find design points cn(k)
for every other unit k 6= i such that their approximate delay
TA,k,cn(k) is closest to the seed unit’s (i) approximate delay
TA,i,cn(i) without being larger. We discard configuration cn if
such a point can not be found for any of the other units.

Note that the reason behind selecting the closest TA,k to
the seed’s TA,i is that for two design points associated with
a unit, the one whose TA is the smallest (and hence further
away from the TA of interest) has the largest TE and hence
less tolerance for disturbance, rendering it less optimal.

Synthesis of the Completed Design: This final step com-
pletes the synthesis of optimal configurations for the entire
design. For each mapping cn found in the previous step,
the selected netlists Neti,cn(i) for each unit i are embedded
back into the design, and the resulting design is synthesized
using the worst-case maxi(TA,i,cn(i)) as the constraint with
configurable units in approximate mode. The final clock of the
design is determined based on synthesis results, and a post-
processing step is used to find the switching points ↵s,i for
each configurable unit i within the design.

V. EXPERIMENTS AND RESULTS

We apply our approach to the design of an IDCT block for
JPEG imaging applications under temperature degradations.
We use a fixed-point IDCT with 15-bit coefficients and a
26x15 multiply-accumulate (MAC) unit in exact mode. We
allow for up to 8 bit of LSB truncation while maintaining
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Figure 7: Our IDCT compared to traditional guardbanding
in terms of achieved clock (Tclk), energy in exact (E) and
approximate (A) mode, and area.

acceptable image quality. As such, the precision of the MAC
unit is lowered to 18x7 bits in approximate mode. The MAC
unit is pipelined and only the multiplier stage is synthesized to
be configurable. The adder stage is not on the critical path and
can remain in exact mode at any temperature. Configuration of
the MAC unit and IDCT block is assumed to be controlled by
existing power and temperature monitoring and management
circuits in the system [2].

We apply an approach synthesizing either duplicate or stan-
dalone units in isolation as described in Section IV. We again
compare results against a traditional design aggressively op-
timized for minimal delay and guardbands. We use Synopsys
DesignCompiler with the ”ultra compile” option as synthesis
and static timing analysis backend, We let DesignCompiler
synthesize fast tree-based adders and multipliers from behav-
ioral ”+”/”*” operators, where traditional and our designs are
constrained to achieve the best CE,L and performance. We
use the temperature-aware cell libraries from [1], [2] for syn-
thesis and timing characterization under different temperature
conditions. The libraries are based on the 45nm NanGate
open cell library and contain delay and power information
of every cell under different temperatures. We target a range
of ↵nom = 25 �C to ↵max = 75 �C, for which a traditional
IDCT design requires a Tclk = 833 ps including a minimal
240 ps guardband.

Fig. 7 shows results for the 26x15 multiplier used in
the IDCT including surrounding registers (Fig. 7a) and the
complete IDCT design (Fig. 7b). Using a duplicate approach
for the multiplier provides a speedup of 22%. By contrast,



Figure 8: Standalone IDCT speedup vs. switching temperature.

the speedup using a standalone multiplier is 9%. However,
duplication incurs a higher energy and area overhead at the
component level, where a standalone multiplier provides 6%
energy savings in approximate mode.

When incorporated into the complete IDCT design, similar
speedups of 21% and 8.5% are maintained corresponding to
Tclk of 687 ps and 767 ps, respectively. They are slightly lower
due to the impact on register loads not considered during
isolated synthesis. At the same time, the impact of component
overheads to overall IDCT area and energy become negligible
in all cases. Energy differences are less than 1%, and area
overheads for the duplicate and standalone IDCT variants are
2% and 4%, respectively.

The speedup vs. switching temperature trade-offs using a
standalone multiplier are shown in Fig. 8. By contrast, with a
duplicate multiplier, the design requires switching from exact
into approximate mode at ↵s = 36 �C.

Finally, Fig. 9 compares the output of our IDCT design
using a duplicate multiplier against a traditional design. Our
design maintains a high image quality of 39 dB PSNR at
maximal degradations with a 18% shorter cycle time and thus
faster clock compared to a traditional guardbanding approach.
By contrast, timing errors for the traditional design using
the same Tclk as in our approach lead to catastrophic image
failures. Note that the standalone approach provides the same
image quality results with a Tclk of 767 ps.

VI. SUMMARY AND CONCLUSIONS

Designers traditionally use worse-case guardbanding to
battle run time variations. This approach leads to a per-
manent performance overhead. In this work, we propose a
new design paradigm to dynamically and adaptively trade-
off timing guardbands for quality losses. Such a paradigm
requires runtime configurable units capable of switching to
a lower precision and latency. We introduced two approaches
to implement such units integrated into complete RTL designs.
Results for an IDCT example under temperature degradations
demonstrate more than 20% speedup for a worst-case quality
loss of 20%. In future work, we intend to apply our approach
to other designs with more than two levels of configurability.
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 Tclk = 687ps
PSNR = 49dB�

Tradi.onal	(75°C ):	
Tclk = 833ps

PSNR = 49dB�

Tradi.onal	(75°C):	
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Figure 9: Quality vs. cycle time for different approaches.
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