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Abstract: In this paper, we propose automatic generation of bus-based commu- 
nication architectures from an abstract model reflecting only the com- 
munication topology. Tasks include protocol selection for each bus, 
master/slave assignment for each component, interrupt handling and 
addressing for synchronization between components, and arbitration to 
resolve multiple accesses on a bus. We present a set of experimen- 
tal results demonstrating how the proposed approach works on typical 
system designs. Experimental results show the benefits of our method- 
ology and demonstrate the effectiveness of automatic model generation 
for communication design. 

1. INTRODUCTION 
With ever increasing SoC complexities, design of system communi- 

cation structures is becoming an in increasingly important factor and 
bottleneck. Together with time-to-market pressures, communication de- 
sign requires extensive design space exploration in a short amount of 
time. Typically, designers use models of a system to validate and evalu- 
ate different designs. Traditionally, these models are manually written, 
which is a tedious, error-prone task, and time-consuming task, severely 
limiting exploration opportunities. 

In order to tackle these problems, we propose a communication design 
flow with automatic generation of communication models from a virtual 
architecture model. Figure 1 shows the communication design flow [5] .  
Design starts with the architecture model which reflects the structure 
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Figure 1. Communication design flow. 

of processing components/elements (PEs) , but where communication is 
done abstractly on a message-passing level. Communication design is 
then divided into two tasks: network design and link design. 

During network design, the topology of the communication architec- 
ture is defined and abstract message passing channels between proces- 
sors are mapped into communication between adjacent stations of the 
communication architecture. The network topology of communication 
stations connected by logical link channels is defined, bridges and other 
communication elements are allocated as necessary, and abstract mes- 
sage passing channels are routed over sets of logical link channels. The 
result of the network design step is a link model of the system which 
represents the topology of the communication architecture and in which 
stations communicate via untyped, logical links. 

During link design, logical links between adjacent stations are then 
grouped and implemented over an actual communication medium (e.g. 
system busses). For each group of links to be implemented over a single, 
shared medium, a communication protocol is selected and parameters 
such as addresses and interrupts for synchronization are assigned to each 
logical link. 

As a result of the communication design process, a pin-accurate or 
transaction-level communication model of the system is generated. Com- 
munication models are fully structural where components are connected 
via busses and communicate in a timing-accurate manner based on me- 
dia protocol timing specifications. 
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In this paper, we concentrate on the link design task and we will 
present our approach to speeding up the link design process by enabling 
automatic model refinement. The rest of the paper is organized as fol- 
lows. Section 2 gives an overview of related work. Section 3 shows our 
refinement-based link design flow and Section 4 looks at  the individ- 
ual tasks of link refinement. Finally, we present experimental results in 
Section 5 and wind up with a summary and conclusion. 

2. RELATED WORK 
Recently, system-level design languages have been proposed as vehi- 

cles for so-called transaction-level modeling (TLM) for communication 
abstraction [4] [7]. However, TLM proposals so far focus on simula- 
tion only and they lack the path to vertical integration of models for 
implementation and synthesis. 

There are several approaches dealing with automatic generation of 
communication architectures [2] [3]. These approaches, however, are 
usually based on target architecture templates and limited in their sup- 
port for general architectures and applications. Furthermore, most of 
the work has been done in optimizing communication architectures for 
specific designs [6] [8]. Finally, approaches that deal with optimization 
and automatic decision making for communication synthesis [ll] [9] are 
usually lacking support for generating implementations for those deci- 
sions. 

In previous work [l], we proposed an automatic communication refine- 
ment flow. In this paper we extend this work to support more general 
architectures with networks of interconnected busses, realistic commu- 
nication mechanisms and advanced synchronization primitives. 

3. LINK DESIGN 
Link design implements the functionality of link layer, media access 

layer and protocol layer and inlines them into corresponding compo- 
nents. The link layer defines the type of a communication station (e.g. 
master/slave on a bus) for each of its incoming or outgoing links. It 
is also responsible for implementing synchronization between commu- 
nication stations, e.g. via interrupts or by polling in case of interrupt 
sharing. 

The media access layer is responsible for slicing blocks of bytes into 
bus words. Furthermore, it resolves simultaneous bus accesses of compo- 
nents through arbitration. Depending on the arbitration scheme chosen, 
additional arbitration components are introduced into the system as part 
of the media access layer. 
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Finally, the protocol layer is responsible for driving and sampling the 
external pins according to the protocol timing diagrams and thereby 
matching the transmission timing on the sender and receiver sides. 

3.1 Inputs and Outputs 
Link design starts from a link model, which represents the topology 

of the communication architecture. Components on the top level of 
the design communicate with each other via logical link channels. Each 
channel provides send/receioe methods for enable data transactions with 
message passing semantics. 

During the design process, the user provides a set of design deci- 
sions such as protocol selection for each bus, master/slave assignment 
for components, address and interrupt assignment for logical links, and 
arbitration scheme and bus access priorities. 

With these inputs, the link refinement tool produces an output com- 
munication model that reflects the bus architecture of the system. In the 
output model, the top level of the design consists of system components 
connected by wires of the system busses. The components themselves 
are refined down to bus-functional models that communicate via ports. 

3.2 Databases 
Link design is supported by a media database that consists of a 

database of bus protocols and a database of associated bus-functional 
component models. 

3.2.1 Bus database. The bus database contains models of 
busses including associated protocols. Bus models in the bus database 
consist of a stack of two layers: protocol layer and media access layer. 
At the bottom of the stack, the protocol layer is connected to the actual 
bus wires and it implements the primitives defined by the bus protocol 
for data transfers, synchronization and arbitration. On top of the pro- 
tocol layer, the media access layer provides an abstraction of external 
communication into data links and memory accesses by using and com- 
bining bus primitives to regulate media accesses and slice abstract data 
into bus words. 

Each protocol layer can have two separate sides with different im- 
plementations for bus masters and bus slaves. Each layer provides a 
protocol implementation for one single component connected to the bus. 
Protocol layer models connect to the bus wires through ports of the 
model and pins of the component. Layers are stacked on top of each 
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other and connect via interfaces where the media access layer calls the 
methods of the protocol layer beneath it. 

3.2.2 Bus-functional component database. For components 
with fixed, pre-defined interfaces and communication functionality, the 
component database has to contain a bus functional model of the com- 
ponent. A bus functional component model accurately describes the 
component interface at  the pin level and it provides a simulation model 
of communication aspects of the component. 

For programmable components with flexible computation behavior 
but fixed, pre-defined interfaces and communication functionality, a bus 
functional model with at least two layers has to be provided in the 
database: a top level bus functional layer describing the component pin 
interface on the outside and an internal, empty hardware abstraction 
layer (HAL) describing the interface for accessing the bus medium from 
the software on the inside. In addition, the HAL has to provide templates 
of interrupt handlers for each external interrupt line of the processor. 

4. LINK REFINEMENT 
Link refinement is the process of transforming the input link model 

into a communication model based on the user-supplied decisions. The 
refinement process can be divided into five major steps, namely, channel 
grouping, bus functional model instantiation, synchronization synthesis, 
arbiter/interrupt controller insertion, and bus wiring. be further divided 
into sub-steps. 

In the following, we will outline transformations for link refinement. 
More details about this process can be found in [lo]. We will use a simple 
example (Figure 2(a)) where 2 PEs (PE1 and PE2-0S), 1 IP ( I P l ) ,  a 
shared memory (M1-LK) and a bridge (Bridge) are allocated. They are 
communicating using message passing channels L1 and L2. The design 
decision for link design are made as shown in Figure 2(b). For example, 
the channel L1 is assigned to interrupt intA and address U~UUU2UUOU. 

4.1 Channel grouping 
The first task of link refinement is channel grouping which combines 

different links mapped onto a bus. Message passing channels between 
components will be grouped into transactions over a single, shared bus 
and unique bus addresses will be assigned to each link and each memory 
interface or slave register mapped onto the bus. 
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(a) Link model. (b) Design decisions 

Figure 2. An example of link model and design decision. 

4.2 Bus-functional component instantiation 
As a next step, bus functional models for components with fixed, 

predefined bus interfaces (e.g. programmable processors, IPS, bridges 
and system memories) are taken out of the bus-functional component 
database and instantiated in the design. 

Bus functional models for programmable components have to include 
a definition of the interrupt capabilities of the component. The top level 
bus functional shell defines the interrupt pins available at the physical 
component interface and the hardware abstraction layer (HAL) model 
provides corresponding empty interrupt handler templates. During link 
refinement, interrupt lines from slaves are connected to the interrupt 
pins of programmable components and interrupt handlers in the HAL 
are generated by filling the templates. Finally, interrupt tasks triggered 
by the HAL interrupt handlers are generated in the operating system of 
the processors. 

4.3 Synchronization synthesis 
In order to preserve the semantics of the original input model, syn- 

chronization between components has to be introduced whenever nec- 
essary. The link layer is responsible for implementing synchronization 
through interrupts and/or polling. Link layers have different implemen- 
tations depending on the type of station (master/slave). Methods on 
the master side wait for interrupt from slaves before invoking media ac- 
cess layer methods to perform the actual data transfer. On the slave 
side, a slave will send an interrupt to notify the master about any data 
transfer request. In case of memory or register (memory-mapped I/O) 
accesses, slave components are assumed to be always ready and no extra 
synchronization is necessary. 
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Figure 3. Communication model example. 

4.4 Arbiter/Interrupt controller insertion 
If multiple master components are connected to a bus, arbitration 

becomes necessary to resolve conflicting accesses of bus masters. The 
arbitration mechanism will be instantiated from the bus database as part 
of the bus protocol master implementation. All masters are assigned 
additional arbitration ports connected to the arbiter on the bus. The 
arbiter will be instantiated at the top level of a design together with 
the arbitration wires. Based on design decisions, we generate a priority- 
based or round-robin arbitration component. 

If a master communicates with more than one slave, it will require 
an interrupt controller to handle synchronization requests from multi- 
ple slaves. For each slave on a bus, an interrupt port is created and 
connected to the corresponding interrupt wire on the bus. Finally, an 
interrupt controller is generated and inserted into the bus master corn- 
ponent . 

4.5 Bus wiring 
After all bus-functional models of processing and communication ele- 

ments are generated and/or inserted from the database, components at 
the top of the design need to be connected to each other through bus 
wires. Bus-functional component models define the bus ports of each 
station. Connections between port and busses are defined through the 
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Traffic Channel 
(bytes) (num.) 

Examples 

Table 1. Design decisions for link design. 

Medium 
(master /slave) 

port mapping. Finally, interrupt and arbitration lines are connected 
based on the priorities selected by the user. 

As a result, the final communication model of the design is gener- 
ated. Figure 3 shows the communication model for the example from 
Figure 2. Logical link channels from the link model have been inlined 
into the connected components. Media access and protocol layer chan- 
nel adapters are taken out of the bus database, inserted into the bus 
functional model of the corresponding components and connected to the 
logical link adapters. Additional communication elements such as inter- 
rupt controllers (PIC) and arbiters (Arbiter1 and Arbiter2) are inserted 
into the design. Inside programmable components (PEZ), interrupt ser- 
vice routines (ISR) and interrupt handling methods (intA and intB) are 
generated and inserted for synchronization with other system compo- 
nents (PE1 and IP1) .  

5. EXPERIMENTAL RESULTS 
Based on the described methodology and algorithms, we developed a 

link refinement tool for automatic generation of communication models. 
We performed experiments using four industrial strength examples: a 
JPEG encoder (JPEG),  a voice codec (vocoder), an MP3 decoder (MP3) 
and a baseband platform (Baseband) which combines a JPEG encoder 
with a voice codec. For each example, we implemented several different 
architectures. Table 1 shows the total traffic, the number of logical link 
channels and the allocated architecture each. 
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Link I BF I Mod. (ins. + del. - D B )  Examples 
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Tool Man. Gain 
(sec) (hr) 

Table 2. Experiment results of link refinement. 

Table 2 shows the results of link refinement. Overall model com- 
plexities are given in terms of code size using lines of code (LOC) as a 
metric. Results show significant differences in complexity between input 
and generated output models due to extra implementation detail added 
between abstraction levels. To quantify the actual refinement effort, the 
number of modified lines is calculated as the sum of lines inserted and 
lines deleted whereas code coming from database models is excluded. We 
assume that a person can modify 10 LOC/hour. Thus, manual refine- 
ment would require several hundred man- hours for reasonably complex 
designs. Automatic refinement, on the other hand, completes in the or- 
der of seconds. In order to compute the productivity gain, we assume 
that design decisions (address/interrupt assignment, arbitration) for link 
refinement can be done in 5 minutes. Results show that a productivity 
gain of around 1000 times can be expected using the presented approach 
and automatic model refinement. 

6. CONCLUSIONS 
In this paper, we presented a methodology to automatically gener- 

ate communication models from a representation of the communication 
topology and abstract communication channels going across. During 
this link design process, logical links between adjacent components are 
grouped and implemented over a system bus and link, MAC and protocol 
layers are implemented at the interfaces of components. 

Using several industrial-strength examples, the feasibility and benefits 
of the approach have been demonstrated. Huge productivity gains can 
be obtained using automatic link refinement. Our main contribution 
in the paper is the automation of a time consuming and error prone 
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process to achieve better designer productivity, thus enabling designers 
to explore a large part of the design space in a shorter amount of time. 
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