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Abstract. Embedded system design complexities are growing exponen-
tially. Demand has increased for modeling techniques that can provide
both accurate measurements of delay and fast simulation speed for use in
design space exploration. Previous efforts have enabled designers to esti-
mate performance with Transaction Level Modeling (TLM) of software
processors but this technique typically does not account for the effect of
memory latencies. Modeling latency effects of a cache can greatly increase
accuracy of the simulation and assist designers in choosing appropriate
algorithms. In this article, we show the implementation of a cache model
and its integration into a processor TLM. We demonstrate a method for
extracting information about memory accesses from the final binary and
abstracting them into cache model accesses. Our methodology is tested
on a common embedded processor application with two algorithms ex-
hibiting different cache behaviors. Our experiments show that the cache
model can achieve results comparable to a cycle-accurate ISS, but with
very little overhead compared to native, host-compiled code execution.

Keywords: Cache; Transaction Level modeling; System-level design.

1 Introduction

Modern System-on-Chip (SoC) designs are becoming more complex as the ca-
pacity of chips is increasing dramatically. Deriving an accurate model for several
candidate designs has always been a problem in the limited time given to the
vendors to finalize their product.

Traditional Instruction Set Simulators (ISS) provide cycle-accurate precision
of the functional and timing behavior, but their simulation speed is prohibitively
slow. Thus, these simulators are often unacceptable for exploring the design space
in the limited time available.
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Increasing the level of abstraction in system modeling can increase the simula-
tion speed by two or even three orders of magnitude. Transaction Level Modeling
(TLM) [9] is the most commonly used and accepted approach, for abstracting
the system behavior both in communication and computation [15]. With this ap-
proach the simulation speed is dramatically increased, enabling a larger design
space to be covered.

Modern processors contain at least one extra level of memory hierarchy e.g.
cache between the CPU and the memory to take advantage of data locality
and hide the memory latency. Loading and storing data from the cache incurs
much less delay than direct communication with memory. However, due to their
dynamic nature, accurate estimates of cache hit/miss rates and associated cache
access delays are impossible to obtain statically. Yet, cache effects can have a
significant influence on overall software execution performance [11].

Existing high-level, abstract processor TLMs for native, host-compiled execu-
tion of computation [15] currently do not take the behavior of a cache into ac-
count for execution-delay estimation. As it stands, the simulator back-annotates
functions with a simple time-estimate based on the number of cycles the pro-
cessor takes to complete a given instruction. Each memory access is assumed to
take an approximate fraction of the execution delay between CPU and memory.

In order to accurately model a processor, the simulator must also model the
behavior of a cache. Two different algorithms of the same application may have
different cache access behaviors, which will cause one of them to outperform the
other. In the current environment, not only could this not be determined from
the TLM estimated delays, the model actually predicts the opposite relative
performance for such algorithms because of their higher complexity.

In this paper, we describe our approach to integrating the cache model with
a transaction-level model of the processor. We will present the overhead in sim-
ulation time and the increase in simulation precision compared to a normal
processor TLM simulation.

1.1 Problem Definition

We use a standard system-level design language (SLDL) [5] to obtain TLM
simulation results for an ARM processor. Furthermore, we utilize the SWARM
ISS [4] to obtain cycle accurate information on execution. Our work is based on
an existing processor and operating system model for accurate yet native, host-
compiled software execution [15]. However, to the best of our knowledge, none
of the existing high-level processor modeling approaches provide a behavioral
model of a cache for simulation-time estimation.

A cache simulator is provided and its implementation is discussed as a SLDL
channel. Needed addresses are obtained from the final target binary and symbol
table. The generated addresses are used in back annotated cache calls. The
cache model dynamically updates its status as the simulation is run and returns
appropriate delay for each access.

We demonstrate our approach using matrix multiplication as a test applica-
tion. Matrix multiplication is the foundation of many embedded applications
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like Discrete Cosine Transform (DCT), and is convenient because it may be
implemented with different algorithms with known different cache access behav-
ior [10,8]. We have implemented two matrix multiplication algorithms: a näıve
matrix multiplication which exhibits poor cache utilization, and a cache aware
matrix multiplication that utilizes the cache to hide memory latencies. We show
how the results for the TLM and TLM+cache model differ, and we use SWARM
as our reference point for accuracy.

1.2 Outline

The rest of the paper is organized as follows: In Section 2 we discuss the related
work. Section 3 describes the design steps taken to refine the application down
to its target binary and to use that information for back-annotating cache calls
into the TLM code. In Section 4, we give a brief explanation of our cache model
and its interfaces. Section 5 introduces our application and presents our results.
Finally, Section 6 discusses future work, and we will conclude our paper with a
summary in Section 7.

2 Related Work

Traditionally, embedded software is validated using virtual prototyping environ-
ments that rely on instruction set simulation of processors [2]. ISS, can provide up
to cycle-accurate results, but at the expense of slow simulation speeds, especially
in multi-processor contexts. We use the Software ARM (SWARM) simulator [4]
as such a cycle-accurate ISS reference to compare our approach against.

To provide fast virtual platform models, there are approaches for native, host-
compiled software execution running in a model of the OS and the software
environment. Our work extends previous approaches on such high-level, abstract
processing modeling [15] based on the SpecC [5] SLDL. Our approach and results
are, however, applicable to other processor models [3,14] built on top of other
C-based, event-driven SLDLs such as SystemC [6].

There have been similar attempts for high-level modeling of processors with
caches for accurate simulation-time measurements. InterDesign Technologies uses
a high speed CPU model for hardware/software co-simulation. Their product,
FastVeri [1], converts software code into a virtual CPU model in SystemC. To
keep cycle accuracy, FastVeri also back-annotates software code with delays from
their instruction and data cache emulation. Their process for cache model in-
tegration is similar to ours in that the C source code is decomposed into basic
blocks. Their approach, however, is proprietary and not easily extensible towards
standard system-level design flows.

There are two possible methods for modeling a cache: mathematically or be-
haviorally. A mathematical cache model involves the derivation and use of cache
miss equations for specific code patterns, and their evaluation to produce static
delays [13]. While this is fast to simulate, it is necessarily limited to specific
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algorithms that match code patterns for which such an equation has been de-
rived [7,12]. Being based on static off-line analysis, mathematical models inher-
ently introduce errors into the model, and cannot be extended to handle dynamic
effects such as context switching.

3 Methodology

As previously mentioned, current processor models provide no method of mod-
eling memory access latencies. A back-annotation provides execution delays by
inserting function calls into user tasks to update the simulation time with static
delays . Delays can be obtained through estimation or ISS-based measurements.
No runtime analysis or memory latency modeling occurs. We base our work on
a processor model that has user tasks wrapped in a hierarchy of behaviors. This
hierarchy includes a CPU as an execution unit for user code, a simplified model
of an OS consisting of a task scheduler and drivers, a HAL for the OS and finally
the hardware core [15]. In order to enable modeling of memory access latency
within the TLM simulation, it is necessary to augment this processor model to
include a model for a cache.

3.1 Cache Model Integration

As a hardware component, the cache fits most appropriately in the core level of
the processor TLM, as shown in Fig. 1. We note that the OS model is very simple,
and because it consists of only a task scheduler it makes no memory accesses
that reflect real-world behavior. As a result, we cannot model memory activity
by the OS itself. User tasks, by contrast, may make many accesses to memory
for computation purposes, and we can observe that algorithms selected in the
specification exactly reflect those in the resulting code generated for execution
on the target platform.
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Fig. 2. Design flow

Due to the likelihood of memory accesses that are data-dependent, such as
array indexing, it is necessary to model memory behavior at run time when that
data is available and the address being accesses can be computed. To accomplish
this, we follow the general back-annotation approach and introduce function calls
to update the cache model as necessary.

3.2 Base Address Acquisition

Currently, we support access to static global variables/arrays data in our solution.
Addresses for our cache model are computed at execution time of the TLM by code
that is back-annotated into user behaviors.To compute these addresses, two pieces
of information are needed. First, we need the static base address from which the
memory offset is calculated, which is available prior to execution. The dynamic
offset from this base address is required (in the case of accessing arrays), and this
is available only at runtime. Calls to the cache model secondly pass the memory
address being accessed and the cache model will return a modeled latency based
on whether the data was available in the cache or not.

Obtaining the base addresses requires intimate knowledge of the memory lay-
out of generated code. As shown in Fig. 2, the needed information about memory
layout can be obtained from the target binary. This binary is generated starting
from the user specification by proceeding through the system-level refinement pro-
cess down to a TLM of the system. A software synthesis process generates target
C code that will run on the final system. This code is then cross-compiled for the
target processor to obtain the final target binary. At this point the symbol table
with base addresses for global variables has been created. The binary is suitable for
simulation on an instruction set simulator to verify results or to obtain accurate
information about the execution delay of the various blocks of code.
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Fig. 3. Back annotated code for a basic block

3.3 Back Annotation

The second step for creating our cache-augmented TLM is to insert the cache
model into the basic TLM, and back-annotate it with the proper cache model
calls. As seen in Fig. 2, the back annotation process pulls address information
from the synthesized binary, basic block timing information either from an es-
timation tool or from a cycle accurate simulation, and injects API calls to the
cache model.

A cache channel is instantiated in the core behavior of the TLM. Back an-
notation also inserts memory address computations into user code wherever a
global variable appears in a statement. Cache calls are inserted to update the
model and obtain the memory latency as shown in Fig. 3. Currently, this process
is done manually, but we plan to automate this process in the future. The code
snippet shows an example of a back-annotated memory address computation
and cache model update for a basic block of code.

4 Cache Model Implementation

This section details the process of implementing and integrating the cache model
into the processor model. The purpose of integrating the cache model into the
TLM is to dynamically update and simulate the behavior of a cache in terms
of hit and miss delay. Because memory accesses may be data-dependent, and
because the OS model may context-switch between tasks, our cache is maintained
dynamically at runtime.

4.1 Cache Model

We use a behavioral modeling approach, which involves the use of data structures
that emulate the state of a cache at any point in time. These structures are
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updated at runtime as memory is accessed. This method allows the user to
observe the state of the cache at all times and can model any memory access
pattern. Its drawback is a performance penalty due to additional overhead for
each memory access to maintain the cache state. We chose to dynamically model
a behavioral cache for greater flexibility. Our cache model consists of less than
200 lines of SpecC code and can easily support various cache organizations.

There are two options in the SpecC language for implementing a cache model: as
a behavior or as a channel. A behavior consists of a main method, and is associated
with an active thread while a channel is a passive component [5]. Since the cache
state only needs to be updated when it is being called by a behavior, we chose to
build the cache as a SpecC channel. This channel implements an interface that
defines cache init() and cache call() functions available for cache communication.

The cache init() function is used to create and initialize the cache model. It is
called before the OS is instantiated. It allows the user to configure the cache model
based on the number of sets, associativity, and cache line size. The cache call()
function provides behaviors a means of updating the cache state and of obtaining
cache access delays. To reduce function call overhead, its interface accepts an array
of cache accesses containing an ordered sequence of memory accesses with which
the cache will be updated and for which a total delay is returned.

4.2 Address Tags Matrix Implementation

Since our cache model only needs to take into account occurrences of cache hits
or misses to calculate the delay, we model only functional behavior of the cache,
e.g. whether a particular address does or doesn’t exist within the cache. For our
purposes, we are not concerned with the data that would be stored. As such, our
model is simply a matrix of address tags where the rows represent the number
of sets and the columns represent the associativity. Fig. 4 shows an example of
a typical two-way set associative cache on the left, and our implementation of
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Cache Model

Tag OffsetSet

Tags 0 Tags 1 Tags 1Tags 0
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Address Word:

Fig. 4. An example of a typical 2-way set associative cache(left) and our tags matrix
representation of the same configuration(right)
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it using the tags matrix on the right. As shown in the figure, the tags, set, and
offset are determined by the address bits. As described, the cache model on the
right does not hold any data.

In a typical cache, there are three types of misses which differ by cause:
compulsory, conflict, and capacity [4]. A compulsory miss occurs on a first access,
a conflict miss happens when the cache is not associative enough, and a capacity
miss means the cache size itself is not large enough. When a miss occurs, a
replacement policy is needed to appropriately evict an old tag from the cache
and replace it with the new tag. Our model implements the most commonly used
algorithm, the Least Recently Used (LRU) replacement policy. In this method,
the tag that was the least recently used within a set is evicted from the cache and
replaced with the new, most recently used tag. To implement this functionality,
we append a current time stamp to each element as it is placed in the address
tags matrix. In this way, when a tag needs to be removed from the cache, the
element with the smallest time stamp is the least recently used. We define the
time stamp variable as an unsigned long long integer, which takes values up to
264, to ensure that it does not roll over to zero as it increments. This means that
the cache must be accessed more than 264 times for a single application before
the LRU replacement policy is corrupted.

4.3 Cache Access Implementation

A delay time in cycles is calculated for each address that is passed to the cache
model through the address vector. To ensure correct functionality, and therefore
correct delay times of the cache, we must constantly maintain the state of the
cache model. The cache call() function generates an address tag, a set number,
and an offset from the address of each cache access. It then searches the specified
set in the tags matrix for a matching address tag. If the tag is found it updates
the LRU cache status and returns an appropriate hit delay. If the tag is not
found in the matrix, the cache algorithm employs the LRU policy to evict one
of the tags in the set, updates the state of the cache, and returns a larger cache
miss delay.

5 Experimental Results

Matrix-matrix and matrix-vector multiplication are the core of many applica-
tions based on solving linear systems, filtering, and media processing. Some ex-
amples of these applications include least squares, FIR and DCT filters. Matrix-
matrix multiplication is also considered the core computational step for many
matrix based computations such as matrix decomposition and inversion for solv-
ing linear and non-linear differential equations.

The main concern in matrix multiplication is the memory latency. If the al-
gorithm does not take advantage of the data locality in different levels of the
memory hierarchy, it will suffer a performance penalty waiting for data.
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We chose to simulate two algorithms, a typical näıve matrix multiplication
algorithm and a cache-aware, blocked algorithm. For each algorithm, we simu-
lated both small size matrices that would fit entirely in the cache and large size
matrices that could not. Results were obtained from the SWARM instruction set
simulator, the TLM simulation, and our back-annotated TLM with cache model.
We will discuss results for the small and large data set separately, comparing
speed and precision for the three simulation approaches.

5.1 Accuracy

For our experiments, we obtain a base cycle delay from the ISS that does not take
into account cache delays and back-annotate this into a basic timed TLM. We
compare this against our extended TLM+Cache that reports simulation delay as
the sum of this base delay and the delay computed by our cache model. Table 1
summarizes the results gathered for all simulated cases.

To match undocumented target system and simulator characteristics, we need
to characterize and calibrate the miss penalty assumed in the reference ISS
model. The ISS produces the precise number of cache misses, the number of real
cycles, which includes cache miss penalties, and the number of logical cycles,
which does not include cache miss delays. We estimate miss penalty by sub-
tracting logical cycles from real cycles and dividing by the number of misses,
using large problem sizes with many cache misses to minimize error. From this
we obtained a miss penalty of 10 cycles.

Table 1. Accuracy Results

Simulation
Simulated Delay (Cycles)

Naive Larger Aware Large Naive Small Aware Small

Base TLM 285,999,032 330,511,500 97,276 103,641

ISS 472,986,462 334,785,093 114,500 121,129

TLM+Cache 469,066,892 395,387,630 97,766 104,131
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For the small data set, we expect the two algorithms to perform similarly. The
cache-aware algorithm should hold no advantage for data accesses and may run
slightly slower due to increased code complexity over the näıve implementation.
As shown in Fig. 5, the difference in performance between the two algorithms
remains the same for the the ISS considering cache delays, base TLM cycles,
and our cache modeling TLM because both algorithms have approximately the
same memory behavior due to the small matrix size.

The large matrix size problem should greatly favor an algorithm that takes ad-
vantage of the memory hierarchy. We expect that the cache aware algorithm will
amortize the cost of extra instructions by hiding the memory latency penalty.
The näıve algorithm exhibits a high cache miss rate and should be heavily pe-
nalized in any simulation that takes this into account.

The results in Fig. 6 show that the ISS strongly favors the cache aware algo-
rithm with almost a 30% increase in speed. The cache aware algorithm suffers
in the base TLM because of its higher number of instructions. We expected
our cache-modeling TLM to eliminate this gap to match the expected rela-
tive performance of the two algorithms as seen in the ISS. The cache-modeling
TLM correctly reflects the advantage of the cache aware algorithm seen in
the ISS.

5.2 Simulation Time

For design space exploration, it is necessary to obtain a variety of simulation
results for many different possible implementations. This makes the time to
execute the simulator important, as it can be a limiting factor.

As seen in Fig. 7, we incur some overhead over the TLM, but even for large
matrix sizes we are no worse than an order of magnitude slower. This penalty
is worthwhile considering that the TLM model is very fast, requiring fractions
of a second to complete. The ISS, however, is four orders of magnitude slower
than the TLM model, and requires more than two hours for a large matrix size.
It was frequently the case that we completed back-annotation by hand for our
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TLM with cache and obtained results before the ISS could finish execution. By
contrast, our TLM+Cache simulator completes this simulation in just over two
seconds.

6 Future Work

Future efforts to integrate cache effects into TLM will need to focus on a few
important areas of improvement. These next steps include automation, expan-
sion to track more variables, and additional more realistic testing to determine
conditions most favorable to this method.

First, for back-annotation techniques to be useful as a modeling tool, they
require implementation as an automated tool. Because we have available detailed
information from the target binary during our process, future work may also
choose to utilize this information to replace the current estimation tools with
one that makes use of the additional detail.

Second, while our results show that tracking only global memory accesses is
effective, ideally all variable accesses should be tracked. Hence the ability to
trace accesses to stack variables would be desirable and could be achieved by
integrating with the OS model to track the stack pointer of each task.

Third, additional testing is necessary to ensure that this technique applies
well to a variety of algorithms on a variety of target platforms. We plan to
apply the approach to a variety of industrial-strength MPSoC application, e.g.
to evaluate performance of different DCT implementations in standard image
or video processing algorithms. Larger models with multiple threads could allow
us to determine the effects of cache pollution on performance, but to do so
may require enhancement of the OS model to allow finer granularity preemptive
multitasking than is currently possible. More control over the configuration of
the ISS cache model would permit testing the technique against a variety of cache
types and sizes. Expanding the set of test cases may also help demonstrate cases
in which this technique is most helpful.
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7 Summary and Conclusions

In this paper, we showed the implementation and integration of a configurable
cache model into the system TLM in order to achieve higher precision for sim-
ulation. Our process requires us to refine the specification all the way down to
the target processor binary. We gather critical information from the binary code
and back-annotate it as input parameters for cache calls in the application code
of the TLM.

We selected matrix multiplication as test application because of its well-known
behavior under different variations. We chose a cache-aware, blocked matrix
multiplication and a näıve algorithm, two algorithms with vastly different cache
access behavior, to see how our cache model reflects these behaviors in the sim-
ulated cycle counts.

Our experimental result show that the TLM including the cache model does
not have a significant simulation time overhead compared to a normal TLM. On
the other hand, it is three orders of magnitude faster for large matrix sizes than
executing on the ISS.

The TLM with cache accurately shows that extra complexity of cache-aware
algorithms is amortized by the reduction in memory access penalty. Our method
of back-annotation and cache modeling allows us to model delays with 100%
fidelity compared to the ISS while maintaining execution speeds similar to TLM,
facilitating rapid, early design space exploration.
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J. (eds.) PARA 1998. LNCS, vol. 1541. Springer, Heidelberg (1998)

http://www.cl.cam.ac.uk/~mwd24/phd/swarm.html


Modeling Cache Effects at the Transaction Level 101

11. Hennessy, J., Patterson, D.: Computer Architecture - A Quantitative Approach.
Morgan Kaufmann, San Francisco (2003)

12. Hur, I., Lin, C.: Modeling the cache effects of interprocessor communication. In:
PDCS, Cambridge, MA (November 1999)

13. Hwang, Y., Abdi, S., Gajski, D.: Cycle approximate retargettable performance
estimation at the transaction level. In: DATE, Munich, Germany (March 2008)

14. Posadas, H., Adamez, J.A., Villar, E., Blasco, F., Escuder, F.: RTOS modeling
in SystemC for real-time embedded SW simulation: A POSIX model. Design Au-
tomation for Embedded Systems 10(4) (December 2005)
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