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Abstract—As research on improving energy efficiency becomes preva-
lent, the necessity of a tool to accurately estimate power is increasing.
Among various tools proposed, McPAT has gained some popularity
due to its easy-to-use analytical power models. However, McPAT’s
prediction has several limitations. Although under- or over-estimated
power from unmodeled and mis-modeled parts offset each other, it still
incorporates errors in each block. Moreover, the lack of awareness to
the implementation details exacerbates the prediction inaccuracies. To
alleviate this problem, we propose a new methodology to train McPAT
towards precise processor power prediction using power measurements
from real hardware. This calibration enables McPAT’s power to fit to the
target processor power. Once we adjusted the power consumption of each
block to best match those in the target processor, our trained McPAT
delivered more precise power estimation. We calibrated the outputs of
McPAT against a Cortex-A15 within a Samsung Exynos 5422 SoC. We
observe that our methodology successfully reduces the errors, particularly
for workloads with fluctuating power behaviors. The results show that
the mean percentage error and the mean percentage absolute error of
the calibrated power against real hardware are 2.04 percent and 4.37
percent, respectively.

I. INTRODUCTION

With power being the primary design concern today, there is a need
for accurate models to perform energy estimation in related studies.
Among available power models, McPAT [1] has gained popularity due
to its ease-of-use and readiness. Hierarchical modeling from a circuit
level to high-level system architecture provides reasonably accurate
yet fast power estimation for a target architecture. Without having
to struggle with RTL designs, McPAT enables researchers to predict
power and area using a single configuration file with activity factors.

However, despite McPAT’s easy-to-use power estimation, it has
limitations predicting power of post-silicon processors. According to
Xi et al. [2], original McPAT’s estimates contain significant errors
predicting dynamic power of the IBM Power7 processor due to
its incompleteness, architectural disparities in model, and input and
coding errors. In addition, the power characteristic of one processor
varies largely depending on the implementation target [3]. However,
McPAT has limitations adapting backend implementation design
details even with its effort to accommodate some technology nodes
and implementation parameters.

In this paper, we propose a novel, learning-based calibration
approach called PowerTrain aimed at alleviating these problem.
Instead of relying solely on McPAT’s prediction ability, we propose
to calibrate the outputs of McPAT against an existing post-silicon
processor implementation. One fundamental reason of McPAT’s error
is that it cannot model all processors with high level of accuracy.
Therefore, in order to obtain precise power models for existing
processors, post-implementation calibration work is imperative. Thus,
the goal of this paper is to provide a methodology to calibrate McPAT
for a precise power model targeting post-silicon processors.

We apply regression to train McPAT. Once McPAT generates power
of each block, total power is obtained by aggregating power from each
block. Rather than just adding the estimated power, we trained them
to fit to the target processor power obtained by measurement on actual
hardware. By having each coefficient trained to fix the errors against
target processor, the calibrated power naturally fits to the power
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Fig. 1: PowerTrain overview.

behavior of the target processor. Figure 1 shows overview of our
methodology. Coefficients obtained from training are multiplied to
the power of each block, generating calibrated total power estimation.
Experimental results show that mean percentage error (MPE) and
mean percentage absolute error (MPAE) after calibration is 2.04 and
4.37 percent, respectively.

The contributions of this paper are as follows. First, we propose
a novel and simple method to improve McPAT’s prediction accu-
racy. Prior work [2] to increase the accuracy of McPAT requires
tremendous engineering efforts and often tedious iterative manual
calibration. In addition, detailed power models or real hardware
designs such as RTL are needed for each block. With our approach,
any researcher can build a precise power model targeting a specific
processor using only one total processor power measurement.

Second, our methodology provides a controlled and validated
use of McPAT. After training, McPAT delivers precise and reliable
prediction for the target processor. The resulting power estimation
can be much faster than RTL-based tools while being as accurate.
This enables third-party developers to evaluate power consumption
of software running on the target processor using virtual platforms
without early access to implementation details or real silicon. Fur-
thermore, calibrated model can provide better insights into sensitivity
of power to system- or micro-architecture changes.

Lastly, we provide an accurate McPAT baseline of our target
processor and quantify the estimation errors when targeting an
existing processor. After thorough reviews and iterative tests, the
configurations and mappings of performance counters to activity
factors are determined. In particular, our work compares and validates
the power of an atypical mobile processor other than the high-end
processors previously validated with McPAT [1].

II. RELATED WORK

From high level power modeling using activity information to
low level approaches with RTL, various processor power modeling
methodologies have been proposed. Isci et al. [4] and Sun et al. [5]
provide a method to estimate power from performance counters by
deriving access rates with domain specific knowledge and piece-wise
linear equations that account for the irregularity of power behavior.
Bircher et al. [6] proposed a methodology that avoids the need
for manual mapping of performance counters by leveraging linear



regression across the top 3 or 4 counters that shows high correlation
with power. Lee et al. [7] proposed a way to explore architectural
changes with pareto frontier analysis and predictor interaction in
regression modeling. Although these high level approaches all allow
fast prediction, they have limitations in terms of accuracy since the
information used is only power numbers and activity statistics. On the
other hand, power models using low-level, information, such as RTL,
are able to account for, the details of hardware implementation and
glue logics that high-level, counter-based models can not [8]. Sunwoo
et al. [9] proposed learning-based power models based on information
obtained from low-level implementation simulation. With detailed
information, such approaches enable power models at high cycle-
level accuracy. However, low-level approaches are slow and often
require large effort to obtain necessary details. By contrast, McPAT
delivers power estimation with minimal effort while maintaining a
relatively high level of accuracy. Lim et al. [10] present an approach
to calibrate a McPAT model for GPUs using a manual trial-and-error
methodology. PowerTrain differs from their work in that we provide
a systematic approach to train McPAT without requiring any manual
intervention.

III. MCPAT BACKGROUND

McPAT builds up power estimation with a bottom-up approach.
From detailed circuit and area modeling, McPAT models major
components of power consumption within a processor, such as func-
tional units, predictors, buffers and other memories. Subsequently,
it models sub-blocks in microarchitecture into a complete model
at the processor level. This bottom-up approach delivers reasonable
power estimation for the target block with various architectural
parameter changes. In addition, based on domain specific knowledge,
the general microarchitecture of a processor is modeled. McPAT
power models targeting in-order and out-of-order processors can be
constructed with simple changes of configurations.

As such, estimating power with McPAT requires much less efforts
than low level approaches, since it leverages only architectural con-
figuration with activity information. It is easy to estimate the power of
a new processor without considering low level details. By providing
the configuration, McPAT can construct the corresponding analytical
power models. The dynamic power is predicted by multiplying
dynamic power per operation from those models with activity factors.
In the end, static power is summed to the dynamic power, producing
one total power consumption of the processor. All the users provide
is only target processor configuration with corresponding activity
information.

However, even though McPAT’s ability to estimate power is better
than abstract high-level approaches, it still lacks accuracy compared
to low level approaches. Thus, in this paper, our goal is to improve
the accuracy by eliminating errors from McPAT using training-based
approach. In the following sections, we first identify the sources of
errors and propose a new methodology to reduce such errors.

A. Sources of Errors in McPAT

According to Xi et al. [2], the sources of errors in McPAT when
predicting power consumption of an IBM Power7 processor are
abstraction error, modeling assumption error, input error, and coding
error, in the decreasing order of significance. As described in detail
in [2], sources of errors are:

• Abstraction error: This category of error results from the in-
complete modeling. Since McPAT supports various architectures,
only common components across various architectures are mod-
eled. The rest is unmodeled, which is a huge source of the error.

• Modeling assumption error: This category of error is caused
by the limitation of McPAT in that it is unable to support
all the details of various microarchitectural components. The
differences between the modeled components and the actual
hardware generate the misprediction.

• Input error: This category of error is originated from the vague-
ness of configuring architectural/microarchitectural parameters
and mapping activity factors to the inputs of McPAT.

• Coding error: This category of error is attributed to human
mistakes when coding the models.

The authors in [2] argued that these errors might work in opposite
directions to offset each other, resulting in error canceling effects. For
instance, overestimated power of modeled blocks may compensate for
the power dissipation of unmodeled blocks. Thus, McPAT seems to
be correct even though errors still exist in individual blocks.

In addition to these four errors, limitations of adapting to im-
plementation details exacerbates the prediction error. Processors
manufactured from the same RTL can show dissimilar power behavior
depending on the backend implementation target. Nvidia Tegra pro-
cessors [3] harness this implementation diversity to improve energy
efficiency. From one RTL, they derived versions of processor for both
high performance and low power, switching between them depending
on the workloads types. McPAT, however, mainly focuses on microar-
chitecture level power modeling, as such it is not able to capture the
power variations stemming from the backend implementation. With
McPAT’s estimation, power estimation of all Tegra processor variants
would remain the same since the configuration is identical. In this
paper, we assume that implementation differences can be captured
as model assumption errors by appropriately scaling the existing
estimation.

B. McPAT Baseline

No specific rules or methodologies exist on how to configure Mc-
PAT to model a specific architecture and processor. In addition, very
little systematic studies exist in prior work [11]. This uncontrolled of
or lack of knowledge results in huge confusion to researchers when
preparing baseline McPAT configuration and activity files. Thus, for
the purpose of comparisons in this paper, we define four baselines as
follows.

• MB0: From the previous works [11] and to the best of our mi-
croarchitectural knowledge [12], we configure and map activity
factors. We provide zeros to the activity factors that do not have
direct information from performance counters. This results in
some block powers being distorted.

• MB1: We added the missing activity factors by extracting
constant ratios from available counters based on profiled infor-
mation. For instance, the number of register file reads can be
extrapolated from the number of integer instructions issued. We
regard this as our best baseline.

• MB2: We intentionally change MB1 configurations and inputs to
induce a type of modeling assumption error that has proportional
error relationship. By scaling activity factors of L2 cache down,
the estimated power becomes lower than MB1. We denote this
error as scale error.

• MB3: We intentionally change MB1 configurations and inputs
to induce a type of modeling assumption error that has irregular
error relationship. By scaling activity factors of L1 Data and L2
caches in opposite directions, the estimated power sometimes
fluctuates over or below MB1. We denote this error as irregu-
larity error.
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Fig. 2: Training McPAT with regression

The detailed power of each baseline is presented in the following
section (Sec. IV-C). With these baseline predictions, we quantify
the errors from McPAT against measured power and show how our
approach reduces the errors. One noticeable point is that default
power of McPAT is fixed to 1V if not specified, but our target
processor’s operating voltage is about 1.3V. Moreover, providing
custom voltage to McPAT generates incorrect numbers. However, we
decide not to modify anything arbitrarily to avoid additional errors
induced from it. Rather, we regard them as an error and show how the
error from voltage disparity can be calibrated by our methodology.

IV. POWERTRAIN

Power models from McPAT innately has limitations when pre-
dicting power of a target processor since it cannot capture all the
hardware details of the processor. Particularly, if the target processor
is very different from the ones that were modeled and validated in
McPAT, errors may exceed the reasonable range to be accepted as
a valid prediction. In our paper, we focus on reducing the error of
McPAT within a reasonable range so that it serves as a valid predictor.

Two major ways to improve the accuracy exist. A fundamental
approach is increasing the level of detail in a model. By increasing the
details and subsequently fixing errors, we can increase the accuracy of
the model. However, this conventional method encompasses repetitive
and manual tasks with in-depth hardware analysis [2]. First, measured
and estimated power are compared. If any discrepancy is found,
McPAT is corrected either by changing errors such as configuration
or by modifying internals of McPAT to fit to the power of the
target processor. Once fixed, the same process is repeated to confirm
whether the fix actually improves the overall prediction accuracy and
to find another source of error. The task should be iterated until
the average error rates converge to the acceptable range. In many
cases, the real hardware or sufficient information to build precise
power models are not available. Hence, it is difficult to obtain precise
power models with this approach. Further, this methodology requires
similar amount of effort again for power models of all subsequent
target processors.

An alternative way to fix the errors is calibration. Instead of
increasing architectural details for accuracy, we propose a way to
adjust McPAT’s estimation to be suitable to the power of the target
processor. In particular, this methodology fixes errors by adjusting
the power of each block so that the error of total power is kept
within acceptable ranges. Our methodology, PowerTrain, can deliver
a precise power model for a specific processor in a relatively simple
manner. It does not require accurate sub-block power model nor any
update to McPAT. The following sections describe the details of how
we train McPAT and eventually remove errors.

A. Training Framework for McPAT

PowerTrain, which trains McPAT, delivers a precise power model
with minimal effort compared to the trial-and-error approach. Fig-
ure 2 shows the procedures of how we train and test McPAT. We first
extract the power output of each block from McPAT by providing both
architectural configurations and training activity factors as inputs.
Once power numbers for each block are obtained, we train them
to scale each power estimation with the corresponding coefficient.
Lastly, the coefficients are applied to McPAT and we test the
model with the test inputs. For appropriate operation, we split the
coefficients into static and dynamic power.

We employ a two-step adaptive training procedure to fix errors
effectively. During the first step, we use both the total power from
McPAT and the measured power from hardware to obtain one global
αG. This value is used to shift all predicted power close to the
measured power. With this step, the power error induced from voltage
and implementation differences can be removed. We define the first
step as S1. In the second step, defined as S2, we calibrate shifted
power to the measured power again to have coefficients which control
each block’s power at a finer granularity. After the second step, most
of the errors are reduced, and the calibrated McPAT can be used
as a valid source of prediction. Formal definition of these steps are
defined as follows:

(1)p̂m = αG × (α0 + ~ms × ~αs + ~md × ~αd)

where p̂m denotes total power estimation, ~ms and ~md is 1×N , ~αs

and ~αd is N × 1, and N is the number of blocks in McPAT. s and
d denotes static and dynamic power, and correspondingly αs and
αd, and ms and md are static and dynamic regression coefficients
and each block’s estimated power from McPAT, respectively. We also
introduce αG as global scaling factor and α0 as an overall additive
bias to account for unmodeled glue components.

This approach allows us to correct the errors without modifying
the internal or external configuration or activity inputs of McPAT.
By applying a non-negative least square regression (IV-B), we can
obtain a set of coefficients, a correction vector, which controls power
of each block to best fit to the total power. Once the correction
vector is obtained, it is multiplied to the outputs of McPAT to
generate calibrated power estimation of the processor. In this way,
we keep original McPAT’s prediction ability, yet obtain accurate
results closer to the target processor. We perform two-step calibration
since experiments have shown that block-level coefficients will vary
widely depending on the training set if a global scaling factor is not
first accounted for. By including αG, coefficients are stable across
benchmarks. Details of the results and methods for obtaining the
coefficients will be described in the following sections.

Moreover, one power measurement, the total processor power
consumption, is the only information required per timestamp for our
methodology. Conventional compare-and-update methods mandate
per-block or more detailed hardware power references for error
correction. However, since we rely on regression to find an opti-
mal solution, the total power information is enough to extract the
coefficients of each block. This allows an accurate and reliable
power model to be constructed using only limited access to widely
available hardware resources, such as board-level power and counter
measurements.

B. Least Mean Square Error Problem

Diverse approaches to obtain coefficients for optimal solution of
least mean square error (LMSE) problem have been widely proposed.
However, general LMSE solvers, such as simple linear regression,
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produce negative coefficients for a given problem. Despite negative
coefficients generating optimal solution, the negative power inferred
from the negative coefficients gives no insight if we try to analyze the
power behavior from the equation. Thus, we discretely select non-
negative least square solver [13] for our methodology. The problem
that we are trying to solve is as follows.

(2)minimize ‖M−→α −−→P ‖2 + λ‖−→α‖,
subject to α ≥ 0, λ = 0.01

where
−→
P is m × 1, M is m × n, α is n × 1. −→α is regression

coefficients, n and m are the number of coefficients and observations,
and let M and

−→
P denote observations and responses, respectively.

From Equation 2, we successfully derive αG and the correction
vector. Figure 10 shows the correction vector when we apply our
methodology to a MB1 baseline. In general, static power is either
slightly suppressed or remains the same, while some dynamic power
components are dramatically reduced or increased.

C. Reducing Errors

As will be described in detail in Section V, we have applied
our methodology to calibration of a ARM Cortex-A15 processor.
To observe how our methodology reduces errors, we first apply our
calibration to MB0 and MB1 baselines. For appropriate experiments,
we select two benchmarks, sift and susan, that show exemplary error
behavior we want to fix. The rest of the benchmarks are used as
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training sets as described in Section V-A. In all cases, we evaluate
overall prediction accuracy as the mean percentage error (MPE) and
mean percentage absolute error (MPAE) of predicted versus measured
results. In the following, we focus on the specifics of how our
methodology reduces the error from lack of information as well as
how it achieves overall accuracy improvements.

As mentioned in Section III-B, the first error source in McPAT is a
discrepancy in basic technology and operating voltage assumptions.
Figure 3 reveals the raw output power from McPAT and subsequent
errors against target processor power. However, the first level cali-
bration, S1, removes the issue and delivers high level of accuracy for
both MB0 and MB1. One noticeable point (Fig. 3) is that some power
behavior of MB0 cannot capture the real processor power behavior (at
about 60 ms) due to the lack of activity inputs, while MB1 captures
similar behavior even with slightly large movement.

As discussed previously in Section IV-A, abstraction and input
errors originate from unmodeled or missing processor components
and input activity. While McPAT shows high level of accuracy when
modeling memory parts in micro-architecture, the rest such as inter-
block muxes and controls are difficult to model. In addition, due to the
implementation differences in each processor, it is hard to generalize
the hardware, resulting in unmodeled parts. Since several activity
factors of MB0 is not provided (or provided as zero in reality), MB0
can be regarded as exemplary for abstraction and input error when
compared to MB1, which has all inputs - i.e., zero-provided block
power represents the unmodeled parts of the hardware.

Figure 4 shows the results after the second level calibration, S2.
After we apply S2, which enables the fine-grained scaling of each
block power, MPAE of MB1 is reduced to around 2 percent. The
adjusted power of each block is either added or subtracted so that the
summed-up power behaves much closer to the real power behavior.
For calibrated MB0, MPAE remains similar to 4 percent. Interestingly,
however, the abstraction error around 60 ms is corrected to match
the real processor power behavior after we apply S2 to MB0 due to
the correction vector of each block.

Model assumption error is attributed to the differences between
hardware and model. To observe how our methodology handles the
problem, we intentionally induce two types of errors, scale and
irregularity represented by MB2 and MB3, respectively. Figure 5
shows the baseline McPAT power of MB2 and MB3. As MB2 shows,
its power is always less than MB1. Since we reduced the L2 cache
power with constant ratios (i.e. scale), total power of MB2 is less
than MB1 to some degree proportional to the L2 cache activities.
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Conversely, power of MB3 varies against MB1. In some periods,
the power of MB3 is less than MB1 while in some other periods
MB3 power is bigger than MB1 (i.e. irregularity). Figure 6 shows
the calibrated power from MB2 and MB3. Even with the various
types of errors, the calibrated power converges to the original power
in the end. This result demonstrates that our approach is very effective
in removing modeling assumption type of errors.

V. EXPERIMENTAL RESULTS

In this section, we start by describing our target board specification
and how we measure power and performance. We use ARM Cortex-
A15 as our baseline processor since not only does it incorporate the
most advanced power saving techniques such as aggressive dynamic
clock and power gating, but has a distinctive power characteristics in
that power budget, ISA, and micro-architecture is discrepant to the
processors that were modeled and validated for McPAT.

A. Experimental Setup

For the power measurement of a post-silicon processor, we use
the ODROID-XU3 board (Fig. 7) running Ubuntu 14.04 OS due to

Table I: Cortex-A15 performance counters.

Performance Counter Event Description
CPU CYCLES Cycle
INST RETIRED Inst architecturally executed
INST SPEC Inst spec exec
LD SPEC Inst spec exec, load
ST SPEC Inst spec exec, store
ASE SPEC Inst spec exec, Advanced SIMD
VFP SPEC Inst spec exec, floating-point
DP SPEC Inst spec exec, int data processing
BR IMMED SPEC Branch spec exec, immediate branch
BR RETURN SPEC Branch spec exec, procedure return
BR INDIRECT SPEC Branch spec exec, indirect branch
BR MIS PRED Mis- or not predicted branch spec
L1I CACHE Level 1 instruction cache access
L1I CACHE REFILL Level 1 instruction cache refill
L1I TLB REFILL Level 1 instruction TLB refill
L1D CACHE LD Level 1 data cache access, read
L1D CACHE ST Level 1 data cache access, store
L1D CACHE REFILL LD Level 1 data cache refill, read
L1D CACHE REFILL ST Level 1 data cache refill, write
L1D CACHE WB Level 1 data cache write-back
L1D TLB REFILL Level 1 data TLB refill
L2D CACHE LD Level 2 data cache access, read
L2D CACHE ST Level 2 data cache access, write
L2D CACHE REFILL LD Level 2 data cache refill, read
L2D CACHE REFILL ST Level 2 data cache refill, write
L2D CACHE WB Level 2 data cache write-back

(a) Odroid Board (b) DS-5

Fig. 7: ODROID-XU3 board and ARM DS-5 Streamline tool

its energy monitor sensors. Specifically, it comes with a Samsung
Exynos 5422 system-on-chip (quad Cortex-A15 and Cortex-A7 cores)
manufactured on the 28nm HKMG process. Although we use a
specific board, our methodology can be applied to any processor with
performance counters and power measurement available.

The ODROID-XU3 board allows us to independently monitor the
power consumption of the Cortex-A15 and the Cortex-A7 clusters,
GPU, and memory. Monitoring the power consumption of individual
Cortex-A15 cores is limited since the Cortex-A15 cluster power
reports the combined power of the quad cores and the shared L2
cache. Therefore, to measure a single core power consumption, we
enable only one Cortex-A15 core while three other cores are disabled.

For power measurement, we use the ARM DS-5 Streamline per-
formance analyzer (Fig 7). This tool allows us to collect periodic
real-time performance data from the target processor. However, one
problem is that, by default, the current sensors update data every
250ms. Since we want a finer granularity, we changed the device
driver to update at 1ms intervals. In addition, we modified gator
driver, a proxy Linux device driver which collects performance
counters from CPU, to capture power every 1ms (the same collection
period for the other performance counters).

As a source of activity factors, we collect performance counters
from the CPU using the same DS-5 tool and method. Table I shows
the twenty-six counters of interest. One challenge when collecting
hardware counters is that the number of counters that can be
monitored simultaneously on the Cortex-A15 is limited to six. Thus,
we run applications in groups and merge the data into one. To reduce
the error, application runs are repeated 30 times for a total of 150
executions for each application and data only within half the standard
deviation range are averaged.

As training and test input, we select MiBench (basicmath, bitcount,
dijkstra, fft, patricia, jpeg, qsort, susan, typeset) [14], and SD-VBS
(disparity, mer, multi ncut, sift, svm, texture synthesis) [15]. Since
single core performance is measured and we need a deterministic and
reproducible processor behavior for data synchronization, we only
select single-threaded applications.

B. Model Validation

We first employ comprehensive 15-fold cross-validation to test
our methodology [16]. Specifically, we evaluate our model using
observations of one previously unseen program as test set where
the remaining programs are used as training set. Since we have
fifteen benchmarks, fifteen total validation processes were conducted.
Figure 9 shows MPAEs of MB0 and MB1. The global shift from S1
calibration removes most of the errors, while the finer granularity
corrections(S2) improves the accuracy more. Although general accu-
racy is increased after S2 (MB1), some benchmarks such as bitcount
and multi ncut show less prediction performance. These benchmarks
tend to show relatively stable power movements while others such
as sift and jpeg shows fluctuating power behavior. This matches with
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Table II: Cross-validation results
S2-MB0 S2-MB1 S2-MB2 S2-MB3

MPE 2.49 (%) 2.04 (%) 2.08 (%) 2.13 (%)
MPAE 5.29 (%) 4.37 (%) 4.60 (%) 4.47 (%)

our previous finding that S2 performs well when restoring the power
behavior and reducing errors. Since MB0 incorporates more errors, S2
works better on MB0 than on MB1, except for one outlier, bitcount.
Table II shows the final results of each baseline. For MB1 baseline,
the average MPE and MPAE is 2.04 percent and 4.37 percent,
respectively. Although MB0 has relatively large abstraction errors, our
methodology corrects them and delivers power models which have an
error within a reasonable range. In addition, to evaluate the sensitivity
of our methodology, we measured the variance of correction vectors.
As shown in Figure 10, the coefficients are stable.

Finally, to find out if our model performs well with new programs,
particularly with excessive power movements, we add one more test
program, gcc from SPEC CPU2006 benchmark suite. However, since
our sampling rates of 1ms prohibited us from using reference inputs
for validation, we tested our model with only test input sets. We
believe that our model has similar performance with reference inputs.
We calibrate McPAT’s output from gcc with coefficients from MB1.
As shown in Fig. 8, calibrated power shows a good match with
measured power, and MPAE is about 3 percent.

VI. CONCLUSIONS

In this paper, we propose a calibration methodology, PowerTrain,
to increase the accuracy of McPAT. Instead of manual comparison and
correction against hardware measurements, our methodology achieves
high accuracy with minimal effort. Our results show that a McPAT
power model calibrated using our approach achieves 2% MPE and
4% MPAE compared to measurements from real silicon. We believe
that the validated use of McPAT will help researchers to perform
more reliable software and system studies. In the future, we plan to
work towards release of a general calibration tool and further evaluate
accuracy and sensitivity of our approach across a wider range of
workloads, platforms and training sets.
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