
Cycle-accurate RTL Modeling
with Multi-Cycled and Pipelined Components

Rainer Dömer, Andreas Gerstlauer, Dongwan Shin
{doemer,gerstl,dongwans}@cecs.uci.edu

Center for Embedded Computer Systems

University of California, Irvine

Irvine, CA 92697-3425, USA

Abstract — Despite extensive research efforts for a number of
years, modeling of RTL designs has still not reached a satisfac-
tory state. Behavioral RTL design models still lack cycle-accuracy
when multi-cycle and/or pipelined components are used. With
such components, cycle-accuracy is only reached at the end of the
RTL design flow when a complex structural netlist is obtained.
Observation, debugging and modification efforts, however, are
very tedious and difficult in such a model due to its complexity.
This paper provides a simple yet powerful solution to this prob-
lem. An easy-to-understand RTL model is proposed that supports
clock-cycle accuracy in a behavioral description even in the pres-
ence of multi-cycled and/or pipelined components. Experiments
show the effectiveness of the approach for specification, simula-
tion, and synthesis.

1 Introduction

While more and more research recently already focuses at
levels of abstraction above the algorithm and register-transfer
level (RTL), it is still RTL where most designs are specified
today. While the benefits of entering designs at higher abstrac-
tion levels are clear and well-understood, designers still have
trouble accepting this and putting it to use for their real-world
designs.

The two main arguments used by designers are the follow-
ing: First, the performance of automatically synthesized de-
signs is typically lower than for hand-optimized implementa-
tions, and second, designers are loosing control over the deci-
sions made during the automated synthesis process.

The authors of this work believe that these two issues are
actually related to each other. More specifically, the loss of
control over the implementation decisions is actually the main
reason for the lower performance of an automatically gener-
ated design. In other words, if the designers would be able
to control all the critical design decisions in the synthesis pro-
cess, then the resulting implementation would reach the same
quality level as a manually optimized design.

Hence, the controllability of the automated design process
is of critical importance, and, if achieved, this will enable the
move to higher levels of abstraction with significantly higher
productivity and efficiency. This paper addresses the modeling
of RTL designs at the behavioral level. While many details of
the design implementation are intended to be abstracted away,

critical aspects that will significantly affect the performance
and quality of the result should be able to be specified explic-
itly. In other words, as soon as a design decision is made,
it should be reflected in the design model such that it can be
evaluated, for example, through simulation of the model.

The core tasks of behavioral synthesis are performed,
namely scheduling, allocation and binding. During these tasks,
a finite state machine with data (FSMD) model is typically
used to represent the design. The behavioral description of the
design are now scheduled into actual clock-cycles and repre-
sented by separate states. Thus, the model itself is now clock-
cycle accurate and will exhibit the actual timing of the design
when simulated. However, complex components at the RTL
are functional units whose execution time is longer than one
clock cycle. Specifically, the use of multi-cycle and pipelined
units cannot accurately be described. The components that
have a delay longer than a single clock cycle or are pipelined,
pose a real problem as their behavior cannot be expressed in
any current hardware description languages (HDL) such as
VHDL [6], Verilog [7], and SystemC [5]. The reason for this
problem is simply that there is no construct available in these
languages that describes a function being executed over a du-
ration of multiple cycles.

The rest of this paper is organized as follows: Section 2
shows related work and Section 3 introduces the concept of de-
layed assignment statements and how these can be used to sim-
ulate the behavior of complex components in a cycle-accurate
manner. For compilation and synthesis, an algorithm is given
in Section 4 which automatically inserts delayed assignments
into a model. Experimental results are listed in Section 5, and
Section 6 finally concludes this paper.

2 Related work

Issues in RTL modeling, RTL design and behavioral synthesis,
aka. High-Level Synthesis (HLS), have been studied for more
than a decade now [4],[10]. Countless research results have
been published. Due to space limitations, however, only a few
approaches can be mentioned here.

Many automatic synthesis tools (also known as push-button
synthesis) have been developed, including Synopsys Behav-
ioral Compiler [13], Cyber [14], and OSCAR [11]. However,
these tools provide no means to access the intermediate de-



sign models that are created during the synthesis process. The
only models accessible to the designer are the behavioral input
model and the structural output model.

On the other hand, interactive synthesis tools including Am-
ical [8] and ISE [9] allow the designer to inspect and ma-
nipulate the design model at different stages in the synthesis
process, typically via a graphical user interface. However, a
cycle-accurate simulation model with complex components is
not available for the intermediate stages.

Recently, a new interactive high-level synthesis system has
been developed [12], that is based on the Accellera RTL stan-
dard [1]. Accellera modeling semantics define simulatable and
synthesizable intermediate models at different stages in the
synthesis process. Description of partial design decisions is
possible as well. However, multi-cycle and pipelined func-
tional units are not supported.

HY-C [15] models hardware behavior as parametric time-
interval extended FSMs. Cycle-accurate, cycle-free (untimed)
and mixed models are supported, but require in-depth under-
standing of the underlying complex timing formalism.

3 Cycle-accurate Behavioral RTL

In this section, we will solve the problem of describing the use
of multi-cycle and pipelined components cycle-accurately in a
behavioral RTL model. What we need is basically a new con-
struct that computes a function (i.e. the behavior of the com-
ponent) over a period of time. Specifically, for multi-cycle
components, control and arguments need to be supplied over
a sequence of clock cycles, only then the result can be read at
the end. Pipelined components are similar, except that control
and arguments only need to be supplied in the very first cycle
since they will be stored internally in the component over the
execution of the pipeline.

Essentially, we want to supply arguments as required by the
component, compute the function (only once!), and then obtain
the result after the specified period of time for the component.
The idea is to use delayed assignments for this purpose.

3.1 Delayed assignment statements

A delayed assignment statement is an assignment that takes
place only after a specified number of clock cycles.

The specific semantics are defined as follows: The right-
hand side (RHS) of the assignment statement (i.e. the function
with its arguments) is evaluated in the same clock cycle the
delayed assignment is specified. However, the left-hand side
(LHS), the target of the assignment, is evaluated only after the
specified number of cycles. At the same time, the actual as-
signment of the result to the target then takes place.

Syntactically, a delayed assignment is specified by use of
a keyword (after or piped clause, see below), and a positive
integer indicating the delay in terms of number of clock cycles.

3.2 Multi-cycle components

Fig. 1(a) shows an example of modeling multi-cycled compo-
nents by use of after clauses. In state s1, a multiplier starts

computing the product of RF[0] and RF[1]. Since the mul-
tiplier needs two cycles for this computation, as specified by
the after clause, the result will only be available in the target
register RF[0] after two cycles, i.e. in state s3. It is an error
to read the result from register RF[0] earlier.

RF[0] = RF[0] * RF[1] after 2;

RF[1] = RF[2] << RF[3]after 2;

...

s1:

s2:

s3:

s4:

RF_0_tmp = RF[0] * RF[1];

RF_1_tmp = RF[2] << RF[3];

RF[0] = RF_0_tmp;

RF[1] = RF_1_tmp;
...

s1:

s2:

s3:

s4:

(a) (b)

Figure 1: Modeling multi-cycle components using after
clauses: (a) specification, (b) simulation.

One possible way to implement this delayed assignment in a
simulator is shown in Fig. 1(b). The result of the multiplication
is simply stored in a temporary variable RF 0 tmp in state s1,
and then assigned to the target in state s3.

3.3 Pipelined components

Pipelined components can be handled in a very similar way.
Fig. 2(a) shows the use of a 3-stage pipelined multiplier for the
two multiplications starting in state s1 and s2. The multiplier
is assumed to have two internal registers as indicated by the
piped clauses. Thus, the multiplication results are available
only in states s3 and s4, respectively.

RF[0] = RF[0] * RF[1] piped 2;

RF[0] = RF[1] * RF[2] piped 2;

...

s1:

s2:

s3:

s4:

RF_0_tmp[1] = RF[0] * RF[1];

RF_0_tmp[2] = RF_0_tmp[1];
RF_0_tmp[1] = RF[1] * RF[2];

RF[0] = RF_0_tmp[2];
RF_0_tmp[2] = RF_0_tmp[1];

RF[0] = RF_0_tmp[2];
...

s1:

s2:

s3:

s4:

(a) (b)

Figure 2: Modeling pipelined components using piped
clauses: (a) specification, (b) simulation.

Note that for simulation of piped clauses an array of tem-
porary variables is required, as shown in Fig. 2(b). Then,
to mimic the pipeline behavior, the contents of the array are
shifted in pipeline fashion, as shown.

It should be emphasized that the use of such temporary vari-
ables is not only simple, it is also very efficient. In the presence
of multiple delayed assignments in the design model, the tem-
porary variables can be easily shared. It is the number of differ-
ent targets that determines the number of temporary variables
(not the number of delayed assignments!). In other words, only
one temporary variable is needed for every target register.

4 Compilation and Synthesis

While the examples discussed in the previous section seem
to be straightforward, things become significantly more com-
plex in real design models. For instance, taking conditions and
loops into account, the control flow in a FSMD may be arbi-
trary. This requires to insert temporary assignments on every



possible path in the FSMD. As we will see in Section 4.2, this
not only can lead to duplication of temporary assignments, but
also to conflicting assignments to the same target.

Another fact ignored so far, is that delayed assignments may
be conditional. In this case, the delayed statement must only
be executed if the specified condition is true. As a result, the
same specified condition must be applied also to all temporary
assignments.

These and other problems need to be solved when delayed
assignments are processed by compilers (for simulation), as
well as by synthesis tools (for actual implementation). The
following section addresses these issues by providing an effi-
cient algorithm that automates the handling of piped and after
clauses.

4.1 Automation of delayed assignments

Fig. 3 shows the pseudo code for an algorithm that can be used
in a compiler to automatically insert temporary variables and
corresponding assignments for delayed assignment statements
in the model. With minor modifications, the same algorithm
can also be used in synthesis tools to create the correct control
words in every state.

algorithm CompileDelayedAssignments(fsmd):

foreach s in States(fsmd) do
foreach d in DelayedAssignments(s) do

c = Condition(d)
n = Cycles(d)
if Type(d)='after' then

v = NewTmpVar(fsmd,lhs(d),1)
foreach ns in NextStates(s,n) do

AddTmpAssignment(ns,c,lhs(d),v,1)
else

v = NewTmpVar(fsmd,lhs(d),n)
for i=1 to n-1 do

foreach ns in NextStates(s,i) do
AddTmpShift(ns,c,v,i)

foreach ns in NextStates(s,n) do
AddTmpAssignment(ns,c,lhs(d),v,n)

Replace(d,v,rhs(d))

Figure 3: Algorithm for compilation of delayed assignments.

The algorithm essentially traverses all states of the given
FSMD and replaces any delayed assignment statements with
a set of temporary variable assignments that are inserted into
the following next states.

• States(fsmd) returns a list of the states in the fsmd

• DelayedAssignments(s) returns a list of the delayed
assignment statements in a state s

• Condition(d) computes the condition under which a
statement d is executed

• Cycles(d) returns the number of cycles a statement d is
to be delayed

• Type(d) returns the type of a delayed assignment d, i.e.
piped or after

• NewTmpV ar(fsmd, lhs, s) creates a new temporary
variable in the fsmd corresponding to the target lhs

with array size s; note that s = 1 in the case of after;
if the variable for lhs already exists, its size is set to
max(size, s); this enables the sharing of temporary vari-
ables as discussed earlier

• NextStates(s, n) returns the list of next states reachable
from state s within n transitions

• AddTmpAssignments(s, c, lhs, v, i) adds an assign-
ment to state s under condition c; lhs is the target of the
assignment; v[i] is the source

• AddTmpShift(s, c, v, i) adds a shift statement to state s

where v[i + 1] is set to v[i]

• Replace(d, v, rhs) replaces the delayed assignment d

with an assignment v[1] = rhs

It should be noted that the function NextStates(s, n) is
usually part of the static reachability analysis that every com-
piler or synthesizer performs in order to detect non-reachable
states and to optimize the state transitions in the FSMD. As
such, it is not further outlined in this paper.

Since the algorithm visits every state and from there possibly
all next states, the complexity grows linear with the number of
state transitions, or quadratic in terms of the number of states.
Thus, the complexity is O(n2) where n is the number of states.

4.2 Conflicting delayed assignments

As mentioned earlier, there exists a possibility that conflicting
assignments are being created by the algorithm. A conflict oc-
curs if and only if multiple assignments to the same target vari-
able exist in the same state under the same condition. This, of
course, indicates a real problem since no register can be loaded
with values from multiple sources at the same time.

Careful analysis of the situations, which can lead to such a
condition, shows that in all cases an actual resource conflict
has been specified in the model. For example, a multi-cycle
component is used for different operations in the same cycle,
or a pipelined component writes to the same target register as
another component.

Fortunately, such resource conflicts can be easily detected
by the compiler and synthesizer, and can then be reported to
the designer as an error condition.

In fact, this checking can be implemented in the functions
AddTmpAssignments() and AddTmpShift() in the algo-
rithm shown in Fig. 3. Before adding the requested assignment
statement, the two functions check if an assignment to the same
target already exists (in the same state, under the same condi-
tion). If not, the functions can go ahead and do their work.

If an assignment to the same target variable is already
present, the functions will check if the source is the same as
given in their arguments. This case happens naturally if multi-
cycle and pipelined components are used within loops, and, of
course, is perfectly ok. If the sources are different, however,
then an actual resource conflict exists and needs to be reported
to the designer as an error message.

5 Experiments and Results

The technique and the algorithm described in this paper have
been implemented in a compiler and a synthesizer [12] as an
extension to the SpecC language [3].

In order to demonstrate the effectiveness of this approach,
the code-book search algorithm specified in the voice encoder



ALU 16 1 cycle 1 cycle 2 cycles 1 stages 2 stages 2 stages 3 stages 4 stages
ALU 32 1 cycle 2 cycles 2 cycles 2 stages 2 stages 2 cycles 3 cycles 4 cycles
States / cycles:
cor h x 27 / 3843 33 / 4793 37 / 4876 33 / 4793 36 / 4835 36 / 4835 46 / 5833 56 / 6831
set sign 53 / 902 59 / 1103 73 / 1334 59 / 1103 70 / 1246 70 / 1246 88 / 1591 107 / 1976
cor h 56 / 11152 58 / 9674 70 / 12140 58 / 9674 69 / 12099 69 / 12099 84 / 13126 101 / 15713
search 10i40 312 / 18577 355 / 23425 434 / 27577 335 / 21021 365 / 24669 386 / 27105 448 / 29689 536 / 36689
build code 111 / 1725 123 / 1940 131 / 1987 123 / 1940 130 / 1985 130 / 1985 149 / 2245 168 / 2505
q p 10 / 59 10 / 59 10 / 59 10 / 59 10 / 59 10 / 59 10 / 59 10 / 59
code 10i40 569 / 36258 638 / 40994 755 / 47973 618 / 38590 680 / 44893 701 / 47329 825 / 52543 978 / 63773
piped clauses 0 0 0 104 279 175 175 175
after clauses 0 104 279 0 0 104 104 104
Tmp. variables 0 39 61 36 57 71 70 80
Tmp. assignments 0 208 558 208 558 558 654 717
Simulation time (s) 106.96 111.40 131.48 105.45 120.81 132.87 136.10 159.88

Figure 4: Experimental results for code-book search example using pipelined and multi-cycled ALUs.

of the GSM standard for telecommunication has been chosen
as design example. The code-book search algorithm consists
of six filter functions which operate on sub-frames of speech
data, each of which consists of 40 samples. While the com-
plexity of these filter functions varies widely, all of them use
saturated arithmetic operations with 16 and 32 bit results.

For our experiments, we have chosen different allocations of
ALUs, varying in delay and number of pipeline stages. Fig. 4.
list the experimental results for different multi-cycle ALUs,
different pipelined ALUs, and different combinations of multi-
cycle and pipelined ALUs.

For each experiment, synthesis and simulation have success-
fully been performed. The resulting number of states and ex-
ecuted clock-cycles are listed for each filter function. The ta-
bles also list the number of after and piped clauses used in
the model, as well as the number of temporary variables and
temporary assignments in the simulation model. Note that the
latter two are large numbers in many cases, which emphasizes
the benefit of automatic insertion.

The simulation times in the tables are measured over a total
of 652 sub-frames each and include a number of other func-
tions around the code-book search. Nevertheless, the times
increase linear with the increased number of cycles, indicating
a minimal overhead introduced by the delayed assignments.

6 Summary and Conclusion

Push-button synthesis is not accepted by most designers be-
cause of the lack of control. Interactive synthesis using graph-
ical user interfaces goes into the right direction. However, it
is still desirable to provide an actual HDL description to the
designer that can be simulated and freely manipulated. Fur-
thermore, this description should be a behavioral model, since
structural models are simply too complex.

This paper provides an easy and straightforward model-
ing solution that allows behavioral RTL models to be cycle-
accurate, even in the presence of multi-cycle and pipelined
components. This approach uses delayed assignment state-
ments that are specified by use of simple after and piped
clauses, modeling multi-cycling and pipelining, respectively.

Finally, the listed experimental results demonstrate that the

approach is not only feasible, but also applicable and practical
towards simulation and synthesis of real-world designs.

References
[1] Accellera C/C++ Working Group of the Architectural Language Com-

mittee. RTL Semantics, Draft Specification. Accellera, February, 2001.
http://www.eda.org/alc-cwg/cwg-open.pdf.

[2] R. Dömer. SpecC Reference Compiler and Simulator, available at
http://www.cecs.uci.edu/∼specc/reference/.

[3] R. Dömer, A. Gerstlauer, D. Gajski. The SpecC Language Reference
Manual, Version 2.0. SpecC Technology Open Consortium, Japan,
Dec. 2002.

[4] D. Gajski, N. Dutt, C. Wu, Y. Lin. High-Level Synthesis: Introduction to
Chip and System Design. Kluwer Academic Publishers, 1991.

[5] T. Grötker, S. Liao, G. Martin, S. Swan. System Design with SystemC.
Kluwer Academic Publishers, 2002.

[6] IEEE. IEEE Standard VHDL Language Reference Manual, Revision
1993. IEEE Std. 1076-1993, IEEE, 1993.

[7] IEEE. Hardware Description Language Based on the Verilog Hardware
Description Language. IEEE Std. 1364-1996, IEEE, 1996.

[8] A. Jerraya, I. Park, K. O Brien. “AMICAL: An Interactive High Level
Synthesis Environment”. In Proc. of EDAC, 1993.

[9] H. Juan, D. Gajski, V. Chaiyakul. “Clock-driven performance optimiza-
tion in interactive behavioral synthesis”. In Proc. of ICCAD, Nov. 1996.

[10] D. Ku, G. De Micheli. High-level Synthesis of ASICs under Timing and
Synchronization Constraints. Kluwer Academic Publishers, 1992.

[11] B. Landwehr, P. Marwedel, R. Dömer. “OSCAR: Optimum Simultane-
ous Scheduling, Allocation and Resource Binding Based on Integer Pro-
gramming”. In Proc. of EDAC, 1994.

[12] D. Shin, A. Gerstlauer, R. Dömer and D. Gajski. “Interactive C-based
RTL Design Methodology”. Technical Report CECS-TR-03-42, Univer-
sity of California, Irvine, Jan. 2004.

[13] Synopsys, Inc. Behavioral Compiler, available at
http://www.synopsys.com/.

[14] K. Wakabayashi, T. Okamoto. “C-based SoC Design Flow and EDA
tools: An ASIC and System Vendor Perspective”. In IEEE Transactions
on CAD, Dec. 2000.

[15] V. Chaiyakul, T. Hadley, A. Nakata, T. Tanimoto. HY-C LRM 1.2 Rev
1.1. Y Explorations Inc., 2004.


