
Statistical Quality Modeling of Approximate Hardware

Seogoo Lee1, Dongwook Lee1, Kyungtae Han2, Emily Shriver2, Lizy K. John1, and Andreas Gerstlauer1

1The University of Texas at Austin 2Intel Corporation
{sglee,dongwook.lee,ljohn,gerstl}@utexas.edu {kyungtae.han,emily.shriver}@intel.com

Abstract— Beyond traditional bit truncation, recently pro-
posed arithmetic and logic approximations have enriched the
quality versus energy design space for custom hardware kernels
in signal processing and other error-tolerant applications. Sys-
tematic exploration of such trade-offs requires fast, accurate,
and generic quality-energy models that can drive datapath opti-
mizations. Existing quality estimation approaches, however, are
either based on slow simulation or limited in supported approx-
imation types and quality metrics. In this paper, we propose
a novel semi-analytical quality model that can predict a wide
range of statistical metrics for arbitrary hardware approxima-
tions with deterministic error behavior. Input and error depen-
dencies are captured using one-time error-free simulation only.
Combining our quality estimation with a faithful energy model
considering both switching activity and voltage scaling, we pro-
vide a complete quality-energy optimization flow. Optimization
results for FFT and IDCT benchmarks show that our approach
is 28x faster than purely simulation-based exploration, and 2x
faster than existing hybrid approaches, all while achieving com-
parable estimation accuracy.

1. Introduction
Bit truncation and word length optimization have been widely

used to exploit quality-energy tradeoffs in the design of sig-
nal processing kernels. Recently, approximate computing has
emerged to exploit tradeoffs at finer granularity and for a
wider range of error-tolerant applications [3]. At the hard-
ware level, quality-configurable approximate arithmetic units
have been proposed to design datapaths of custom hardware
blocks [11, 14, 15, 19]. However, for systematic and controlled
optimization and exploration of design spaces, generic, fast, and
accurate quality and energy models are crucial.

Dating back to traditional fixed-point conversion, simulation-
based or analytical approaches have been used for quality es-
timation. Simulation-based approaches are flexible and can
compute an exact quality result for arbitrary bit truncation [4]
or novel hardware approximations [2, 17]. These approaches,
however, are often too time-consuming to be suitable for rapid
synthesis. By contrast, analytical approaches are fast, but
most of them have limitations in supported approximation
types [9, 13] or quality metrics [7, 16]. The work in [13] in-
corperates a quality constraint in high-level synthesis, but only
considers bit truncation. The authors in [9] only analyze rela-
tive impact of erroneous operations on output quality in graphs
limited to addition and shift operations. In [7, 16], the authors
use interval arithmetic, which provides safe minimum and max-
imum error boundaries, but is known to be conservative, lead-
ing to significant over-design when aiming to optimize systems
for actual application-specific quality metrics, such as signal-

���������	��
�������

������

�	
����

������

�������
��

����
���

������

���

��������

�����������

������	�	� �

���� !�"���� �"#

����������	 �
	������	�

�

�

�

�

�

�

�

�

�

�

	

�

�

�

�

�

�

�

�

$!���	%�

&���'� 	�
��������	
������������
������������

(�)

��*

������	%�

(�)

Fig. 1: Quality-energy optimization flow.

to-noise ratios (SNRs). For fixed-point conversion, the work
in [12] introduces affine arithmetic, but it is still a conserva-
tive range analysis. Only limited work exists overcoming these
limitations. Recent approaches first characterize error behavior
of individual hardware operators by simulation, and then ana-
lytically propagate either a derived quality metric [1] or input
data and error probability mass functions (PMFs) [6]. These
approaches work with various approximation types and quality
metrics, but still depend on exhaustive simulation to character-
ize individual unit error behavior. Some work on approximate
adders and multipliers has provided their own analytical error
models [14, 19], but they simply assume uniformly distributed
inputs, which leads to inherent inaccuracies.

In this paper, we present a novel statistical quality analysis
technique aimed at resolving drawbacks of previous work. We
propose a fast and accurate semi-analytical error model for esti-
mation of a wide range of statistical quality metrics under deter-
ministic hardware approximations in arbitrary dataflow graphs
(DFGs). Our approach is general in terms of quality metrics,
DFGs, input statistics, and supported hardware approximations.
It only requires one-time simulation-based profiling to capture
dependency on input statistics. We analytically characterize the
error PMFs of various operation units without any further simu-
lation overhead, and this is a main difference from existing work
in [1, 6]. The use of general PMFs allows for translation into a
variety of quality metrics, such as SNR or min/max error. Qual-
ity metrics at primary DFG outputs are then estimated from in-
dividual error PMFs and an error propagation model. We com-
bine our quality analysis with an energy model that captures dy-
namic power savings from switching activity and voltage scal-
ing due to reduced logic complexity and critical path delays. We
demonstrate application of our quality-energy analysis to drive
optimization of approximations over an entire DFG.

Fig. 1 shows an overview of our analysis and optimization
flow. To estimate error PMFs of all operations in a given DFG,
we first find efficient representations of both input statistics and
unit-level error behavior, which is a key to significantly reduc-
ing analysis complexity. Error behavior of approximate hard-
ware units can generally be described as a truth table of erro-
neous outputs. However, the complexity is exponential in the

2x

2
y

1y

1x

2s

1s

3s

11

111111

),,(ˆ

ez

syxGyxz

+=

+=

33

2121321213

),(}),{,,,()(ˆ

ez

eePssszzGzzz

+=

+++=

22

222222

),,(ˆ

ez

syxGyxz

+=

+=

Fig. 2: Example DFG error model.

number of approximated bits. To reduce this complexity, we
propose two techniques to compactly represent 1) the error en-
tries of an approximate arithmetic operation, and 2) the input
statistics to the operation. Combined, these will allow error
PMF estimation to be performed for all types and parameters
of approximate operations.

In this paper, we limit the scope to arbitrary but deterministic
logic-level hardware approximations in arithmetic operations of
DFGs without feedback loops and conditional branches. Note
that branching type of behavior can be incorporated by propa-
gating errors across branches and assuming worst-case or prob-
abilistic behavior at join nodes [10]. We further assume that
inputs to an operation are independent.

The rest of the paper is organized as follows: In Section 2,
we present details of our approach. In Section 3, we describe
the optimization problem and the energy model. In Section 4,
we then show our experimental results, while we conclude the
paper with a summary and outlook on future work in Section 5.

2. Error analysis
We use an additive model to represent the error at the out-

put of each arithmetic operation in a DFG. Such additive error
models have been used in fixed-point quantization noise analy-
sis [18]. The work in [1, 7] also adopts this model. Fig. 2 shows
our error model for a simple multiplication and addition (MAC)
example. Inputs, error, and output of each operation are ran-
dom variables. In general, ẑi is the erroneous output from the
i-th operation, where ẑi is the sum of error-free output zi and an
additive error ei.

The error ei is generally the sum of errors G generated within
the operation and errors P propagated through the inputs from
predecessor operations. G is a function of the error-free inputs
(xi and yi) and the selected quality-scaling si. P() will depend
on the specific propagation model employed. Details about G()
and P() will be given in Sections 2.3 and 2.4, respectively.

2.1. Representation of input statistics
One of the key contributions of this paper compared to exist-

ing work is that we consider input statistics, instead of, for ex-
ample, simply assuming uniform distributions. In reality, error
distributions depend on input patterns, and overall error statis-
tics are highly input-dependent [1]. At the same time, a com-
plete representation of input statistics for all possible patterns
is exponential in complexity, requiring 22n entries for a 2-input
n-bit operation.

In this work, we introduce a compact representation of in-
put statistics in the form of 1) bit-wise probabilities, and 2)
pair-wise equivalence probabilities of neighboring bits for each

0 2 4 6 8 10 12 14
0.4

0.5

0.6

0.7

0.8

0.9

1

1.1

Bit position i

C
o
n
d
it
io

n
a
l

p
ro

b
a
b
ili

ty

P(x[i] | x[i-1])

P(x[i] | x[i-1]x[i-2])

P(x[i] | x[i-1]x[i-2]x[i-3])

P(x[i] | x[i-1]x[i-2]x[i-3]x[i-4])

P(x[i] | x[i-1]x[i-2]x[i-3]x[i-4]x[i-5])

Fig. 3: Validation of conditional independence.

��

��

��

��

�� �� ����

���

���

���

���

���

���

���

���

���

���

���

���

���

���

���

���

��

��

��

��

��

��

�� �� ����

�

�

�

�

�

�

�

�

�

��

��

�� ������

���������	
������������ ���������	
������������

������

������

������

������

Fig. 4: Error table of a 2-bit LOA example.

operand in the DFG. Bit-wise probabilities are represented as
the probability P1

i = P(x[i] = 1) of an individual bit i in operand
x being one. We further use the pair-wise equivalence proba-
bilities P=

i = P(x[i] = x[i− 1]) of two neighboring bits being
equivalent. We compute those probabilities as well as mean and
variance by input profiling.

A complete representation of input statistics would require
pair-wise equivalence probabilities between any two bits of in-
put operands to be considered. Reducing distributions into
pair-wise equality/inequality relations between neighboring bits
plus individual bit probabilities provides a good approxima-
tion under the assumption of conditional independence of non-
neighboring bits. Fig. 3 shows the conditional probabilities
of various bit positions in inverse discrete cosine transform
(IDCT) image data given other operand bits. Except for bit
position 7, bit probabilities are largely independent of non-
neighboring bits, confirming our conditional independence as-
sumption. Similar results are obtained for Gaussian and uni-
form distributions. As results will show, the difference in some
bit positions (such as bit 7 in this case) is not a significant factor
in our PMF estimation.

Nevertheless, this representation comes with several limita-
tions. If input distributions are sparse, i.e. an operand only has
a small set of possible patterns, correlations will extend beyond
just neighboring bits. Such cases can instead be modeled as dis-
tinct operation types for each possible input value. Also, we
assume that the two inputs for an operation are independent.
If bits from different operands are highly correlated, it is also
better to use a customized operation. An extreme example is a
square operation representing a product of two identical inputs.

2.2. Modeling of unit-level error behavior
Since we only consider deterministic logic errors, we can

generally represent errors G(xk,yk,sk) generated by an opera-
tion k realized in a specific hardware implementation sk as a
function Gsk : {0,1}nx×{0,1}ny 7→N that assigns an error value
G in N to each xk, yk input combination. We assume that error
tables Gsk are provided in an approximate hardware unit library.
A key observation is that many such arithmetic units are de-

TABLE I: Error table for truncated multiplication.
Implicant Scale of y (ex) Scale of x (ey) Error (D)

x′[1]x′[0]y[0] 0 -1 0
x′[1]x[0]y[0] -1 -1 1
x[1]x′[0]y[0] -1 -2 2
x[1]x[0]y[0] -1 -3 3

x′[1]x[0]y′[0] 0 -1 0
x[1]x′[0]y′[0] 0 -2 0
x[1]x[0]y′[0] 0 -3 0

signed by approximating only the lower significant bits (LSBs)
[15]. This allows G to be reduced to only those input bits that
result in non-zero errors. Nevertheless, the number of entries
in each error table Gsk is still exponential in the number of ap-
proximated bits nx and ny. We propose an efficient representa-
tion of Gsk . Fig. 4 shows an example GLOA for a 2-bit lower-bit
OR adder (LOA) [14]. There are seven error entries. Find-
ing a minimal representation of this error table is a covering
problem similar to two-level logic synthesis. In this example,
error terms of magnitude 3 can be covered by a prime impli-
cant x[1]x[0]y[1]y[0], error terms of magnitude 2 by implicants
x[1]y[1]y′[0] and x[1]x′[0]y[1]y[0], and magnitude 1 errors by im-
plicants x[0]y′[1]y[0] and x′[1]x[0]y[1]y[0].

For approximate multipliers, the error is generally not a func-
tion of a reduced set of input bits even if only LSBs are ap-
proximated. For example, in a multiplier that truncates inputs
x and y with errors ex and ey, respectively, the output becomes
(x+ ex)(y+ ey) = xy+ xey + yex + exey. Here, the last three
terms are error terms. The total error depends on ex and ey,
which are determined not only by how LSBs are approximated,
but also by inputs x and y. Thus, even though we only approxi-
mate LSBs, to compute accurate errors, we need to know com-
plete distributions of inputs. Furthermore, this requires the mul-
tiplier’s complete truth table to be known, which is practically
infeasible. To avoid the complexity issue, we instead extend er-
ror tables stored in the hardware library with additional entries
ex and ey that indicate the weight factors by which inputs y and
x contribute to the error. Note that ex and ey again only depend
on the number of approximated LSBs of x and y, i.e. can be
stored in reduced form. Table I shows the representation for
a multiplier with two LSBs of x and one LSB of y truncated,
where the error for the x[1]x0[0]y[0] entry is −x− 2y+ 2, for
example. From this, we compute xey and yex terms assuming
that x and y are uniformly distributed in a range determined by
their means and variances, which we obtain from input profil-
ing. Note that we only make this assumption when computing
each entry’s error value. An entry’s probability is still calcu-
lated from bit-level input statistics. Our method is different
from other approaches in [14, 19] that simply assume inputs
being uniformly distributed across their full static value range
independent of actual input statistics.

2.3. Operation-level error PMF estimation
Error tables are examined together with the input representa-

tion to determine the error PMFs for each DFG operation. Fig. 5
shows an example for a 2-bit LOA. In this example, input LSBs
have high equivalence probabilities between neighboring bits,
x[1] and x[0], and y[1] and y[0]. In addition, bit 0 of x is mostly

�������������	�
����������

�������������	�
����������

��������	�
���������

��������	�������

��

��

������

��

��

��

��

������
�� �� ����

�

�

�

�

�

�

�

�

�

��

��

�� ������

�������	
�������
������

���������������	����

��

��

������

��

��

��

��

������
�� �� ����

�

�

�

�

�

�

�

�

�

��

��

�� ������

��������������

��������� ����!"#
��������������

��������� ����!�#

�����������

�����������

��������	������

����������� �����������

�
��
�
�

���� �

����$	��%�������&'(

Fig. 5: Error PMF estimation.

1. We regard a bit as constant if a bit-wise probability is higher
than a certain threshold. Similarly, if a pair-wise equivalence or
inequivalence is higher than the threshold, the two bits are as-
sumed to be always the same or always different. Both thresh-
olds are 0.99 in our experiments. With these input statistics, we
can prune out 6 error entries in the error table, and only 1 er-
ror entry (error value = -3 with probability 1/4) actually affects
the output error. This result is quite different from assuming
uniformly-distributed input operands.

We generally compute the probabilities of surviving error
entries after pruning using previously gathered input statistics.
Known input probabilities P1

i , P1
i−1, and P=

i can be decomposed
into pair-wise joint probabilities of neighboring bits as follows:

P1
i = P({x[i],x[i−1]}= 10)+P({x[i],x[i−1]}= 11)

P1
i−1 = P({x[i],x[i−1]}= 01)+P({x[i],x[i−1]}= 11)

P=
i = P({x[i],x[i−1]}= 11)+P({x[i],x[i−1]}= 00)

1−P=
i = P({x[i],x[i−1]}= 01)+P({x[i],x[i−1]}= 10).

Solving the system of equations, we calculate the pair-wise joint
distribution, P(x[i],x[i−1]) as:

P(x[i] = a,x[i−1] = b) =

1/2× ((2a−1)P1
i +(2b−1)P1

i−1 +(2c−1)P=
i −2ab+1),

(1)

where a,b ∈ {0,1}, and c = a⊕b is the exclusive-or of a and b.
Given the proposed input and error representations, we can es-
timate the error PMF at individual arithmetic operation outputs.
The algorithm for computing operation-level PMFs generally
uses input statistics to compute the probability of each impli-
cant in the operation’s error table. For an nx and ny bit approx-
imation, the probability of j-th error implicant, P(m j), is the
joint probability of all involved bits. We calculate this probabil-
ity from bit-wise probabilities and pair-wise joint probabilities
in (1) based on an assumption of conditional independence of
non-neighboring bits:

P(mi) = P(y[ny−1], · · ·,y[0],x[nx−1], · · ·,x[0]) =

P(y[1],y[0])
P(y[2],y[1])

P(y[1])
· · ·

P(y[ny−1],y[ny−2])
P(y[ny−2]

×P(x[1],x[0])
P(x[2],x[1])

P(x[1])
· · · P(x[nx−1],x[nx−2])

P(x[nx−2]
.

(2)

Algorithm 1 Error PMF Estimation
1: procedure BwChk(Bit,Prob,th)
2: if (Bit = 1)&(Prob < 1− th) then return true
3: if (Bit = 0)&(Prob > th) then return true
4: return false
5: procedure PwChk(Bitu,Bitl,Prob,th)
6: if (Bitu = Bitl)&(Prob < 1− th) then return true
7: if (Bitu! = Bitl)&(Prob > th) then return true
8: return false
9: procedure PMF(OpType,M,(minx

maxx),(
miny
maxy),Px,Py)

10: Initialize PMF []
11: EPtotal = 0
12: for all implicants m j ∈M do
13: r = false
14: for all bit position i ∈ m j do
15: if BwChk(x[i],P1

x[i],0.99) then r = true

16: if BwChk(y[i],P1
y[i],0.99) then r = true

17: if PwChk(x[i],x[i−1],P=
x[i],0.99) then r = true

18: if PwChk(y[i],y[i−1],P=
y[i],0.99) then r = true

19: if r = true then continue
20: if OpType != Multiplication then
21: PMF [D(m j)]+ = P(m j)
22: else
23: min = min

x∈{minx ,maxx}
y∈{miny ,maxy}

(xey(m j)+ yex(m j)+D(m j))

24: max = max
x∈{minx ,maxx}
y∈{miny ,maxy}

(xey(m j)+ yex(m j)+D(m j))

25: for all min < k < max do
26: PMF [k]+ = P(m j)/(max−min−1)
27: EPtotal+= P(m j)

28: PMF [0] = 1−EPtotal

Algorithm 1 summarizes the computation of error PMFs per
operation. For each implicant m j in the operation’s error impli-
cant set M, we prune unlikely patterns using input statistics Px
and Py from initial profiling. For each surviving m j, we then
calculate its error magnitude D(m j) and probability P(m j). In
case of multipliers, we assume that errors are uniformly dis-
tributed over the range of the implicant’s error distribution, and
we compute the minimum (min) and maximum (max) of m j’s
error range from parameters ex, ey, D and the (minx ... maxx)
and (miny ... maxy) ranges of uniform input operand distribu-
tions extracted during initial profiling. Using this information,
we construct a histogram of error magnitudes and their proba-
bilities. Finally, we calculate the zero error probability such that
the total probability is 1.

For 8-bit approximation of LOA, our results show that the
Hellinger distance between estimated and simulated error PMFs
is less than 1%. Furthermore, using our compact error table rep-
resentation, we can reduce the number of implicants and corre-
sponding error PMF estimation time by 10x as compared to an
exhaustive analysis.

In general, for a certain type of approximation, error distri-
butions depend on two factors: 1) input statistics, and 2) ap-
proximation parameters, such as the number of lower bits for an
LOA. Fig. 6 shows comparisons of estimated and simulated
error variances under different number of approximated bits
and different input statistics for an LOA, a bit truncation adder
(BTA), an error-tolerant adder (ETA) [19], a broken array mul-
tiplier (BAM) [14], a bit truncation multiplier (BTM), and an
error-tolerant multiplier (ETM) [11]. When sweeping bits, we

1 2 3 4 5 6 7 8
10

-2

10
0

10
2

10
4

10
6

10
8

of approximated bits

E
rr

o
r

v
a
ri
a
n
c
e

LOA

BTA

ETA

��������
�	
���	��

(a) vs. # of approximated bits

1 2 3 4 5 6 7 8
10

0

10
2

10
4

10
6

10
8

10
10

log4(Input variance)

E
rr

o
r

v
a
ri
a
n
c
e

BAM

BTM

ETM

(b) vs. input variance
Fig. 6: Unit-level error variance estimation.

fix input variance to 1,000. Similarly, when sweeping variance,
we fix the number of approximate bits to 8. Overall, results ver-
ify that our PMF estimation can track true error behavior across
a general range of parameters and input statistics. The estima-
tion error is larger (up to 6dB) for multipliers. This inaccuracy
is mainly due to our reconstruction of input probabilities using
a uniform distribution. Note, however, that we still consider
actual input statistics P(m j) in calculations, and only use uni-
form distribution to determine how P(m j) is spread in a range
between min and max. Existing analytical approaches [14] do
not consider any input statistics and instead assume a uniform
distribution across all bits. This generates error estimates with
fixed variance, independent of the actual input distribution.

2.4. Error propagation
Several methods can be employed to propagate errors G

across a DFG in order to estimate error terms P. In general,
raw error PMFs can be propagated under assumptions of statisti-
cal independence. Alternatively, to reduce computational com-
plexity, we can first extract various metrics, such as mean, vari-
ance, or minimum/maximum error from operation-level PMFs.
These metrics can be used to apply existing efficient propaga-
tion methods, such as interval arithmetic [7] or variance propa-
gation for SNR estimation [1].

Another aspect to consider in error propagation is that errors
at the output of an operation will affect input statistics of its fol-
lowing operation, which can in turn affect successor operations’
error statistics. For example, bit truncation always changes the
approximated bits to zeros. If this output is given to another bit
truncation with a smaller number of approximated bits, the suc-
cessor operation will not generate an error at all. By contrast,
some approximate units such as the LOA do not significantly
affect output bit probabilities. We model this aspect by distin-
guishing between approximations that mask output bits to zero
or leave statistics unchanged.

3. Application-level optimization
We combine our quality model with an energy model, where

total energy consumption is the sum of all operations’ energy.
Energy gains of approximations primarily stem from (a) re-
duced switching activity and (b) reduced critical path delays,
which can be exploited for energy savings through voltage scal-
ing. We synthesize approximate adders and multipliers using
Synopsys Design Compiler to obtain the dynamic power num-
bers and critical path delays under different numbers of approx-

��������	

����

���������	

�
�

�
�

�
�

���������������

����������������

����

����	��
�

��������

(a) A stage of FFT

��� �����

��	
� �
�	
�

����

����	��
�

��������

��� ����

�
����

����	��
�

��������

�

�
�

�
�

�
�

�
�

��� ���

���

(b) IDCT
Fig. 7: Example DFGs.

TABLE II: Experimental setup.
DFG # of si Input data Qual. metric Baseline hardware
FFT 10 N (′,∞′3) SNR 16-bit ADD, 16-bit MUL

IDCT 4 Lena image PSNR 32-bit ADD, 16-bit MUL

imated bits. Critical path delays are used to determine the min-
imum voltage the unit can operate at without causing timing
violation [5]. In general, the relationship between voltage and
delay will vary non-uniformly for different cells along a crit-
ical path. To convert delay reductions to voltage savings, we
run Synopsys HSPICE simulations sweeping voltages for all
the standard cells in the given library. We then estimate average
voltage-delay relationship across all cells by function fitting.

Our energy model consists of two tables: dynamic energy Es

at normal operating voltage versus approximated configuration
s, and voltage versus approximated bits, provided as a library
V s. We determine a uniform voltage for a complete DFG as the
maximum among the voltages for all approximated operations
in the graph. With this, the energy cost function becomes

E(s) =
N

∑
i=1

Esi × (max(Vs))2

V 2
ref

. (3)

Here, variables si correspond to the approximation type and
scaling level of the i-th operation, s = {s1,s2, ...,sN}, where N
is the number of operations in the DFG. Vref is the normal oper-
ating voltage, and Vs = {V s1 ,V s2 , ...,V sN}.

We apply our quality and energy models to optimize energy
consumption while satisfying a quality requirement at the pri-
mary output of a DFG. The inputs to our optimizer are esti-
mated operation-level error metrics, energy models of all possi-
ble hardware units, an application DFG, and a required output
quality goal (Qmin). Formally, the optimization problem is

min
s

E(s), subject to Q(k,s)> Qmin. (4)

Here, Q() is the application-specific quality metric computed
as described in Section 2. The optimization problem is a non-
linear, non-convex integer problem, and meta-heuristics can
generally be used to solve the optimization.

4. Experiments and results
We use an adaptive simulated annealing (ASA) [8] meta-

heuristic to solve the optimization problem. Although ASA

10 15 20 25 30 35

0.8

0.85

0.9

0.95

1

1.05

SNR in dB

N
o
rm

a
liz

e
d
 E

n
e
rg

y

Estimated

Actual

��

�

��

�

��

�

�

��

�

��

�

���

��

�

�	

�

��

�

�

��

�

�

�	

�

��

�

�	

�

�

�	

�

����

�

�

����

�

��

�

�

��

�

� ����

�

��

�

�

��

�

��

�

��

�

�

�	

�

����

�

�

���

��

�

�����

���	

�

��

�

�

����

�

�	

�

�

���

�	

�

�����

�������

�����	

�

�

���

Fig. 8: FFT optimization result.

does not guarantee an optimal solution, an annealing-based ap-
proach is effective in solving this type of non-linear integer pro-
gramming problem. We have applied our quality-energy anal-
ysis framework to two application examples. Even though our
approach also works for other quality metrics, such as min/max
error, we present results targeting SNRs for a 256-point, 4-
stage pipelined FFT with radix-22 structure (Fig. 7a) and a 2-
dimensional IDCT (Fig. 7b). Table II shows a summary of our
experimental setup. Note that we allow up to 8 approximated
bits for both FFT adders and multipliers, and 16 and 8 bits for
IDCT adders and multipliers, respectively, as accuracy scaling
scheme. We verify optimization results by synthesizing opti-
mized designs down to a gate-level netlist using Synopsys De-
sign Compiler with a 32/28nm generic standard cell library and
vectorless power estimation.

Fig. 8 shows our FFT optimization results targeting different
SNR levels from 10 dB to 30 dB in 5 dB increments, which is
a typical operating range for wireless communication systems.
For each SNR target, the annotated set of numbers shows the
types and values of the decision variables obtained from the op-
timization for each FFT stage. A subscript of A denotes use
of a LOA, ETA, BAM or ETM unit with selected number of
approximated bits. Otherwise, T indicates use of a bit trun-
cated implementation. Optimization results are plotted using
both estimates from our analysis framework as well as actual
PSNR and energy values obtained from simulation and synthe-
sis, respectively. Power savings are normalized with respect to
the accurate, non-approximated baseline FFT design with 32 dB
SNR.

Up to 18% energy savings can be achieved at the lowest qual-
ity level. Optimized designs use a mix of approximate and tradi-
tional bit-truncated implementations, where lower quality goals
lead to increased use of more aggressive bit truncation. Sav-
ings generally grow linearly with an increasing number of ap-
proximated bits. However, due to gate-level optimizations in
Design Compiler, there are fluctuations in actual energy results,
which lead to gaps with estimation. Nevertheless, we can ob-
serve that our quality-energy analysis tracks actual results to
within a 1.75 dB SNR and 4% energy difference. With the ex-
ception of small estimation errors at high SNRs, results meet or
exceed the originally targeted quality constraints.

Fig. 9 shows IDCT optimization results for peak signal-to-
noise ratio (PSNR) targets from 30 dB to 45 dB with a 5 dB
step size. The accurate, non-approximated reference design

25 30 35 40 45 50
0.4

0.5

0.6

0.7

0.8

0.9

1

Actual PSNR in dB

E
s
ti
m

a
te

d
 E

n
e
rg

y
(N

o
rm

a
liz

e
d
)

Scaled volt.(AC)

Scaled volt.(BT)

Scaled volt.(ALL)

Fixed volt.(AC)

Fixed volt.(BT)

Fixed volt.(ALL)

Fig. 9: IDCT optimization result.

AC BT ALL
0

2

4

6

8

A
v
g

.
e

s
tim

a
tio

n
 e

rr
o

r
(%

)

Hybrid [6]

Proposed

���

���

���

���

���

���

(a) Average accuracy

AC BT ALL
10

0

10
1

10
2

10
3

10
4

O
p

tim
iz

a
tio

n
 t
im

e
 (

s
)

Simulation

Hybrid [6]

Proposed

(b) Total runtime
Fig. 10: Comparisons for optimization time and accuracy.

has a PSNR of 48 dB. We show optimization results using only
approximate LOA, ETA, BAM and ETM hardware resources
(’AC’), only bit-truncated adders and multipliers (’BT’), or both
(’ALL’). We execute final designs with each selected configura-
tion to measure actual PSNR. All designs remain within 3 dB
of the original PSNR goal. PSNR estimation errors are below
3.1 dB (9.1%) and the average error is 1.3 dB (3.5%).

We show estimated energy costs with and without considera-
tion of voltage scaling. Without voltage scaling, energy savings
can reach 39% in the given PSNR range. The critical path de-
lay reduction is up to 5.6%, which increases energy savings to
46% when scaled. Even though not the main goal of this paper,
results confirm the savings potential of approximate computing.

We compare PSNR estimation accuracy (Fig. 10a) and op-
timization time (Fig. 10b) using our quality analysis versus a
simulation-based exploration and the hybrid error estimation
approach from [6], which combines exhaustive operation-level
simulation with analytical propagation. To compute accuracy,
we average differences between the simulated and estimated
PSNRs of the final solutions from optimizing for 4 different
target PSNRs. Fig. 10a shows that our approach has an up to
4.0% estimation error, while the hybrid approach differs by up
to 6.2%. As such, overall estimation is comparably accurate.

The total runtime for IDCT exploration of 4 target PSNRs
(Fig. 10b) is less than 6 minutes with our approach. This is
about 28× faster compared to simulation-based exploration,
which takes more than 170 minutes. It is also 2× faster than
using the hybrid model. The total runtime for the FFT explo-
ration across 5 SNR levels is less than 20 seconds. This in-
cludes 3 s for one-time simulation to collect input statistics, 14 s
to pre-compute error PMFs for all operations and accuracy lev-

els, and less than 3 s on average per ASA run. By contrast, an
exploration and optimization using a simulation-based approach
takes around 1 hour. This is more than 180× slower than our
approach. All experiments were performed on an Intel Core i7
machine running at 2.67GHz.

5. Summary and conclusions
In this paper, we presented a novel approach for statistical

quality-energy optimization of dataflow graphs. The quality es-
timation is fast and accurate requiring only one-time profiling to
capture error and input dependencies. Our proposed method can
be used for any type of hardware approximations that cause de-
terministic errors. To reduce the quality analysis complexity, we
propose compact input and error representations. Quality mod-
els are combined with energy estimates to drive optimizations
across an entire DFG. Results show that quality-energy explo-
rations across a range of input statistics, approximation meth-
ods and quality goals can be performed with high accuracy and
speed. In future work, we will focus on extending our approach
to integrate control flow analysis and other, non-deterministic
or random error sources.

Acknowledgments
This work was partially supported by Intel and NSF Grant

CCF-1018075.

References
[1] W.-T. Chan et al. Statistical analysis and modeling for error composition

in approximate computation circuits. In ICCD, 2013.
[2] V. Chippa et al. Analysis and characterization of inherent application re-

silience for approximate computing. In DAC, 2013.
[3] J. Han and M. Orshansky. Approximate computing: An emerging

paradigm for energy-efficient design. In ETS, 2013.
[4] K. Han and B. L. Evans. Optimum wordlength search using sensitiv-

ity information. EURASIP Journal on Advances in Signal Processing,
2006(1):1–14, 2006.

[5] K. He et al. Controlled timing-error acceptance for low energy IDCT
design. In DATE, 2011.

[6] J. Huang et al. A methodology for energy-quality tradeoff using imprecise
hardware. In DAC, 2012.

[7] J. Huang and J. Lach. Exploring the fidelity-efficiency design space using
imprecise arithmetic. In ASP-DAC, 2011.

[8] L. Ingber. ASA 25.15. http://www.ingber.com//#ASA, 2004.
[9] Z. Kedem et al. Optimizing energy to minimize errors in dataflow graphs

using approximate adders. In CASES, 2010.
[10] K.-I. Kum and W. Sung. Combined word-length optimization and high-

level synthesis of digital signal processing systems. TCAD, 20(8):921–
930, 2001.

[11] K. Y. Kyaw et al. Low-power high-speed multiplier for error-tolerant ap-
plication. In EDSSC, 2010.

[12] D.-U. Lee et al. Accuracy-guaranteed bit-width optimization. TCAD,
25(10):1990–2000, 2006.

[13] C. Li et al. Joint precision and high level synthesis for approximate com-
puting. In DAC, 2015.

[14] H. Mahdiani et al. Bio-inspired imprecise computational blocks for
efficient vlsi implementation of soft-computing applications. TCAS I,
57(4):850–862, 2010.

[15] J. Miao et al. Modeling and synthesis of quality-energy optimal approxi-
mate adders. In ICCAD. ACM, 2012.

[16] S. Misailovic et al. Chisel: Reliability- and accuracy-aware optimization
of approximate computational kernels. In OOPSLA, 2014.

[17] K. Nepal et al. ABACUS: A technique for automated behavioral synthesis
of approximate computing circuits. In DATE, 2014.

[18] B. Widrow and I. Kollár. Quantization Noise: Roundoff Error in Digital
Computation, Signal Processing, Control, and Communications. Cam-
bridge University Press, 2008.

[19] N. Zhu et al. Design of low-power high-speed truncation-error-tolerant
adder and its application in digital signal processing. TVLSI, 18(8):1225–
1229, 2010.

