
System-Level Abstraction Semantics

Andreas Gerstlauer Daniel D. Gajski
gerstlauerQcecs.uci.edu gajskiQcecs.uci.edu

Center for Embedded Computer Systems
University of California, lrvine

Irvine, CA 92697-3425
http://w.cecs.uci.edu

ABSTRACT
Raising the level of abstraction is widely seen as the solution
for closing the productivity gap in system design. They key
for the success of this approach, however, are well-defined
abstraction levels and models. In this paper, we present such
system level semantics to cover the system design process.
We define properties and features of each model. Formal-
ization of the flow enables design automation for synthesis
and verification to achieve the required productivity gains.
Through customization, the semantics allow creation of spe-
cific design methodologies. We applied the concepts to sys-
tem languages SystemC and SpecC. Using the example of
a JPEG encoder, we will demonstrate the feasibility and
effectiveness of the approach.

Categories and Subject Descriptors
1.6.4 [Simulation and Modeling]: Model Validation and
Analysis; B.m [Hardware]: Miscellaneous-Design man-
agement

General Terms
Design, Theory

Keywords
System-level design, modeling, design semantics, abstrac-
tion levels, methodology

1. INTRODUCTION
It is a well-known fact that designers of SOCs are facing

an increasing productivity gap between semiconductor tech-
nology and methodology and tool support. A lot of efforts
have been focussed on raising the level of abstraction in the
design process. With higher levels of abstraction, the num-
ber of objects in the design decreases exponentially. This
allows the designer and tools to focus on the critical aspects

Permission to make digital or hard copies of all or p m of this work for
persanal or classmm use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy ahenvise, to
republish, to post on sewers or to redistribute to lim, requires prior specific
permission andJor a fee.
lSSS'O2, October 2-4,2002, Kyoto, Japan.
Copyright 2002 ACM 1-58113-576-9/02/0010 ... $5.00.

Figure 1: System design tasks.

and explore a larger part of the design space without being
overwhelmed by unnecessary details. Tools will then help
the designer in gradually refining the design to lower and
lower levels.

A requirement for any design flow is a set of well-defined
abstraction levels. The number of levels and the properties
of each level have to be defined such that designers and tools
can optimize decisions and move between levels efficiently.
The aim is to decrease the number of objects to deal with
at higher levels while providing enough detail to direct ex-
ploration at each step, trading off accuracy and efficiency,
e.g. in terms of simulation speed. Furthermore, a clear and
unambiguous definition of these levels is then needed to en-
able design automation for synthesis and .verification. In
addition, such a formalized definition is a necessity for in-
teroperability wross tools and designers.

The rest of this paper is organized as follows: after an
introduction to the system design process and an overview
of traditional modeling approaches, we will define the ab-
straction levels and models for system design in Section 2.
In Section 3, we outline application of these definitions to
different system-level languages. We present a specific de-
sign example and experimental results. The paper concludes
with a summary and a brief outlook on future work in Sec-
tion 4.

1.1 , System Design Process
System design starts with a set of requirements where dif-

ferent parts are possibly captured in different ways. How-

231

http://gerstlauerQcecs.uci.edu
http://gajskiQcecs.uci.edu
http://w.cecs.uci.edu

Level
R e q u i r e m e n t s
Specification
Mult iprocessing
Archi tec ture
Implementa t ion

Table 1: S y s t e m design models .

.
C o m p u t a t i o n Communica t ion Structure Order Val idate

Concepts Tokens Attributes Constraints Properties
Behaviors Messages Behavioral Causality Functionality
Processes Messages Processors Execution delays Performance
Processes BusSes/Ports Bus-functional Timing-accurate Protocols
FSMDs Signals Microarchitecture Cycle-accurate Clock cycle

ever, in order to feed a global design and synthesis flow,
requirements have to be combined into a single, unambigu-
ous system Specification. As shown in Figure 1, the ac-
tual design process then consists of two analogous Hows:
(a) mapping of the computational parts of the specification
onto processing elements (PES) ofa system architecture and
(b) mapping of the communication in the specification onto
system-busses. Each flow requires allocation of components
(PES or busses), partitioning of the specification onto com-
ponents, and scheduling of execution on the inherently se-
quential components. The result is the system architecture
of PES connected via busses. From there on, each of the PES
is then further implemented through software and hardware
synthesis.

1.2 Traditional Models
There are several approaches dealing with classification

and structuring of the design process [3, 8, 91. However,
none of these defines an actual How with models a t specific
points.

Tkaditionally, abstracted models of a system design are
used mainly for simulation purposes. In such simulation-
centric approaches, the designer is responsible for manually
rewriting the model a t a fixed level of abstraction t o adjust
to changes in the design. There has been a lot of work done
on horizontal integration of different models for simulation.
At lower levels, different languages or implementations are
integrated for co-simulation [Z, 41. At higher levels, different
models of computation are combined into common simula-
tion environments for specification [l]. However, none of
these approaches attack the vertical integration of models
that is needed for a synthesis-centric design Row with re-
finement of higher-level models into lower-level ones.

Recently, some research has focussed on abstracting com-
munication for the purpose of specification and possibly au-
tomatic generation of communication implementations from
such higher-level specifications [16, 10, 12, 151. Although
they are the motivation for our intermediate processor model,
these approaches focus on abstracting communication and
don't provide as high abstractions for the computational as-
pects. For example, in all cases the system is described as
a netlist of concurrent processes, and computational units
df hierarchy can only he composed in a parallel fashion, i.e.
all blocks are active all the time and it is cumbersome to
describe a sequential composition of computation.

2. ABSTRACTION LEVELS
A general classification of the design process is available

through the Y-Chart [3]. It defines system, register-transfer
(RT), gate, and transistor levelswhere each level is defined
by the type of objects and where higher level objects are hi-
erarchically composed out of lower level ones. At each level,

F igu re 2: S y s t e m design flow.

the design can be described 'in the form of a behavioral or
a structural model. A behavioral mddel describes the de-
sired functionality as a composition of abstract functional
entities. Behavioral objects are pieces of functionality that
get activated, process input data, produce output data, and
terminate. In a behavioral description, those pieces are then
arranged to model data and control dependencies between
them. A structural model, on the other hand, describes
the netlist of physical components and their connectivity.
Structural objects represent real, non-terminating compo-
nents and wires that are actively processing data a t all times.

A model is defined
by the amount of implementation detail in the description
of the design at that point. Together with the amount of
structure as defined by the Y-Chart, a model determines the
amount of order in the system. A behavioral description is
partially ordered based on causality, i.e. dependencies only.
In contrast, in a structural description order is increased by
creating a total order in time on the physical objects.

In the Y-Chart, design is the process of moving from a
behavioral description to a structural description under a
set of constraints where the structural objects are each d e
signed a t the next lower level. This process is also called
synthesis, especially when automated. At the system level,
design is therefore the process of deriving a structural d e
scription of the system, the system architecture, from a be-
havioral system description, the system specification. Be-
havioral objects a t the system level are general functions and
algorithms that communicate by transferring data through
global variables. Structural objects are processing elements
(PES), e.g. general purpose processors, custom hardware,
IPS, and memories that communicate via busses.

In general, the system design process is too complex to
be completed in one single step. The gap between require-
ments and implementation is too large for non-exponential
algorithms. Hence, we need to divide the process into a se-
quence of smaller, manageable steps. As explained in the in-
troduction, computation and communication refinement are
largely orthogonal. Therefore, it is beneficial to subdivide
the design process into the two separate tasks of computa-
tion and communication design. However, although inter-
actions between tasks are minimized, there are still strong

Models are points in the Y-Chart.

,

232

Figure 3: Specification model example.

dependencies. Especially, since partitioning of computation
influences the amount of communication to he performed,
Computation synthesis needs to be performed before com-
munication synthesis.

System
design starts with the behavioral specification model. In
a first step, computation is implemented on PES, resulting
in the intermediate multiprocessing model. The multipro-
cessing model is a mixed behavioral/structural description.
It defines the computation structure but leaves communica-
tion at a behavioral level. Finally, communication synthesis
completes the design flow and creates the structural system
architecture model.

In the following sections we will define those three models.
Table 1 summarizes the characteristics of the different mod-
els for system design. Due to space constraints, definitions
are limited in detail. For more information, please refer to

Figure 2 shows the resulting flow and models.

[el.
2.1 Specification Model

The specification is a behavioral description of the sys-
tem. It describes the desired functionality free of any im-
plementation details. The specification is composed without
any implications about the structure of the implementation.
Objects in the specification model are abstract entities that
perform computation on data and terminate. Apart from
timing constraints, there is no notion of time, i.e. behav-
ioral objects execute in zero time. Objects are ordered only
based on their dependencies. An example of a simple yet
typical specification model is shown in Figure 3.

At the specification level, a design consists of computation
and communication. Computation is described by a hierar-
chical composition of behaviors. Behaviors communicate by
transferring data messages over channels. More formally, a
specification model is a triple

(B , C, R)
consisting of a set of behaviors E , a set of channels C, and
a connectivity relation R L B x C that defines connections
of behaviors to channels.

Behaviors form a semigroup (B , o) under the composi-
tion operation D E {D, 1 1 , I, V}. Behaviors b l , b2 E B can
be composed sequentially (b l D b2), concurrently (blllb2), in
a pipelined loop (e : bllbZ), or in a mutually exclusive way
(c : blVb2) where the pipelined and alternative compositions
are guarded by additional conditions c. Blocks at the leaves
of the hierarchy contain basic algorithms that perform com-
putations. Such leaf behaviors contain a description of the
algorithm using, for example, a standard programming lan-

F igure 4: Multiprocessing model example.

guage like C. Hence, the code in the leaves describes how the
behavior processes its input data to produce its output data
using expressions over variables with different data types
as supported by the programming language. Throughout
the system design process, leaf behaviors will remain un-
touched, forming indivisible units for the purpose of explo-
ration and refinement. In general, models describe how the
system is composed out of the basic building blocks-the
leaf behaviors-n top'of any underlying language.

In summary, the purpose of the specification model is to
clearly and unambiguously describe the system functional-
ity. The system is composed of self-contained blocks with
well-defined interfaces enabling easy composition, rearrange-
ment, and reuse. All dependencies are explicitly captured
through the connectivity between behaviors and no hid-
den side effects exist. The parallelism available between
independent blocks is exposed through their concurrent or
pipelined composition. Computation and communication
are abstracted as a composition of functions over data. They
are separated into behaviors and channels, respectively, al-
lowing for a separate implementation of both concepts.

2.2 Multiprocessing Model
The multiprocessing model is the result of mapping com-

putation onto actual processing elements (PES). It repre-
sents the allocation and selection of PES and the mapping
of behaviors onto PES. It is a mix of a structural description
of system computation and a behavioral description of sys-
tem communication. An exemplary multiprocessing model
corresponding to the specification example from Figure 3 is
shown in Figure 4.

The multiprocessing model redefines the computational
part of the design. Formally, a multiprocessing model is a
triple

P E , C, R)
where computation is described as a set of concurrent PES.
PES are structural objects representing physical components
and as such are non-terminating. In general, the set of PES
in the system, PE = P U I P U M , consists of a set of general-
purpose processors, a set of IPS, and a set of memories, re-
spectively. Communication as the set of channels C and the
connectivity relation R between leaf behaviors and channels
remains essentially untouched.

233

A processor p E P is defined as a triple (BPI C,, Rp) that
executes the set of behaviors B, mapped onto it. Behaviors
inside processors communicate via a set of local channels
Cp as defined by the connectivity relation R, C Bp x C,.
Due to the inherently sequential nature of processing el+
ments, behaviors inside a processor have to be serialized. In
a static scheduling approach, the order of behaviors is fixed
and represented as artificial control dependencies of a purely
sequential composition of behaviors inside the PE , i.e. pro-
cessor behaviors form a semigroup (Bpi D) under sequential
composition only. . In a dynamic scheduling approach (not
shown in this paper), the order of behaviors is determined
at run-time. Behaviors are composed into tasks and an ab-
straction of the operating system scheduler in the mnltiprc-
cessing model dispatches tasks dynamically.

In contrast to general purpose PES, an i p t IP is defined
as a pair (B;p , W,p) where the pre-defined, fixed function-
ality B;, is encapsulated in a wrapper Wip. The wrapper
abstracts the IP's internal communication interface and pro-
vides a set of canonical channel interfaces for communication
with the IP at the behavioral level. At the system level, be-
haviors then can communicate directly with those wrappers,
i.e. the system connectivity relation R i_ B x (C U W) con-
nects processor behaviors B = U,,p B, to channels Cor IP
wrappers W = UiptrP W;p. Note that dedicated memories
are a special case of IPS which do not provide any function-
ality apart from reading and writing of data.

In summary, the multiprocessing model refines computa-
tion by grouping behaviors and mapping them onto a PE

.structure while largely preserving the original behavioral
communication. PES contain a behavioral description of
their functionality. Behaviors inside PES execute in order
through static or dynamic scheduling. In addition, the mul-
tiprocessing model introduces the notion of time for the com-
putation mapped onto the PES, further increasing the par-
tial order among PES. Based on estimated execution times
on the target PES, behaviors are annotated with delay infor-
mation. Therefore, true parallelism at the multiprocessing
level is only available through the set of concurrent PES.

Figure 5: Archi tecture model example.

Behavioral processor descriptions are transformed to bus-
functional models by adding bus drivers. A processor p t P
in the architecture model is a quintuple (B,,, C,, D,, O,, RP)
where Bp is the scheduled set of behaviors executing on the
processor, C, is the set of local channels, D,, is the set of bus
driver channel interfaces, 0, is the processor's set of ports,
and Rp Bp x (C,, U D,) is the connectivity relation that
has been extended to define the connection of behaviors to
channels and bus drivers. Bus drivers describe a processor's
implementation of the data messages over the bus protocols
on the processor's ports. Inside the processor, bus drivers
provide a behavioral message interface to its behaviors and
the behaviors connect t o those channel interfaces for all bus
communication.

For IP components, bus-functional or structural IP mod-
els can be directly integrated into the architecture model.
Bus-functional IP models are equivalent to the definition of
bus-functional processor models shown above. Structural
IP models, on the other hand, are defined as netlists of
RTL components. A structural zp E IP is a quadruple
(U;p, Bip,O<p,csp) where U,, is the set of RTL units, B,,
is the set local busses, 0.- is the set of oorts, and C m

2.3 Architecture Model
The architecture model is a structural description of the

I .r . . ~~

~~ ~ ~~ ~~ ~~

complete system fo: both computation and c0"unication.
In addition to allocation and selection of PES, the architec-
ture model represents the allocation and Selection of busses
and the mapping of global channels onto busses. As a re-
sult, the system is modeled as a netlist of PES connected via
busses.. I t is obtained by adding bus protocols to all chan-
nds, splitting channels, and inlining them into each P E as
bus drivers. Figure 5 shows the architecture model exam-
ple corresponding to the previously shown multiProcessing

is the connectivity function mapping ports of RTL units to
busses and external IP ports. In the architecture model,
bus.functional and structural IP models can be used inter-
changeably allowing, for example, mixed-level co-simulation.
~ ~ ~ i ~ , note that memory components can be treated as a
special case of pS,

If necessary, special transducer PES that translate be-
tureen incompatible protocols need to be inserted into the
architecture model. A transducer interfaces to two busses

,

model.
Based on the multiprocessing model definition, the archi-

tecture model redefines the global communication part of
the system. An architecture model is defined as a triple

(PE, B , c)

where PE is the set of PES, B is the set of busses, and
c : UpEPE 0, Y B is the port mapping function connecting
P E ports to busses. In general, the set of architecture model
PES, PE = P U IP U M UT U A, is a combination of the sets
of general-purpose processors, IPS, memories, transducers,
and arbiters, respectively.

via two sets of ports and contains bus drivers for each proto-
col. Hence, a transducer is defined as a processor with two
sets of ports and two sets of bus driver channel interfaces.

Finally, the architecture model can contain arbiters which
mediate conflicting bus accesses in case of multiple masters
on a bus. Arbiters implement a certain arbitration protocol
on their bus ports through internal bus drivers. Therefore,
equivalent to scheduling of computation on PES in the multi-
processing model, arbiters serialize accesses to the inherently
sequential busses. Arbiters usually come in the form of IPS
and as such can be defined as bus-functional or structural
processor models.

234

In summary, the architecture model refines communica-
tion into an implementation over busses, ports, drivers, and
transducers. Computation inside the PES, on the other
hand, remains largely untouched. The structural nature im-
poses a total order on the communication over each bus.
Furthermore, the partial order between busses is refined by
introducing bus protocol timing. Therefore, the architecture
model is timing-accurate in terms of both computation and
commnnication.

3. EXPERIMENTS
We have applied the system-level abstraction semantics

to several system-level design languages including SystemC
[7, 111 and SpecC [5, 141. In order to represent the differ-
ent models in a language, each model concept was trans-
lated into one or more language constructs. For example,
specification behaviors map to processes in SystemC or he-
haviors in SpecC. Ideally, the mapping of model concepts
to language constructs should he unambiguous in order to
ease understanding of models written in a language for both
humans or tools. Details of this application to different lan-
guages are, however, beyond the scope of this paper.

We then modeled several design examples following the
presented flow. In the following, we will outline the im-
plementation of a JPEG encoder. Note that the focus was
on demonstrating feasibility and effectiveness of the mod-
els. Therefore, implementation decisions were made without
performing elaborate design space exploration. Source code
for all models in SpecC can he downloaded from our web
pages [13]. In this case, we chose SpecC as modeling lan-
guage since, at the time of development, SpecC supported
the most concepts explicitly through dedicated constructs.

Figure 6 shows the three models of the JPEG encoder. At
the top of the specification model (Figure 6(a)), the encoder
consists of two sequential behaviors, JPEGInit followed by
JPEGEncode. JPEGInit performs initialization of the two
Huffman tables in two parallel subbehaviors, and writes the
output header. Then, the actual encoding is done in two
nested, pipelined loops. The outer pipeline splits the image
into stripes of 8 lines each. The inner pipeline then splits the
stripes into 8 x 8 blocks and processes each block through
DCT, quantization and Huffman encoding. As an example
of communication, Figure 6(a) shows the two Huffman ta-
bles ACEHuff and DCEHufl that are sent from JPEGInit
to JPEGEncode. Note that since the two behaviors are com-
posed sequentially, channels can degenerate to simple vari-
ables.

For the purpose of computation synthesis, we assumed a
mapping of the encoder on a Motorola Coldfire processor
(S W) assisted by a custom hardware co-processor (H W)
for acceleration of the DCT (Figure 6(b)). Software and
hardware communicate via two message-passing channels,
sending and receiving 8 x 8 blocks from software to the DCT
processor and hack. Behaviors inside the SW processor are
statically scheduled and serialized. The two nested pipelines
are converted into two nested, sequential loops.

Finally, for communication synthesis, we connected the
two processors via a single bus using the Coldfire bus pro-
tocol. Furthermore, it wais assumed that the protocol of the
DCT IP is fixed and incompatible with the Coldfire proto-
col, necessating the inclusion of a transducer (Figure 6 (c)) .
The SW processor is the master on the bus and drives the
address and control lines. The transducer T listens on the

i
(b) Multiprocessing

(c) Architecture

Figure 6: JPEG encoder,

235

I II Lines I Lines 11 Simul. I
Specification
Multiprocessing
Architecture

of Code Changed Time
1,811 3.8s

2,000 (+lo%) 235 (13% 4 s
2,493 (+25%) 545 (27%) 48s

Table 2: JPEG encoder statist ics.

bus and translates between bus and HW co-processor pro-
tocol. For synchronization, the hardware signals the soft-
ware through the processor's interrupt line INTC; Inside
the PES, bus drivers and interrupt handlers translate the
message-passing calls of the behaviors into bus transactions
by driving and sampling the PE's bus ports according to the
protocol.

Characteristics of the JPEG encoder models in SpecC are
listed in Table 2. The table shows both the lines of code
and the number of lines added or changed when moving
from one model to the next. As can be seen, refinement
between levels is localized and leaves most of the original
code untouched. Most of the changes result from additions
to represent increased implementation detail.

To validate the models, we performed simulations a t all
levels. The simulation performance a t different levels for
the 'JPEG encoder (Table 2) and two additional examples,
a JBIG encoder for facsimile applications and a voice en-
coder/decoder for mobile telephony, are shown in Figure 7.
As we move down in the level of abstraction, more timing
information is added, increasing the accuracy of the simu-
lation'results. However, simulation time increases exponen-
tially with lower levels of abstraction. As the results show,
moving to higher levels of abstraction enables more rapid de-
sign space exploration. Through the intermediate multipro-
cessing level, valuable feedback about critical computation
synthesis aspects can be obtained early and quickly.

4. SUMMARY & CONCLUSIONS
In this paper, we presented a division of the system-level

design process into three well-defined system-level models.
The three models define a comprehensive approach a t rais-
ing the level of abstraction in embedded systems design,
supporting both computation and communication abs t rx-
tion. The definition of models is based on a separation of
concerns that minimizes interactions between levels, reduces
refinement between models, and supports easy exploration
with a variety of components and IPS. The two-step ap-
proach to the design flow supports rapid design space e x p b
ration by focusing on critical decisions a t early stages while
providing quick feedback.

To our knowledge, this is the first attempt at properly
defining models in a formalized way. The models define a
framework on top of which system-level languages and de-
sign methodologies can be developed. For example, platform
based design predefines the sets of PES and busses within
the framework of multiprocessing and architecture models.
The formalization of levels is the enabler for interoperabil-
ity and design automation. Based on the above definitions,
we can demonstrate automatic model refinement between
levels. In the future, we want t o extend the formalization
to a general algebra with axioms based on which proofably
correct transformations can he defined. Such a formalized
framework of models and transformations based on the def-

S P E P.OC Arch

Figure 7: Simulat ion performance.

initions presented in this paper is the foundation for the
vertical integration of models through synthesis and verifi-
cation.

5. ACKNOWLEDGMENTS

Cooperation (SRC), Task ID 832.002.
This work was supported by the Semiconductor Research

6. REFERENCES
[l] J . Buck et al. Ptolemy: A framework for simulating

and prototyping heterogeneous systems. Journal of
Computer Simulation, 4, 1994.

[Z] P. Coste et al. Multilanguage design of heterogeneous
systems. In CODES, 1999.

[3] D. D. Gajski and R. Kuhn. Guest editors introduction:
New VLSI tools. IEEE Computer, pages 11:14, 1983.

[4] P. Gerin et al. Scalable and flexible cosimulation of
SoC designs with heterogeneous multi-processor target
architectures. In ASPDAC, 2001.

[5] A. Gerstlauer et al. System Design: A Practical Guide
with SpecC. Kluwer Academic Publishers, 2001.

[6] A. Gerstlauer and D. D. Gajski. System-level
abstraction semantics. Technical Report CECS-02-17,
CECS, UC Irvine, 2002.

[7] T. Grotker et al. System Design with SystemC. Kluwer
Academic Publishers, 2002.

181 W. Hardt e t al. The PARADISE design environment.
In ESC, 1999.

[Q] A. Jantsch et al. The Rugby model: A conceptual
frame for the study of modelling, analysis and
synthesis concepts of electronic systems. In DATE,
1999.

application-specific architectures for heterogeneous
multiprocessor system-on-chip. In DAC, 2001.

[ll] Open SystemC Initiative. http://www.systemc.org.
[12] R. Siegmund and D. Miller. SystemCsv: An

[lo] D. Lyonnard et al. Automatic generation of

extension of SystemC for mixed multi-level
communication modeling and interface-based system
design. In DATE, 2001.

[13] SpecC home page. http://www.cecs.uci.edu/-specc.
[14] SpecC Technology Open Consortium.

[15] K. Svarstad et al. A higher level system
http://www.specc.org.

communication model for object-oriented specification
and design of embedded systems. In ASPDAC, 2001.

[l G] K. van Rompaey et al. CoWare: A design environment
for heterogeneous hardware/software systems. In
EURO-DAC, 1996.

236

http://www.systemc.org
http://www.cecs.uci.edu/-specc
http://www.specc.org

