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ABSTRACT 
Raising the level of abstraction is widely seen as the solution 
for closing the productivity gap in system design. They key 
for the success of this approach, however, are well-defined 
abstraction levels and models. In this paper, we present such 
system level semantics to cover the system design process. 
We define properties and features of each model. Formal- 
ization of the flow enables design automation for synthesis 
and verification to achieve the required productivity gains. 
Through customization, the semantics allow creation of spe- 
cific design methodologies. We applied the concepts to sys- 
tem languages SystemC and SpecC. Using the example of 
a JPEG encoder, we will demonstrate the feasibility and 
effectiveness of the approach. 

Categories and Subject Descriptors 
1.6.4 [Simulation and Modeling]: Model Validation and 
Analysis; B.m [Hardware]: Miscellaneous-Design man- 
agement 

General Terms 
Design, Theory 

Keywords 
System-level design, modeling, design semantics, abstrac- 
tion levels, methodology 

1. INTRODUCTION 
It is a well-known fact that designers of SOCs are facing 

an increasing productivity gap between semiconductor tech- 
nology and methodology and tool support. A lot of efforts 
have been focussed on raising the level of abstraction in the 
design process. With higher levels of abstraction, the num- 
ber of objects in the design decreases exponentially. This 
allows the designer and tools to focus on the critical aspects 

Permission to make digital or hard copies of all or p m  of this work for 
persanal or classmm use is granted without fee provided that copies are 
not made or distributed for profit or commercial advantage and that copies 
bear this notice and the full citation on the first page. To copy ahenvise, to 
republish, to post on sewers or to redistribute to lim, requires prior specific 
permission andJor a fee. 
lSSS'O2, October 2-4,2002, Kyoto, Japan. 
Copyright 2002 ACM 1-58113-576-9/02/0010 ... $5.00. 

Figure  1: System design tasks.  

and explore a larger part of the design space without being 
overwhelmed by unnecessary details. Tools will then help 
the designer in gradually refining the design to lower and 
lower levels. 

A requirement for any design flow is a set of well-defined 
abstraction levels. The number of levels and the properties 
of each level have to be defined such that designers and tools 
can optimize decisions and move between levels efficiently. 
The aim is to decrease the number of objects to deal with 
at higher levels while providing enough detail to direct ex- 
ploration at each step, trading off accuracy and efficiency, 
e.g. in terms of simulation speed. Furthermore, a clear and 
unambiguous definition of these levels is then needed to en- 
able design automation for synthesis and .verification. In 
addition, such a formalized definition is a necessity for in- 
teroperability wross tools and designers. 

The rest of this paper is organized as follows: after an 
introduction to the system design process and an overview 
of traditional modeling approaches, we will define the ab- 
straction levels and models for system design in Section 2. 
In Section 3, we outline application of these definitions to 
different system-level languages. We present a specific de- 
sign example and experimental results. The paper concludes 
with a summary and a brief outlook on future work in Sec- 
tion 4. 

1.1 , System Design Process 
System design starts with a set of requirements where dif- 

ferent parts are possibly captured in different ways. How- 
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Level 
R e q u i r e m e n t s  
Specification 
Mult iprocessing 
Archi tec ture  
Implementa t ion  

Table  1: S y s t e m  design models .  

. 
C o m p u t a t i o n  Communica t ion  Structure Order Val idate  

Concepts Tokens Attributes Constraints Properties 
Behaviors Messages Behavioral Causality Functionality 
Processes Messages Processors Execution delays Performance 
Processes BusSes/Ports Bus-functional Timing-accurate Protocols 
FSMDs Signals Microarchitecture Cycle-accurate Clock cycle 

ever, in order to feed a global design and synthesis flow, 
requirements have to be combined into a single, unambigu- 
ous system Specification. As shown in Figure 1, the ac- 
tual design process then consists of two analogous Hows: 
(a) mapping of the computational parts of the specification 
onto processing elements (PES) ofa  system architecture and 
(b) mapping of the communication in the specification onto 
system-busses. Each flow requires allocation of components 
(PES or busses), partitioning of the specification onto com- 
ponents, and scheduling of execution on the inherently se- 
quential components. The result is the system architecture 
of PES connected via busses. From there on, each of the PES 
is then further implemented through software and hardware 
synthesis. 

1.2 Traditional Models 
There are several approaches dealing with classification 

and structuring of the design process [3, 8, 91. However, 
none of these defines an actual How with models a t  specific 
points. 

Tkaditionally, abstracted models of a system design are 
used mainly for simulation purposes. In such simulation- 
centric approaches, the designer is responsible for manually 
rewriting the model a t  a fixed level of abstraction t o  adjust 
to changes in the design. There has been a lot of work done 
on horizontal integration of different models for simulation. 
At lower levels, different languages or implementations are 
integrated for co-simulation [Z, 41. At higher levels, different 
models of computation are combined into common simula- 
tion environments for specification [l]. However, none of 
these approaches attack the vertical integration of models 
that is needed for a synthesis-centric design Row with re- 
finement of higher-level models into lower-level ones. 

Recently, some research has focussed on abstracting com- 
munication for the purpose of specification and possibly au- 
tomatic generation of communication implementations from 
such higher-level specifications [16, 10, 12, 151. Although 
they are the motivation for our intermediate processor model, 
these approaches focus on abstracting communication and 
don't provide as high abstractions for the computational as- 
pects. For example, in all cases the system is described as 
a netlist of concurrent processes, and computational units 
df hierarchy can only he composed in a parallel fashion, i.e. 
all blocks are active all the time and it is cumbersome to 
describe a sequential composition of computation. 

2. ABSTRACTION LEVELS 
A general classification of the design process is available 

through the Y-Chart [3]. It defines system, register-transfer 
(RT), gate, and transistor levelswhere each level is defined 
by the type of objects and where higher level objects are hi- 
erarchically composed out of lower level ones. At each level, 

F igu re  2: S y s t e m  design flow. 

the design can be described 'in the form of a behavioral or 
a structural model. A behavioral mddel describes the de- 
sired functionality as a composition of abstract functional 
entities. Behavioral objects are pieces of functionality that 
get activated, process input data, produce output data, and 
terminate. In a behavioral description, those pieces are then 
arranged to model data and control dependencies between 
them. A structural model, on the other hand, describes 
the netlist of physical components and their connectivity. 
Structural objects represent real, non-terminating compo- 
nents and wires that are actively processing data a t  all times. 

A model is defined 
by the amount of implementation detail in the description 
of the design at that point. Together with the amount of 
structure as defined by the Y-Chart, a model determines the 
amount of order in the system. A behavioral description is 
partially ordered based on causality, i.e. dependencies only. 
In contrast, in a structural description order is increased by 
creating a total order in time on the physical objects. 

In the Y-Chart, design is the process of moving from a 
behavioral description to a structural description under a 
set of constraints where the structural objects are each d e  
signed a t  the next lower level. This process is also called 
synthesis, especially when automated. At the system level, 
design is therefore the process of deriving a structural d e  
scription of the system, the system architecture, from a be- 
havioral system description, the system specification. Be- 
havioral objects a t  the system level are general functions and 
algorithms that communicate by transferring data through 
global variables. Structural objects are processing elements 
(PES), e.g. general purpose processors, custom hardware, 
IPS, and memories that communicate via busses. 

In general, the system design process is too complex to 
be completed in one single step. The gap between require- 
ments and implementation is too large for non-exponential 
algorithms. Hence, we need to divide the process into a se- 
quence of smaller, manageable steps. As explained in the in- 
troduction, computation and communication refinement are 
largely orthogonal. Therefore, it is beneficial to subdivide 
the design process into the two separate tasks of computa- 
tion and communication design. However, although inter- 
actions between tasks are minimized, there are still strong 

Models are points in the Y-Chart. 

, 
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Figure  3: Specification model  example.  

dependencies. Especially, since partitioning of computation 
influences the amount of communication to he performed, 
Computation synthesis needs to be performed before com- 
munication synthesis. 

System 
design starts with the behavioral specification model. In 
a first step, computation is implemented on PES, resulting 
in the intermediate multiprocessing model. The multipro- 
cessing model is a mixed behavioral/structural description. 
It defines the computation structure but leaves communica- 
tion at a behavioral level. Finally, communication synthesis 
completes the design flow and creates the structural system 
architecture model. 

In the following sections we will define those three models. 
Table 1 summarizes the characteristics of the different mod- 
els for system design. Due to space constraints, definitions 
are limited in detail. For more information, please refer to 

Figure 2 shows the resulting flow and models. 

[el. 
2.1 Specification Model 

The specification is a behavioral description of the sys- 
tem. It describes the desired functionality free of any im- 
plementation details. The specification is composed without 
any implications about the structure of the implementation. 
Objects in the specification model are abstract entities that 
perform computation on data and terminate. Apart from 
timing constraints, there is no notion of time, i.e. behav- 
ioral objects execute in zero time. Objects are ordered only 
based on their dependencies. An example of a simple yet 
typical specification model is shown in Figure 3. 

At the specification level, a design consists of computation 
and communication. Computation is described by a hierar- 
chical composition of behaviors. Behaviors communicate by 
transferring data messages over channels. More formally, a 
specification model is a triple 

(B ,  C, R) 
consisting of a set of behaviors E ,  a set of channels C, and 
a connectivity relation R L B x C that defines connections 
of behaviors to channels. 

Behaviors form a semigroup ( B ,  o) under the composi- 
tion operation D E {D, 1 1 ,  I, V}. Behaviors b l ,  b2 E B can 
be composed sequentially ( b l  D b2), concurrently (blllb2), in 
a pipelined loop ( e  : bllbZ), or in a mutually exclusive way 
(c : blVb2)  where the pipelined and alternative compositions 
are guarded by additional conditions c. Blocks at the leaves 
of the hierarchy contain basic algorithms that perform com- 
putations. Such leaf behaviors contain a description of the 
algorithm using, for example, a standard programming lan- 

F igure  4: Multiprocessing model  example. 

guage like C. Hence, the code in the leaves describes how the 
behavior processes its input data to produce its output data 
using expressions over variables with different data types 
as supported by the programming language. Throughout 
the system design process, leaf behaviors will remain un- 
touched, forming indivisible units for the purpose of explo- 
ration and refinement. In general, models describe how the 
system is composed out of the basic building blocks-the 
leaf behaviors-n top'of any underlying language. 

In summary, the purpose of the specification model is to 
clearly and unambiguously describe the system functional- 
ity. The system is composed of self-contained blocks with 
well-defined interfaces enabling easy composition, rearrange- 
ment, and reuse. All dependencies are explicitly captured 
through the connectivity between behaviors and no hid- 
den side effects exist. The parallelism available between 
independent blocks is exposed through their concurrent or 
pipelined composition. Computation and communication 
are abstracted as a composition of functions over data. They 
are separated into behaviors and channels, respectively, al- 
lowing for a separate implementation of both concepts. 

2.2 Multiprocessing Model 
The multiprocessing model is the result of mapping com- 

putation onto actual processing elements (PES). It repre- 
sents the allocation and selection of PES and the mapping 
of behaviors onto PES. It is a mix of a structural description 
of system computation and a behavioral description of sys- 
tem communication. An exemplary multiprocessing model 
corresponding to the specification example from Figure 3 is 
shown in Figure 4. 

The multiprocessing model redefines the computational 
part of the design. Formally, a multiprocessing model is a 
triple 

P E ,  C, R) 
where computation is described as a set of concurrent PES. 
PES are structural objects representing physical components 
and as such are non-terminating. In general, the set of PES 
in the system, PE = P U I P U M ,  consists of a set of general- 
purpose processors, a set of IPS, and a set of memories, re- 
spectively. Communication as the set of channels C and the 
connectivity relation R between leaf behaviors and channels 
remains essentially untouched. 
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A processor p E P is defined as a triple (BPI C,, Rp)  that 
executes the set of behaviors B, mapped onto it. Behaviors 
inside processors communicate via a set of local channels 
Cp as defined by the connectivity relation R, C Bp x C,. 
Due to the inherently sequential nature of processing el+ 
ments, behaviors inside a processor have to be serialized. In 
a static scheduling approach, the order of behaviors is fixed 
and represented as artificial control dependencies of a purely 
sequential composition of behaviors inside the PE ,  i.e. pro- 
cessor behaviors form a semigroup (Bpi D) under sequential 
composition only. . In  a dynamic scheduling approach (not 
shown in this paper), the order of behaviors is determined 
at run-time. Behaviors are composed into tasks and an ab- 
straction of the operating system scheduler in the mnltiprc- 
cessing model dispatches tasks dynamically. 

In contrast to general purpose PES, an i p  t IP is defined 
as a pair (B;p ,  W,p) where the pre-defined, fixed function- 
ality B;, is encapsulated in a wrapper Wip. The wrapper 
abstracts the IP's internal communication interface and pro- 
vides a set of canonical channel interfaces for communication 
with the IP at  the behavioral level. At the system level, be- 
haviors then can communicate directly with those wrappers, 
i.e. the system connectivity relation R i_ B x (C U W )  con- 
nects processor behaviors B = U,,p B, to channels Cor  IP 
wrappers W = UiptrP W;p. Note that dedicated memories 
are a special case of IPS which do not provide any function- 
ality apart from reading and writing of data. 

In summary, the multiprocessing model refines computa- 
tion by grouping behaviors and mapping them onto a PE 

.structure while largely preserving the original behavioral 
communication. PES contain a behavioral description of 
their functionality. Behaviors inside PES execute in order 
through static or dynamic scheduling. In addition, the mul- 
tiprocessing model introduces the notion of time for the com- 
putation mapped onto the PES, further increasing the par- 
tial order among PES. Based on estimated execution times 
on the target PES, behaviors are annotated with delay infor- 
mation. Therefore, true parallelism at the multiprocessing 
level is only available through the set of concurrent PES. 

Figure 5: Archi tecture  model  example. 

Behavioral processor descriptions are transformed to bus- 
functional models by adding bus drivers. A processor p t P 
in the architecture model is a quintuple (B,,, C,, D,, O,, RP) 
where Bp is the scheduled set of behaviors executing on the 
processor, C, is the set of local channels, D,, is the set of bus 
driver channel interfaces, 0, is the processor's set of ports, 
and Rp Bp x (C,, U D,) is the connectivity relation that 
has been extended to define the connection of behaviors to 
channels and bus drivers. Bus drivers describe a processor's 
implementation of the data messages over the bus protocols 
on the processor's ports. Inside the processor, bus drivers 
provide a behavioral message interface to its behaviors and 
the behaviors connect t o  those channel interfaces for all bus 
communication. 

For IP components, bus-functional or structural IP mod- 
els can be directly integrated into the architecture model. 
Bus-functional IP models are equivalent to the definition of 
bus-functional processor models shown above. Structural 
IP models, on the other hand, are defined as netlists of 
RTL components. A structural zp E IP is a quadruple 
(U;p, Bip,O<p,csp) where U,, is the set of RTL units, B,, 
is the set local busses, 0.- is the set of oorts, and C m  

2.3 Architecture Model 
The architecture model is a structural description of the 

I .r . .  ~~ 

~~ ~ ~~ ~~ ~~ 

complete system fo: both computation and c0"unication. 
In addition to allocation and selection of PES, the architec- 
ture model represents the allocation and Selection of busses 
and the mapping of global channels onto busses. As a re- 
sult, the system is modeled as a netlist of PES connected via 
busses.. I t  is obtained by adding bus protocols to all chan- 
nds,  splitting channels, and inlining them into each P E  as 
bus drivers. Figure 5 shows the architecture model exam- 
ple corresponding to the previously shown multiProcessing 

is the connectivity function mapping ports of RTL units to 
busses and external IP ports. In the architecture model, 
bus.functional and structural IP models can be used inter- 
changeably allowing, for example, mixed-level co-simulation. 
~ ~ ~ i ~ ,  note that memory components can be treated as a 
special case of pS, 

If necessary, special transducer PES that translate be- 
tureen incompatible protocols need to be inserted into the 
architecture model. A transducer interfaces to two busses 

, 

model. 
Based on the multiprocessing model definition, the archi- 

tecture model redefines the global communication part of 
the system. An architecture model is defined as a triple 

(PE,  B ,  c)  

where PE is the set of PES, B is the set of busses, and 
c : UpEPE 0, Y B is the port mapping function connecting 
P E  ports to busses. In general, the set of architecture model 
PES, PE = P U IP U M UT U A,  is a combination of the sets 
of general-purpose processors, IPS, memories, transducers, 
and arbiters, respectively. 

via two sets of ports and contains bus drivers for each proto- 
col. Hence, a transducer is defined as a processor with two 
sets of ports and two sets of bus driver channel interfaces. 

Finally, the architecture model can contain arbiters which 
mediate conflicting bus accesses in case of multiple masters 
on a bus. Arbiters implement a certain arbitration protocol 
on their bus ports through internal bus drivers. Therefore, 
equivalent to scheduling of computation on PES in the multi- 
processing model, arbiters serialize accesses to  the inherently 
sequential busses. Arbiters usually come in the form of IPS 
and as such can be defined as bus-functional or structural 
processor models. 
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In summary, the architecture model refines communica- 
tion into an implementation over busses, ports, drivers, and 
transducers. Computation inside the PES, on the other 
hand, remains largely untouched. The structural nature im- 
poses a total order on the communication over each bus. 
Furthermore, the partial order between busses is refined by 
introducing bus protocol timing. Therefore, the architecture 
model is timing-accurate in terms of both computation and 
commnnication. 

3. EXPERIMENTS 
We have applied the system-level abstraction semantics 

to several system-level design languages including SystemC 
[7, 111 and SpecC [5, 141. In order to represent the differ- 
ent models in a language, each model concept was trans- 
lated into one or more language constructs. For example, 
specification behaviors map to processes in SystemC or he- 
haviors in SpecC. Ideally, the mapping of model concepts 
to language constructs should he unambiguous in order to 
ease understanding of models written in a language for both 
humans or tools. Details of this application to different lan- 
guages are, however, beyond the scope of this paper. 

We then modeled several design examples following the 
presented flow. In the following, we will outline the im- 
plementation of a JPEG encoder. Note that the focus was 
on demonstrating feasibility and effectiveness of the mod- 
els. Therefore, implementation decisions were made without 
performing elaborate design space exploration. Source code 
for all models in SpecC can he downloaded from our web 
pages [13]. In this case, we chose SpecC as modeling lan- 
guage since, at the time of development, SpecC supported 
the most concepts explicitly through dedicated constructs. 

Figure 6 shows the three models of the JPEG encoder. At 
the top of the specification model (Figure 6(a)), the encoder 
consists of two sequential behaviors, JPEGInit followed by 
JPEGEncode. JPEGInit performs initialization of the two 
Huffman tables in two parallel subbehaviors, and writes the 
output header. Then, the actual encoding is done in two 
nested, pipelined loops. The outer pipeline splits the image 
into stripes of 8 lines each. The inner pipeline then splits the 
stripes into 8 x 8 blocks and processes each block through 
DCT, quantization and Huffman encoding. As an example 
of communication, Figure 6(a) shows the two Huffman ta- 
bles ACEHuff and DCEHufl that are sent from JPEGInit 
to JPEGEncode. Note that since the two behaviors are com- 
posed sequentially, channels can degenerate to simple vari- 
ables. 

For the purpose of computation synthesis, we assumed a 
mapping of the encoder on a Motorola Coldfire processor 
( S W )  assisted by a custom hardware co-processor ( H W )  
for acceleration of the DCT (Figure 6(b)). Software and 
hardware communicate via two message-passing channels, 
sending and receiving 8 x 8 blocks from software to the DCT 
processor and hack. Behaviors inside the SW processor are 
statically scheduled and serialized. The two nested pipelines 
are converted into two nested, sequential loops. 

Finally, for communication synthesis, we connected the 
two processors via a single bus using the Coldfire bus pro- 
tocol. Furthermore, it wais assumed that the protocol of the 
DCT IP  is fixed and incompatible with the Coldfire proto- 
col, necessating the inclusion of a transducer (Figure 6 ( c ) ) .  
The SW processor is the master on the bus and drives the 
address and control lines. The transducer T listens on the 

i 
(b) Multiprocessing 

(c) Architecture 

Figure 6: JPEG encoder, 
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I II Lines I Lines 11 Simul. I 
Specification 
Multiprocessing 
Architecture 

of Code Changed Time 
1,811 3.8s 

2,000 (+lo%) 235 (13% 4 s  
2,493 (+25%) 545 (27%) 48s 

Table 2: JPEG encoder  statist ics.  

bus and translates between bus and HW co-processor pro- 
tocol. For synchronization, the hardware signals the soft- 
ware through the processor's interrupt line INTC; Inside 
the PES, bus drivers and interrupt handlers translate the 
message-passing calls of the behaviors into bus transactions 
by driving and sampling the PE's bus ports according to the 
protocol. 

Characteristics of the JPEG encoder models in SpecC are 
listed in Table 2. The table shows both the lines of code 
and the number of lines added or changed when moving 
from one model to the next. As can be seen, refinement 
between levels is localized and leaves most of the original 
code untouched. Most of the changes result from additions 
to represent increased implementation detail. 

To validate the models, we performed simulations a t  all 
levels. The simulation performance a t  different levels for 
the 'JPEG encoder (Table 2) and two additional examples, 
a JBIG encoder for facsimile applications and a voice en- 
coder/decoder for mobile telephony, are shown in Figure 7. 
As we move down in the level of abstraction, more timing 
information is added, increasing the accuracy of the simu- 
lation'results. However, simulation time increases exponen- 
tially with lower levels of abstraction. As the results show, 
moving to higher levels of abstraction enables more rapid de- 
sign space exploration. Through the intermediate multipro- 
cessing level, valuable feedback about critical computation 
synthesis aspects can be obtained early and quickly. 

4. SUMMARY & CONCLUSIONS 
In this paper, we presented a division of the system-level 

design process into three well-defined system-level models. 
The three models define a comprehensive approach a t  rais- 
ing the level of abstraction in embedded systems design, 
supporting both computation and communication abs t rx-  
tion. The definition of models is based on a separation of 
concerns that minimizes interactions between levels, reduces 
refinement between models, and supports easy exploration 
with a variety of components and IPS. The two-step ap- 
proach to the design flow supports rapid design space e x p b  
ration by focusing on critical decisions a t  early stages while 
providing quick feedback. 

To our knowledge, this is the first attempt at properly 
defining models in a formalized way. The models define a 
framework on top of which system-level languages and de- 
sign methodologies can be developed. For example, platform 
based design predefines the sets of PES and busses within 
the framework of multiprocessing and architecture models. 
The formalization of levels is the enabler for interoperabil- 
ity and design automation. Based on the above definitions, 
we can demonstrate automatic model refinement between 
levels. In the future, we want t o  extend the formalization 
to a general algebra with axioms based on which proofably 
correct transformations can he defined. Such a formalized 
framework of models and transformations based on the def- 

S P E  P.OC Arch 

Figure 7: Simulat ion performance.  

initions presented in this paper is the foundation for the 
vertical integration of models through synthesis and verifi- 
cation. 
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