
Cloud-guided QoS and Energy Management
for Mobile Interactive Web Applications
Wooseok Lee1, Dam Sunwoo2, Andreas Gerstlauer1, and Lizy K. John1

1The University of Texas at Austin, 2ARM Research

Abstract—In mobile interactive web applications, energy-
efficient quali-ty-of-service (QoS) scheduling involves setting a
deadline for the best user experience and providing just enough
performance to minimize energy. Such performance-slacking ap-
proaches require precise performance adjustment using execution
time prediction. However, prior prediction approaches suffer
from prohibitive training due to extensive input data and manual
source code instrumentation. In this paper, we propose a cloud-
guided QoS and energy management approach that eliminates
the prediction overhead by offloading it to cloud resources.
Our approach pre-computes per-input execution time models by
profiling web applications on dedicated mobile devices in the
cloud. When mobile web applications request data to servers,
both the data and its execution time models are delivered to users’
mobile devices. Based on the delivered models, a performance
control agent on the mobile device selects an operating point
to meet the response time requirement. Experimental results
show that, by offloading modeling and prediction overheads,
our performance-slacking approach can provide average energy
savings of 22% and 39% (and up to 89%) for two different
timing budgets compared to an industry-quality approach.

I. INTRODUCTION
Mobile interactive web applications require both respon-

sive interaction and energy efficiency. Tasks should complete
within a certain deadline to prevent compromising user experi-
ence [14]. Conversely, the energy spent for improving response
time should be minimal for better energy efficiency. There-
fore, setting a deadline and providing just enough computing
capacity is a way to minimize energy while achieving the best
user experience. Various prior works [21], [7], [9], [17] have
demonstrated the efficacy of such an approach.

However, the challenge in this performance-slacking ap-
proach is finding the right operating points to finish tasks
just before the deadline. To determine an operating point, per-
formance controllers such as dynamic voltage and frequency
scaling (DVFS) governors need execution time models that
include how much time a task takes to finish a job at each
operating point. Zhu et al. [21] find the optimal operating
points through online performance modeling. However, this
requires multiple runs to build precise models on mobile
devices. Furthermore, this approach is oblivious to input,
and thus unable to capture execution time variations from
distinctive input data. For instance, web pages with heavy
Javascript computation show long execution time compared
to ones with simple rendering.

Recent studies [9], [17] have proposed ways to improve
prediction accuracy by training the execution time models
with input data. Such approaches extract a program slice
based on source code instrumentation [18], [19], and train
it offline/online to capture program state changes originating
from inputs. The program slice is executed with input data
prior to the actual application run to predict the execution time.
However, these training-based approaches are costly since
they require manual source code instrumentation. In addition,

web applications that have virtually unlimited, diverse, and
ever-changing input data require constant computation for the
model update.

In this paper, we present a cloud-guided QoS and energy
management approach (cQoS) that eliminates the training and
prediction overhead on users’ mobile devices using abundant
resources in the cloud. Our approach moves the modeling
framework to the cloud while keeping the performance man-
agement on users’ mobile devices. The modeling framework
runs web applications on mobile devices in the cloud, defined
as the device farm, where various mobile devices are ready for
execution time modeling. The framework measures execution
times with specific input data on various mobile devices and
constructs per-input and per-device execution time models.
This eliminates input- and platform-dependent execution time
variations, allowing precise execution time models without
prediction. Whenever a mobile device requests data, the pre-
computed execution time models are delivered to the mobile
device as metadata. Then, a performance control agent on a
user’s mobile device determines an operating point to meet
the response time requirement based on the delivered models
and given time budget.

We evaluate our approach on a state-of-the-art mobile
heterogeneous system, a Samsung Exynos 5422 system-on-
chip (SoC). Evaluation results show that, without additional
model training, source code instrumentation, and prediction
on users’ mobile devices, our approach can successfully im-
plement precise performance-slacking. cQoS can deliver 22%
on average and up to 84% energy savings for a 500ms time
budget, and 39% on average and up to 89% savings for a
800ms time budget compared to an industry-quality power
management approach. This study opens the door to leveraging
cloud resources for obtaining essential information required to
best manage QoS and energy of mobile devices.

The rest of this paper is organized as follows. Section II
discusses prior energy-efficient QoS scheduling approaches
through execution time prediction and their limitations. In
Section III, we propose our cloud-guided QoS and energy
management approach. Section IV presents experimental re-
sults and we conclude in Section V.

II. BACKGROUND

A. Energy-efficient QoS Scheduling

Various studies [14], [13], [20] have introduced how to
quantify user experience given QoS levels (i.e., web page load-
ing time in web browsing services). Recent studies have further
proposed optimal ways to minimize energy while delivering
the best user experience in interactive web applications.

Figure 1a shows the execution trace of mobile interactive
web applications. When a user generates an event, the web
application on the mobile device processes the event and



(a) The overall execution time trace.

(b) Input processing time trace of various approaches.
Fig. 1: Execution time trace of mobile interactive web appli-
cations.

requests data through the network. The server-side application
processes the request and replies back with the data. Once the
data arrives, the mobile application starts computing the input
data, in which most mobile-side computing energy is con-
sumed. The computation should finish before the designated
web page loading time (response time deadline in Figure 1a)
to deliver the best user experience. To achieve this, the perfor-
mance controller, such as the DVFS governor, should select
appropriate operating points. However, this is only possible if
the performance controller knows about the expected execution
times at every operating points. Current mobile systems that
cannot predict execution time often run applications as fast as
possible in order not to violate the deadline ((i) in Figure 1b).
This often leads to higher computing energy consumption
which could have been saved by lowering the operating point.

B. Training-based QoS Scheduling
Recent training-based approaches [9], [17] allow execution

time prediction, and thus can adjust the operating point to
finish jobs in a timely manner ((ii) in Figure 1b). Using
static program analyses and source code instrumentation, these
approaches extract a program slice that includes key features
for execution time prediction, and train the program slice with
various input data. At runtime, the program slice is executed
with current input for execution time prediction. The predicted
execution time is used to determine the right operating point.
For new input data, the post computation phase updates the
execution time models in the online modeling approach [17].

While the training-based approaches provide ways to predict
execution time, we find various limitations when implementing
them in realistic web service environments.
• Although training with input data allows execution time

prediction, web applications with virtually unlimited, dis-
tinctive, and ever-evolving input data require constant com-
putation for the model update.

• Manual source code instrumentation to extract the program
slice is prohibitive for complex web applications, such as
Chrome [16] and Opera [5]. In addition, constructing models
based on static analyses often fails to capture runtime
interactions between threads.

• Prediction on mobile devices has negative impact on energy.
Additional computation for the predictor shortens time bud-
get for input data processing, leading to higher operating
points, and thus higher energy consumption. Moreover, the
energy used for the predictor and online training lowers
overall energy efficiency.

(a) Execution time modeling using device farm.

(b) Cloud-guided energy-efficient QoS scheduling.

Fig. 2: Cloud-guided QoS and energy management.

III. CLOUD-GUIDED QOS AND ENERGY MANAGEMENT

In this paper, we propose our cloud-guided QoS and energy
management approach (cQoS) to mitigate the limitations of
prior works through offloading. Unlike conventional computa-
tion offloading approaches [10], [12], [11], we do not offload
computations required for applications. Instead, we propose
to offload the modeling work to cloud resources. Specifically,
our approach constructs per-input models using the execution
time measurements of actual web application runs on mobile
devices, a black-box approach that requires no source code in-
strumentation and training. We detail the modeling procedures
and how mobile devices can take advantage of the information
to manage QoS and energy in the following sections.
A. Overview

First, our approach constructs the execution time models for
a specific device to eliminate the errors from targeting various
computing platforms. For the per-device modeling, we depend
on cloud resources, defined as the device farm, where various
mobile devices are available for the modeling work. Although
there might be some limitations in placing all types of mobile
devices in the device farm, we assume that all user mobile
devices can be represented by some devices in the farm. In
addition, since the device farm constantly supplies power to
the mobile devices, our approach does not account for the
energy consumed for the modeling work.

Our approach also constructs input-specific models by
running applications with specific input data and measuring
execution times. Using the actual measurements, we can not
only eliminate heavy computation for training, but also deliver
precise execution time estimation since they are specific to the
input data. Moreover, measuring execution time allows us to
naturally capture the inherent complex interactions of multiple
threads in web applications.

However, even with the actual runs, the execution time
variations from micro-architecture [7], scheduling, runtime
interferences, etc., exist. We capture these variations using
statistical modeling. In addition, the execution times of all
operating points are modeled in order to quickly select one
operating point without additional computation at runtime. We
assume that multiple mobile devices in the device farm can
parallelize these procedures.

Figure 2a shows the overall modeling procedure. Whenever
input data such as a web page is initially created or updated,



Fig. 3: Example statistical execution time models.

the server (1) sends a modeling request to the device farm with
the input data. The host computer in the device farm deploys
the data to the mobile devices to execute and collect execution
times. The results are transferred to the host computer and used
for model construction. The mobile devices load the input data
from file systems in order to eliminate network latency. The
execution time models are (2) returned back to the server and
(3) stored in the database for future use.

Figure 2b shows the overview of our cloud-guided QoS
scheduling. (a) A mobile device sends a data request to
the server with the information about the requesting mobile
device. (b) The server searches for the execution time models
associated with the data and the mobile device in the database.
(c) Both the input data and its models are delivered to the
mobile devices, and the performance controller selects the
minimum operating point that can finish the task before
given time budget without any pre- or post-computation for
prediction and online training, respectively.

B. Cloud-based Execution Time Modeling
Our target system is a recent mobile SoC, Samsung Exynos

5422, which includes quad Cortex-A15 (2GHz-800MHz) and
quad Cortex-A7 (1400MHz-600MHz) processors. BBench [6]
is used as workloads for the web page loading tasks. The
detailed experimental setup will be discussed in Section IV.

As discussed in the previous section, we capture the exe-
cution time variations using statistical modeling. Specifically,
the host computer in the device farm computes mean and
standard deviation values from the measured execution times.
For statistical guarantee, it repeats the executions 50 times.
Figure 3 shows the two execution time models for Google
and Amazon web pages. Since the Google page contains
negligible computation, the web page loading takes a short
amount of time (189ms-845ms). However, since the Amazon
page includes multiple objects that require more computation
and rendering, it takes a relatively long time to load (562ms-
2387ms). To avoid deadline misses, the 95 percentile execution
time (mean+2σ) is used as the decision making point. The
models can be represented in the form of Table I. Since the

TABLE I: Example execution time models when loading
Google web page on Samsung Exynos5422 SoC.

Execution Time (ms)
Operating Point Mean Std.
2000MHz (A15) 189 2

... ... ...
1400MHz (A7) 412 7

... ... ...

Algorithm 1 Performance Control Agent

time budget = qos time - time elapsed . time in ms
if time budget < 0 then

freq ← highest freq
core← performance core

else . find min opp s.t. (mean+ 2σ < time budget)
freq, core← find min opp(time budget)

end if
set freq(freq)
set coretype(core)

table size can be as small as several bytes, we believe that
there is negligible overhead for storing and transmitting it.
C. Cloud-guided QoS Scheduling

In mobile devices, a performance control agent determines
the operating point based on the delivered models given the
time budget left for input data processing. Algorithm 1 shows
the detailed procedures of the performance control agent.
When the agent receives the execution time models, it first
evaluates the time budget. If there is no time budget, it selects
the highest operating point to minimize the response time.
Since our target system has heterogeneous core types, it selects
the highest frequency of the high-performance core (Cortex-
A15). If any time budget is left, the agent finds a minimum
operating point in the models that meets the budget. Then, the
agent interacts with the DVFS governor and scheduler to run
the web applications on the designated frequency and core
type. In this paper, we use the userspace governor for the
frequency change and the cgroup for the core type selection.
Evaluation results show that the worst-case DVFS switching
time is 2ms and the time for selecting core types is negligible.

The performance control agent has the responsibility of
managing QoS and energy as one of the subtasks in web
browsers. When a user generates an event, the agent sends
the mobile device information to the target server, keeps track
of time for the event, and makes an operating point selection
decision. In this paper, for the prototyping of our approach,
we create the external agent threads both in the server and
the mobile device and use sideband channels to communicate
between the agent and server, although it may be possible
to embed the data communication in standard protocols in
the future. The server thread holds the pre-computed models
and sends the execution time models when the agent thread
requests the data. The agent thread constantly monitors user
events by reading input events in the Linux kernel for stepping
in at the user event and changes the operating point after the
arrival of the execution time models.

IV. EXPERIMENTS

Experimental setup: For the evaluation of our approach, we
use ARM’s big.LITTLE platform which has been commonly
employed in many mobile systems. In particular, we select an
ODROID-XU3 board [4] that includes Exynos 5422 SoC con-
taining quad Cortex-A15 and quad Cortex-A7 cores. Energy
is collected from on-board energy sensors, and, for precise
energy collection, we reduce the sampling period to 1 ms by
modifying kernel drivers. ARM’s DS-5 Streamline [2] is used
to deliver the sampled data from the board to the host machine
through an Ethernet connection. We repeat the experiments 10



Fig. 4: Execution time and normalized energy when loading various web pages.

times and report average values for web page loading time and
energy on a Chrome browser.

Industry-quality approaches: We compare our evaluation
results with two industry-quality QoS and energy management
approaches.
• Performance approach: Tasks in this approach run at the

highest operating points to minimize response time. In our
target platform, web applications run on quad-core Cortex-
A15 at 2GHz; using only quad high-performance cores has
no or negligible performance impact [8].

• Interactive approach: This approach follows industry-qual-
ity performance and energy management using interactive
governor with the heterogeneity-aware scheduler [1], [3].
Time budget: Although various studies [14], [21], [7] have

similar definitions of QoS, the QoS requirements, e.g., the re-
sponse time budget, are defined in multiple ways. In this paper,
we define the response time requirement for web page loading
as 1 second, meaning that user experience does not degrade
if web page finishes loading within 1 second. However, the
actual time budget left for the input data processing differs
mainly due to the network latency. To observe the energy
impact from the varying time budget, we evaluate two types
of network delays: 500ms for a slow network and 200ms for
a fast network, leaving the input processing time budget at
500ms and 800ms for slow and fast networks, respectively.

Workloads: Although real computations are different, we
find similarities in performance and energy trend among
workloads in BBench. Therefore, we select several web pages
(Google, Amazon, Craigslist, eBay, and Twitter) that show
distinctive characteristics for our experiments.

Experimental results: Figure 4 shows the execution time
and energy of various workloads. Since the performance
approach runs at the highest operating points, it delivers
the shortest execution time, and thus, consumes the highest
energy. The interactive approach has similar operating point
selections with the performance approach, but shows slightly
lower performance due to the initial response delay, and thus,
lower energy. However, this over-provisioned performance for
the fast response time may provide no practical benefit to user
experience.

For the light computing workloads such as Google, web
page loading finishes as early as 200ms, leaving huge room for
energy savings. In the performance and interactive approaches,
computation is mostly done at the highest operating point
(2GHz on A15) while some minor tasks in the interactive

approach run on lower operating points (e.g., on A7). This
allows the interactive approach to save 15% energy compared
to the performance approach at the cost of slight performance
degradation. Our approach can select much lower operating
points due to the reduced computing requirement (about
300ms input processing time budget). This allows computation
in lower operating points, mostly on energy-efficient cores
(A7), resulting in huge energy savings, about 83% and 89%
for 500ms (denoted as cQoS 500ms) and 800ms (denoted
as cQoS 800ms) time budget, respectively, compared to the
performance approach.

The medium computing workloads, Amazon and Craigslist,
can save energy about 48% and 55%, respectively, only for a
800ms time budget since their loading time is about 500ms,
leading to no margin for performance-slacking for a 500ms
time budget. The heavy computing workloads, eBay and
Twitter, have no extra margin for energy savings since the
minimum computation time exceeds 800ms.

Evaluation results show that our approach can deliver energy
savings averaging 22% and up to 84% for a 500ms time
budget, and averaging 38% and up to 89% for a 800ms time
budget, compared to the performance approach. In general, it
is true that the extra time budget for input data processing
leads to energy savings if it is possible to predict execution
time without any computation overhead. Considering the fact
that the performance of mobile processors has been continuing
to increase [15], the execution time for the same workload
can further decrease. This shortened execution time increases
the time budget for input processing, leading to more energy
savings in the future.

V. CONCLUSIONS

In this paper, we propose a cloud-guided QoS and energy
management approach that eliminates training overhead and
prediction cost on mobile devices by offloading execution time
modeling to cloud resources. Preliminary results show that
our approach can deliver energy savings of 22% and 39%
on average depending on the timing budget and up to 89%
compared to an industry-quality approach while requiring no
overhead on mobile devices. This approach paves the way
to reach out to cloud resources for mobile devices to use
advanced energy management approaches without additional
cost.

ACKNOWLEDGEMENTS

This work is supported by a Samsung PhD Fellowship and
NSF grant CCF-1337393.



REFERENCES

[1] ARM big-LITTLE Global Task Scheduler.
http://www.arm.com/files/pdf/big LITTLE technology moves towards
fully heterogeneous Global Task˙Scheduling.pdf.

[2] ARM DS-5 Development Studio. https://developer.arm.com/products/so
ftware-development-tools/ds-5-development-studio.

[3] Odroid kernel 3.10 git repository.
https://github.com/hardkernel/linux/tree/odroidxu3-3.10.y.

[4] ODROID XU3 Development Board.
http://www.hardkernel.com/main/products/prdt info.php?g code=g1404
48267127.

[5] Opera Browser. http://www.opera.com.
[6] A. Gutierrez et al. Full-System Analysis and Characterization of

Interactive Smartphone Applications. In IISWC, 2011.
[7] B. Gaudette et al. Improving smartphone user experience by balancing

performance and energy with probabilistic QoS guarantee. In HPCA,
2016.

[8] C. Gao et al. A Study of Mobile Device Utilization. In In ISPASS,
2015.

[9] D. Lo et al. Prediction-guided Performance-energy Trade-off for
Interactive Applications. In MICRO, 2015.

[10] E. Marinelli. Hyrax: cloud computing on mobile devices using MapRe-
duce. Technical report, 2009.

[11] H. B. et al. Mobile computing-a green computing resource. In WCNC,
2013.

[12] K. Kumar et al. Cloud computing for mobile users: Can offloading
computation save energy? Computer, 2010.

[13] K. Yan et al. Characterizing, Modeling, and Improving the QoE of
Mobile Devices with Low Battery Level. In MICRO, 2015.

[14] M. Fiedler et al. A Generic Quantitative Relationship Between Quality of
Experience and Quality of Service. IEEE Network Magazine of Global
Internetwoking, 2010.

[15] M. Halpern et al. Mobile CPU’s Rise to Power: Quantifying the Impact
of Generational Mobile CPU Design Trends on Performance, Energy,
and User Satisfaction. In HPCA, 2016.

[16] N. Peters et al. Web Browser Workload Characterization for Power
Management on HMP Platforms. In CODES, 2016.

[17] T. Song et al. Prediction-Guided Performance-Energy Trade-off with
Continuous Run-Time Adaptation. In ISLPED, 2016.

[18] M. Weiser. Program slicing. In ICSE, 1981.
[19] Y. Kwon et al. Mantis: Automatic performance prediction for smart-

phone applications. In ATC, 2013.
[20] Y. Ou et al. Q-STAR: a perceptual video quality model considering

impact of spatial, temporal, and amplitude resolutions. In IEEE Trans
Image Process, 2014.

[21] Y. Zhu et al. Event-based scheduling for energy-efficient QoS (eQoS)
in mobile Web applications. In HPCA, 2015.


