
Dynamic Resolution in Distributed Cyber-Physical
System Simulation

Dylan Pfeifer
The University of Texas at Austin

2501 Speedway, Stop C0803
 Austin, TX 78712, USA

011-512-232-4297
dpcfeifer@ieee.org

Andreas Gerstlauer
The University of Texas at Austin

2501 Speedway, Stop C0803
Austin, TX 78712, USA

011-512-232-8294
gerstl@ece.utexas.edu

Jonathan Valvano
The University of Texas at Austin

2501 Speedway, Stop C0803
Austin, TX 78712, USA

011-512-471-5141
valvano@mail.utexas.edu

ABSTRACT
Cyber-physical systems challenge distributed simulation techniques
for reasons of the heterogeneous tools used to model system
components at different levels of abstraction, each with potentially
different notions of time. The SimConnect and SimTalk distributed
cyber-physical system simulation tools meet the synchronization
challenge of distributed simulation, but also offer dynamic resolution
among coordinated simulators for tradeoffs in simulation speed
versus accuracy. This paper discusses the dynamic resolution
capabilities of SimConnect and SimTalk, and evaluates the tools in
distributed simulation of a closed-loop motor control system. Results
show selectable tradeoffs in speedup versus accuracy over non-
dynamic coordination.

Categories and Subject Descriptors
I.6.8 [Modeling and Simulation]: Types of Simulation –
Combined, Distributed, Parallel.

General Terms
Experimentation

Keywords
Kahn Process Networks, dynamic distributed hybrid co-simulation,
heterogeneous co-simulation, co-simulation backplanes, cyber-
physical system simulation, DC motor PID/PWM simulation

1. INTRODUCTION
Cyber-physical systems (CPS) are engineered systems that

integrate computation and physical processes [1]. They inherit
the field of real-time embedded systems and challenge modern
electronic design automation [2] as computation elements
continue to proliferate in quantity, decrease in area and power,
and increase in system-on-chip (SOC) complexity.
Heterogeneous by definition, cyber-physical systems are a
challenge to simulate at the system level because a design may
include hardware, software, mechanical, or even biological
components [1]. While individual simulators may specialize in
modeling some of these components, no single simulator yet

performs superlatively in modeling all of them, especially as
the complexity of components continues to grow in the diverse
range of CPS [3][4][5]. For example, while a Spice 3.0-based
simulator solution [6] may excel in modeling cyber-physical
system analog electronics, it may not excel in modeling a
microcontroller at an instruction-set accurate level of
abstraction such as the TExaS [7] Freescale 9S12 simulator
does. Therefore, cyber-physical system simulation can benefit
from coordinating multiple different simulators, each
specializing in an engineering domain required by the system.
 Heterogeneous simulator coordination brings a range of
challenges, principally the synchronization and causality
challenge of independent simulators running with local time
and independent state. Solutions to this challenge are given in
the field of parallel and distributed simulation (PADS)
[8][9][10][11]. Once the coordination challenge is overcome, a
remaining challenge is to reduce the simulation time required,
since some simulators can increase in simulation time
exponentially as model complexity increases [12].

One means of PADS simulated time reduction is through
dynamic time resolution, a service offered by the SimConnect
and SimTalk distributed cyber-physical system tools [13][14].
In applying dynamic resolution to the distributed simulation of
a closed-loop motor control system, we find speed up offered
with the tools with a configurable tradeoff in speed versus
accuracy.

2. RELATED WORK
SimConnect and SimTalk present a backplane based

[15][16][17] solution to the distributed cyber-physical system
challenges. The architecture of the tools, how they relate to
previous backplane techniques, and how they perform among
both multiple homogenous and heterogeneous simulators is
covered in [13][14]. One benefit of the tools is the reduction of
the backplane control structure to the properties of a Kahn
Process Network (KPN) [18], simplifying implementation and
enforcing simulation causality by limiting the tokens of the
backplane KPN to a type defined as “interpolated events” (IEs).
Interpolated events, covered in [14], provide compliance to the
local causality constraint [8] in distributed simulation, but also
enable dynamic time management during the simulation.

Previous results with SimConnect and SimTalk achieved
distributed simulation speed up by increasing spatial
distribution, increasing parallelism in the simulation model
[12], or relaxing IE resolutions statically configured. In results
of this paper, however, new speed-ups are obtained by dynamic
resolution of the IE duration as the simulation proceeds.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are not
made or distributed for profit or commercial advantage and that copies bear
this notice and the full citation on the first page. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
SIGSIM-PADS’13, May 19-22, 2013, Montréal, Québec, Canada.
Copyright © 2013 ACM 978-1-4503-1920-1/13/05...$15.00.

Infrastructure and support is added to the SimConnect/SimTalk
tools achieve this capability. With dynamic resolution, time
segments during the simulation can be “zoomed in” in event
resolution or “zoomed out” at demand. A higher resolution
means more synchronization traffic, for increased simulation
time. Lower resolution means less synchronization traffic, so
simulators achieve a faster local speed.

The potential speedup benefit of dynamic time management
in distributed simulation is discussed in [19], with application
specific solutions offered in [20][21][22]. However, for cyber-
physical systems, the High Level Architecture (HLA)-based
[23] techniques discussed in [19] require HLA support among
cyber-physical system simulators, a development yet to be
evaluated for the challenges discussed [14]. The
SimConnect/SimTalk based solution to dynamic time
management, by contrast, is straightforward through the
interpolated event data type. Implementation of the service
added less than 500 lines of C code to the tools from their code
size given in [14].

 In regard to interoperating with real-time distributed
simulation systems (a feature supported by HLA [23] and
former DIS-like solutions [25]), while SimConnect/SimTalk
can support real-time interoperability and scaled wall-clock
time execution, on the other hand, the domain challenge of
cyber-physical system simulation state complexity currently
prohibits simulating at speeds anywhere close to real-time or
wall-clock time. That is, the micro-event focus of CPS
engineering design, focusing on events and signals in the
simulation space with kilohertz, megahertz or gigahertz
frequencies results in simulation times that must run at “as fast
as possible” speeds. Even simulating as fast as possible on
current workstation-grade machines, the execution time of
seconds of simulation time in the systems hosted by
SimConnect/SimTalk still can take minutes of wall-clock time
due to the computation time of connected CPS simulators (see
Figure 16). Therefore, interoperability with real-time
distributed simulations or systems with “humans in the loop”
[25] is not yet a feature demanded of SimConnect/SimTalk
CPS simulations. When the simulation can execute simulation
time faster than wall-clock time, real-time wall-clock scaling
can be enforced by the SimConnect backplane. This is a
difference in domain focus required by CPS engineering
design, even though it is still a PADS application. Further
discussion of this domain challenge of CPS in regard to event
focus is given in [14].

3. DYNAMIC RESOLUTION WITH

INTERPOLATED EVENTS
 The interpolated event type is defined in [13]. IEs are 3-

tuple set elements (v, tm, tn) from the product set V × T × T,
where { V } is a set of values, and { T } is a set of tags. This
extends the value/tag “(v, t)” definition of an event covered in
[24]. For a given interpolated event (v, tm, tn), the value v is
defined to be constant on the interval [tm, tn) specified in the
IE, such that the tag set { T } is ordered. { T } is conventionally
the real number set R1 in timed, event driven simulations,
representing the simulation time stamp when an event occurs.
For an interpolated event (v, tm, tn), the range [tm, tn) assigns a
“stable” time to the signal value v for producers and
consumers.

If a simulator consumes an interpolated event (v, tm, tn), it
may assume the value v is constant on the tag range [tm, tn), and
not need to input the value again until expiration time tn. So, an
interpolated event encapsulates both communication (the signal
value) and synchronization (the start and end time). In terms of
PADS synchronization, the expiration tn value can be seen as a
look ahead value [9] and lower bound on the tm value on all
future IEs posted on a FIFO. It can also be considered the
lower-bound time stamp (LBTS) value [19] for input signal IEs
in the HLA RTI conservative synchronization terminology
[25]. An IE (v, tm, tn) can also be considered as the union of
event (v, tm) and the set of all Chandy/Misra/Bryant NULL
messages [9][10] { (ti , NULL) } such that tm < ti < tn.
Discussions of deadlock, synchrony, and blocking with IEs are
given in [14].

The SimConnect backplane routes interpolated events from
producer to consumers in a publish/subscribe client/server
architecture. Signal producers and consumers are
independently running simulators. Simulators connect to the
SimConnect server through TCP/IP sockets and publish or
subscribe interpolated events as they proceed in simulation.
Mapped to nodes in a Kahn Process Network, simulators
consume IEs, run, and produce IEs until the expiration tag of
the last consumed IE. At this time point simulators sample their
FIFOs again for a new IE. If their input FIFOs are empty,
simulators block, enforcing the local causality constraint [8]
because each simulator cannot advance in time beyond the
expiration tags of IEs on its input FIFOs. Simulators may be
distributed across any compute/network topology with TCP/IP
services, and they share no run-time variables or state with
each other. They only connect to the backplane through the
SimTalk protocol and produce IEs to the backplane, or
consume IEs from it, agnostic to other simulators in the
distribution.

Selection of services to implement the networking and
interoperability requirements of this hierarchy are flexible, but
TCP/IP and BSD sockets were chosen for simulators offering
an OS-level programming interface for familiarity and facility.
The Message Passing Interface (MPI), for example, could be
used to transport SimTalk IE messages, and the backplane
could store IEs in a relational database such as MySQL, but
implementation with socket programming and minimal library
dependencies in the SimConnect backplane was desired. More
examples and details of SimConnect and SimTalk
backplane/simulator based configurations are given in
[12][13][14].

Dynamic resolution can be achieved with interpolated
events through two means. First, a signal producer has
complete write authority over a posted tn value, the expiration
time of an IE (v, tm, tn). Therefore, a signal producer may vary
this value anytime during the simulation based on internal
knowledge of the signal’s change frequency or some other
application criteria. Changing the IE tn value will change the
time the consuming simulator of the IE next queries the
backplane, there by changing the time of next synchronization.
As tn increases beyond tm, the IE duration increases, and
therefore the event resolution relaxes (the time between
synchronizations on the IE signal increases). As tn approaches,
but yet is still greater than tm, the IE duration decreases, so the
event resolution increases (more synchronization events). This

is similar to dynamically varying an HLA-based LBTS values
[19], but with implementation simplicity.

A second method to achieve dynamic resolution with IEs is
for the backplane, simulation operator, or another simulator to
command a signal producer to change its (tn – tm) duration for
future IEs. In this way an agent may externally vary the IE
duration of a signal producer, there by even throttling the rate
of its incoming signals. External IE resolution change requests
are registered to the backplane in the form of (signal_name,
time, resolution) 3-tuples stored in the backplane. These can be
entered at any time during the simulation through the SimTalk
protocol to the backplane by any connected simulation
participant.

For a backplane resolution change tuple (signal_name,
time, resolution), the tuple specifies that for the signal specified
by string signal_name, all IEs posted by the signal producer for
which the IE tn value is greater than or equal the tuple time
value must have a duration value of (tn – tm) = resolution. If a
series of resolution tuples is entered for a signal, such as the
series (signal_name, t0, r0), (signal_name, t1, r1), (
signal_name, t2, r2), (signal_name, t3, r3), such that t0 < t1 < t2

< t3 , then for all IEs (v, tm, tn) of signal_name with t0 < tn <
t1, the duration of the IE, (tn – tm) shall be value r0. For all IEs
(v, tm, tn) on signal_name such that t1 < tn < t2, the duration of
the IE, (tn – tm) shall be value r1, for all t2 < tn < t3, the
resolution shall be r2, and so on. Therefore, a string of
resolution tuples may be registered in the backplane for
arbitrary IE resolution adjustment.

Because a signal producer has no idea what resolution
tuples have been registered in the backplane, the backplane
notifies the signal producer of a resolution change when its
broadcasted local time (indicated an IE posted tn value) reaches
a time greater than or equal to resolution tuple time entry. The
backplane then sends notification of a resolution change
through a SimTalk “res” request message in response to the
posted IE, a SimTalk “res [signal_name] [value]” message.
Receipt of this message by any agent in the backplane indicates
that the agent shall adjust the resolution (tn – tm) of future IEs it
is posting on signal_name to the value given in the [value] field
of the message until further notice from the backplane. The
simulator proceeds to post IEs at the new resolution value until
its local time reaches another resolution tuple point, indicated
by an IE tn value. SimTalk “res” messages only occur at points
of IE resolution change, so “res” messages are infrequent
relative to IE “get” and “set” messages [13].

If a simulator itself posts a “res” message to the backplane,
versus receiving one, it logs a new resolution tuple. In this way
simulators may post resolution change requests to signal
producers (or any broadcasted signal in the simulation), as well
as adjust resolution on their own outgoing signals.

4. EXPERIMENT

4.1 Background and Purpose
 In [14], a means was needed to evaluate the accuracy of a
SimConnect/SimTalk hosted distributed simulation against a
truth condition. The microcontroller-based, software
PID/PWM controlled DC motor was chosen as the system to
simulate because it contained sufficient model diversity (a
microcontroller model, Spice electrical model, and

Matlab/Simulink electro-mechanical model) to demonstrate
SimConnect and SimTalk facility with heterogeneous
simulation while also being a system with known behavior.
The Matlab/Simulink-only simulation of the PID/PWM
control system served as a single-simulator truth condition to
evaluate the accuracy of the more realistic 3-simulator based
simulation. However, the studies of [14] used static IE
resolution. For this experiment, dynamic resolution is
employed. The same system (DC motor control system) is
chosen as the simulation target to have a means to evaluate
accuracy. The 2-simulator representation of the system
(TExaS and Matlab/Simulink) was selected for simplicity, and
could be evaluated for accuracy against the statically
controlled 2-simulator based system in [14].
 To support dynamic resolution messaging, source code was
added to the SimConnect backplane to implement resolution
tuple storage and new SimTalk “res” message passing.
Support for SimTalk “res” messages was also added to each
SimTalk software plugin for the TExaS [7] and
Matlab/Simulink simulators [26].
 The PID/PWM microcontroller-based DC motor controller
system in [14] was re-simulated in the 2-simulator case but
with dynamic resolution. The setup of the model is repeated
for illustration. For a control condition, the system is first
modeled in a 1-simulator case with Matlab/Simulink.

4.2 1-Simulator setup
The DC motor is modeled in Simulink block-diagram form

with summing, integrating, and gain blocks in Figure 1.

Figure 1. Simulink DC motor electro-mechanical model

The model is parameterized for the simulation as follows:

R motor terminal electrical resistance 1.0 
L motor terminal inductance 0.001 H
Kt torque constant 0.1 Nm/A
Ke electrical constant 0.1 Nm/A
b rotor viscous friction coefficient 0.001 Nm ∙ s
J rotor moment of inertia 0.01 kg ∙ ሺm/sሻଶ

Figure 2. DC motor model parameters

The model is driven with the Simulink PID continuous
controller block in Figure 3, configured to a set point of half-
speed 23.44 radians/s, 5 Volt output ceiling, with Kp, Ki, and
Kd coefficients of 8, 2, and 1 respectively, with clamping anti-
integrator windup. The closed-loop transient response is
plotted in Figure 6.

Figure 3. Simulink continuous PID controller

4.3 2-Simulator setup
For distributed modeling and increased realism, the

controller is refined to a software-based PID difference-
equation algorithm with PWM actuators hosted on the 9S12
microcontroller, simulated with TExaS at the cycle-estimating,
instruction-set architecture (ISA) level. The
SimConnect/SimTalk signal structure is given in Figure 4.

Figure 4. 2-Simulator configuration

 The software-based PID algorithm in 9S12 assembly is
adapted from [7]. Conversion of a continuous-time frequency-
domain specified controller to a digital controller is covered in
[27]. This refinement uses a free-running 1 kHz sampling rate
PID main loop of 63 9S12 assembly instructions, and a total
code length of 158 instructions. The algorithm also
incorporates anti-integrator windup and output limit checking.
The refined Simulink model is given in Figure 5. The
“socket_input” and “socket_output” S-Functions register
SimTalk signals PortT[0] and PortM[7:0] for exchange with
the SimConnect server. The PortT[0] digital signal is the
PWM wave generated by TExaS. The 0/1 signal is amplified
to 5 Volts for application to the motor terminals. The PWM
wave and voltage in this configuration is modeled as ideal
(zero rise/fall time).

.

Figure 5. Simulink DC motor model with SimTalk I/O interface

5. RESULTS
The 2-simulator model is conducted first at a static 100 µs

IE (tn – tm) resolution on signals PortT[0] and PortM[7:0]. The
transient response is plotted against the Simulink-only
classical continuous and cases in Figure 6 to verify the
functionality of the distributed modeling of the digital
PID/PWM microcontroller-based simulation versus the
Simulink continuous-time 1-simulator controller.

Seconds

Figure 6. Model output speed versus time with Simulink-only and
2-simulator PID control model cases

In Figure 6, there is some departure from the continuous
model because the applied terminal signal is a PWM wave
from the 9S12 microcontroller in a software PID loop.
However, the control profile shows set point agreement. The
static 100 µs 2-simulator Case A is used as a baseline for
checking dynamic resolution experiments, with simulation
times given in Figure 16. In Case B, the static simulation
localized to one machine to demonstrate the effect of network
latency as a distribution cost. In Case C, the IE resolution is
dynamically changed early in the simulation. The resolution
begins at 100 µs IE resolution to set initial conditions, and is
relaxed to 10 ms at simulation time 1 ms.

Seconds

Figure 7. Case C model output speed versus time

R
ad

ia
ns

 p
er

 s
ec

on
d

R
ad

ia
ns

 p
er

 s
ec

on
d

Figure 7 shows set point approach, but steady state
instability as Simulink and TExaS only receive signal updates
every 10 ms (the relaxed IE duration). However, the
simulation time decreases significantly, as shown in Figure 16.

Seconds

Figure 8. Case D model output speed versus time

Seconds

Figure 9. Case D dynamic IE duration change

In Case D, coarse resolution (10 ms IE) is used in the motor
run-up phase (0 to 0.5) seconds, then finer resolution (100 µs
IE) during the set point approach phase (0.5 to 1.5 seconds),
then coarse resolution again in the steady state phase (1.5 to 5
seconds). The control profile matches the static high-
resolution case up to 1.5 seconds, where the controller is
unstable again in the error due to relaxed resolution (10 ms IE
signals). The simulation time is still decreased (Figure 16).

Seconds

Figure 10. Case E model output speed versus time

Seconds

Figure 11. Case E dynamic IE duration change

In Case E, coarse resolution IE (100 ms) is used to 0.5
seconds in the simulation, then finer resolution (1 ms IE) as
the set point approaches, and then 5 ms IE resolution in the
steady state after 3 seconds. The instability around the set
point is reduced over the Case D 10 ms IE resolution after 3
seconds, but variance persists due to controller only getting
samples once in every five PID loops (5 ms IE with a 1 kHz
PID loop).

Seconds

Figure 12. Case F model output speed versus time

Seconds

Figure 13. Case F dynamic IE duration change

In Case F, we suppose coarse resolution might apply during
the run-up and set point approach phases. Coarse resolution IE
(100 ms) from 0 to 0.75 seconds is applied, medium resolution
(50 ms IE) from 0.75 to 1.5 seconds, and then 5 ms IE
resolution after 1.5 seconds. Figure 12 shows that although the
control oscillates coarsely under low resolution, the oscillation
decreases significantly when the resolution increases around
controller steady state set point.

R
ad

ia
ns

 p
e

r
se

co
nd

IE
 d

ur
at

io
n

in
 m

ill
is

ec
on

ds

R
ad

ia
ns

 p
e

r
se

co
nd

IE

 d
ur

at
io

n
in

 m
ill

is
ec

on
ds

R
ad

ia
ns

 p
e

r
se

co
nd

IE

 d
ur

at
io

n
in

 m
ill

is
ec

on
ds

Seconds

Figure 14. Case G model output speed versus time

Seconds

Figure 15. Case G dynamic IE duration change

In Case G, coarse resolution IE (100 ms) is used from 0 to
0.5 seconds, finer resolution IE (7 ms) approaching the set
point, and then 1 ms IE resolution after 3 seconds. The steady
state oscillation decreases significantly as the PID controller
receives IE updates ever 1 ms. Noise still exists due to 1 ms
IE sampling of the PortT[0] PWM wave that has a higher duty
cycle resolution than 1 ms. However, Case F shows that we
can arbitrarily bring down the error term around the set point
by increasing the resolution, while using coarse resolution in
the run-up and approach phases.

In Figure 16, simulation runtime counters and the speed up
multiplier of each experiment (A through G) is plotted against
the static resolution simulation time of Case A. The maximum
percent error of measurement around the set point value after 3
seconds for each experiment is also plotted, with Cases A and
B considered the truth condition. Figure 16 shows that percent
error of around the set point can be reduced arbitrarily while
decreasing simulation time by dynamic resolution. In the best
trial, Case G, there is a maximum 0.21 percent error of
measurement around the set point but with a 6.14 times faster
simulation time than the static resolution Case A.

In regard to IE token communication cost, Figure 16 shows
that distribution (2 machines versus 1 machine in Cases A and
B) affects simulation time, since IEs must travel over a local
area network. However, even with this cost, dynamic
resolution still decreases simulation time in Cases C through G
over the static resolution cases. The SimConnect server in all
cases but B ran on GNU/Linux 2.6.16 kernel Intel Xeon 2.93
GHz machine. The TExaS and Matlab/Simulink simulators ran
on a Windows 8 OS Intel Core i5 2.50 GHz laptop computer.

Column Legend

A Experiment case and distributed simulators : Simulink(S),
TExaS(T), SimConnect server(I)

B Static IE resolution, or (dyn) if dynamic resolution
C Number of instantiated SimTalk connectors
D Number of SimTalk messages (times 103)
E Number of 9S12 cycles (times 106)
F Number of 9S12 instructions (times 106, rounded 105)
G Simulated Time (seconds)
H Simulation Execution Time (minutes: seconds)
I Number of host machines

 Figure 16. Simulation times, configurations and traffic

In regard to scaling, generally, SimConnect can service
connections from simulators hosted anywhere on the Internet.
As the number of connected, coordinated simulators increases,
the latency of servicing SimTalk messages in the SimConnect
backplane increases, since it must maintain and service more
socket connections. SimConnect presently services socket
states in a serial, cyclic loop. This latency does not include
SimTalk message delivery latencies, which depend on the
network. The scaling profiles of simulation time versus
number of connected simulators is under study, but in the
experiments of [13], which coordinated up to 128 independent
Ngspice simulators, the latency of simulation was dominated
by the execute time of individual simulators as they ran in
each time slice specified in an IE. In [12], the message
servicing and delivery cost of the simulation latency was still
less than one percent of the total latency from one IE
consumption to the next measured in a consuming simulator.
Therefore, scaling is presently a function of the compute time
of individual simulators. We have not yet found an inflection
point where the backplane message servicing latency

3.88

3.46

1.15

1.15
0.21

1.00

2.38

5.60

2.60

5.28

5.32

6.14

0

2

4

6

8

A B C D E F G

Maximum Percent Error of Measurement
Simulation Speedup Factor

A B C D E F G H I

A. S,T,I 100 µs 3 4000 20 11.8 5.0 13:35 2

B. S,T,I 100 µs 3 4000 20 11.8 5.0 5:51 1

C. S,T,I (dyn) 3 4.8 20 11.8 5.0 2:29 2

D. S,T,I (dyn) 3 800 20 11.8 5.0 5:21 2

E. S, T,I (dyn) 3 24 20 11.8 5.0 2:38 2

F. S,T,I (dyn) 3 6.5 20 11.8 5.0 2:37 2

G. S, T,I (dyn) 3 19.7 20 11.8 5.0 2:16 2

IE
 d

ur
at

io
n

in
 m

ill
is

ec
on

ds

P
ct

. E
rr

or
 o

f
M

ea
s.

 o
r

S
pe

ed
up

 F
ac

to
r

R
ad

ia
ns

 p
er

 s
ec

on
d

dominates the simulation, but from the results of [13] we
anticipate it will require many hundreds of simulators. This
estimate does not include pathological cases where a network
fault or distribution abnormality introduces an asymmetrical
message delivery delay.

5.1 Interpretation of Results
 Figure 16 emphasizes the simulation speed up potential
offered by dynamic resolution, essentially relaxing resolution
during periods of infrequent inter-simulator signaling, and
increasing resolution during frequent signaling. While speed up
with dynamic resolution control is not unique to this study, the
benefit of the SimConnect/SimTalk approach is that dynamic
resolution is straightforward to implement using the KPN/IE
dataflow dynamics that SimConnect/SimTalk strictly adheres
to, as long as a blocking-API can be applied to connected
simulators through a SimTalk connector.
 A limitation, however, is that the interpolated event (IE) data
token incurs similar limitations and accuracy tradeoffs of an
ideal sample-and-hold based analog-to-digital converter. That is,
the IE is a sample-and-hold, piecewise-constant based
representation of the underlying signal. Primarily this results in
delay of signal change information that is at minimum the
duration of the IE. The cost of delay inaccuracies are seen in
[12]. The cost of quantization error in control systems with
sample-and-hold signal converters is covered in [27]. Therefore,
whether IEs are varied statically with repeated simulations, or
varied dynamically in one simulation per this study, there is an
unavoidable, inversely proportional speed-versus-accuracy
tradeoff with the KPN/IE approach. The effect of this may be
negligible for some systems, particularly if the IE resolution is
on the order of the minimum clock period of the simulated
system, or it may be completely determinable based on
bandwidth and gain parameters for control systems [27].
However, the approach currently does not have a means to
guarantee a metric of accuracy that is independent of the system
being simulated. That is, the accuracy effects of IE resolution
are highly tied to the coupling interface of the system under
simulation where the signal couple is represented by an IE.
Fortunately, analog-to-digital converters are a common coupling
point in CPSs, lending to IE representation. However, if a
clocked digital gate or storage element is represented by an IE,
the IE duration can introduce a delay of the circuit change state,
or completely mask the change state. So, speed-versus-accuracy
tradeoffs are presently system-by-system determined.
 Another limitation is that the system requires connectable
simulators to offer an OS-level programming interface for the
SimTalk connector. Fortunately, preeminent simulators in CPS
simulation offer this.

6. SUMMARY AND CONCLUSIONS
Two independent simulators, TExaS and Matlab/Simulink,

were coordinated with the SimConnect/SimTalk tools to model
a closed loop, software-based PID/PWM control system with
Freescale 9S12 microcontroller ISA and 2nd order DC motor
model realism. Dynamic resolution demonstrated up to 6.14
times speed up over the non-dynamic case, with configurable

tradeoffs in speed up versus accuracy. Dynamic resolution
implementation in the SimConnect/SimTalk tools was straight
forward with the interpolated event (IE) data type and SimTalk
“res” messages. In the space of simulated software-based PID
control, these results show that more coarse resolution is
tolerable while the PID error value is high, while a higher
resolution is required as the controller settles around the set
point. As an application specific result, this can speed up
PID/PWM-based simulations in cyber-physical systems by
relaxing resolution when a new controller set point is ordered,
then increasing resolution through steady state of the simulated
controller.

For future work, adaptive control of the simulation resolution
is being developed for the SimConnect backplane. Because the
backplane services all SimTalk messages in the system, it can
monitor any signal or groups of signals consting of streams of
IEs. Any numerical metric can be applied to these, such as finite
differences applied to the { v } values of IEs evaluated at their {
tm } time points, for numerical differentiation of the IE signal.
Similarly the IEs can be integrated at their { v, tm } values using
standard numerical integration techniques. The backplane can
calculate combinations of metrics on IE signals and adjust the
simulation resolution (through res messages described here)
based on preset thresholds. The most simple adaptive control
would be to relax resolution as an IE signal stream stabilizes
(measured by a such as a numerical derivative applied the IE
stream), and to increase resolution dynamically as the signal
changes more frequently. Alternatively, resolution can change
when the backplane moniters an event on a specific signal, such
as an interrupt pin in the system represented as SimTalk singal
stream, causing the backplane to employ high resolution during
the interrupt service routine in the simulated software. There are
many possibilities for adaptive control in the SimConnect
backplane, and work is underway on these features.

7. REFERENCES
[1] Lee, E.A., “Cyber-Physical Systems: Design Challenges,” The

University of California at Berkeley Center for Hybrid and
Embedded Software Systems, Technical Report No.UCB/EECS-
2008-8, Jan. 2008.

[2] Sangiovanni-Vincentelli, A., “Quo Vadis, SLD? Reasoning about
the Trends and Challenges of System Level Design,” Proceedings
of the IEEE, vol.95, no.3, pp.467-506, March 2007.

[3] National Science Foundation (NSF), “Cyber-Pysical Systems,”
http://www.nsf.gov/pubs/2012/nsf12520/nsf12520.htm, 2006.

[4] Klesh, A.T., Cutler, J.W., and E.M. Atkins, “Cyber-Physical
Challenges for Space Systems,” The 2012 IEEE/ACM Third
International Conference Cyber-Physical Systems (ICCPS), pp.
45-52, 17-19 April 2012.

[5] Rajkumar, R., Lee, I., Sha, L., and J. Stankovic, “Cyber-Physical
Systems: The Next Computing Revolution,” The 2010 ACM/IEEE
47th Design Automation Conference (DAC), pp.731-736, 13-18
June 2010

[6] Nenzi, P., and V. Holger, “Ngspice Users Manual.” V. 22, Sep
2010, ngspice.sourceforge.net.

[7] Valvano, J., Embedded Microcomputer Systems: Real Time
Interfacing, 3rd ed. Stamford, CT: Cengage Learning, 2011.

[8] Fujimoto, R.M., “Parallel and Distributed Simulation,”
Proceedings of the 1995 Winter Simulation Conference, pp. 118-
125, 3-6 Dec 1995.

[9] Fujimoto. R.M. “Parallel Discrete Event Simulation,” Proceedings
of the 1989 Winter Simulation Conference, pp. 19-28, 4-6 Dec
1989.

[10] Chandy, K.M., and J. Misra, “Distributed Simulation: A Case
Study in Design and Verification of Distributed Programs,” IEEE
Transactions on Software Engineering, vol. SE-5, no. 5, Sep 1979.

[11] Jefferson, D.R., “Virtual Time,” ACM Transactions on
Programming Languages and Systems, vol. 7, no. 3, 1985.

[12] Pfeifer, D. and A. Gerstlauer, “Expression-level Parallelism for
Distributed Spice Circuit Simulation,” The 15th IEEE/ACM
International Symposium on Distributed Simulation and Real
Time Applications, DS-RT 2011. 4-7 September, 2011.

[13] Pfeifer, D. and J. Valvano, “Kahn Process Networks Applied to
Distributed Heterogeneous HW/SW Cosimulation,” The 2011
Electronic System Level Synthesis Conference, ECSI. 5-6 June
2011.

[14] Pfeifer, D., J. Valvano, and A. Gerstlauer. “SimConnect and
SimTalk for Distributed Cyber-Physical System Simulation.”
Simulation: Transactions of the Society for Modeling and
Simulation International. OnlineFirst, DOI:
10.1177/0037549712472755. 5 March 2013.

[15] Schmerler, S., Tanurhan, Y., and K.D. Muller-Glaser, “A
Backplane Approach for Cosimulation in High-level System
Specification Environments,” Proceedings of the European
Design Automation Conference, EURO-DAC '95 with EURO-
VHDL, pp. 262-267, 18-22 Sep 1995.

[16] Atef, D., Salem, A., and H. Baraka, “An Architecture of
Distributed Cosimulation Backplane,” The 42nd Midwest
Symposium on Circuits and Systems, vol. 2, pp.855-858, 1999.

[17] Sung, W., and S. Ha, “A Hardware Software Cosimulation
Backplane with Automatic Interface Generation,” Proceedings of
the Asia and South Pacific Design Automation Conference, ASP-
DAC '98, pp.177-182, 10-13 Feb 1998.

[18] Kahn, G., “The Semantics of a Simple Language for Parallel
Programming,” Information Processing, pp. 471-475, Stockholm,
Sweden, Aug 1974.

[19] Dou Zhiwu; Li Yanfeng; , “Dynamic Time Management
Algorithms Research in Simulation System HLA-Based,”
Computer Science and Engineering, 2009. WCSE '09. Second
International Workshop on , vol.1, no., pp.580-583, 28-30 Oct.
2009

[20] Lungeanu, D.; Shi, C.-J.R.; , “Distributed simulation of VLSI
systems via lookahead-free self-adaptive optimistic and
conservative synchronization,” Computer-Aided Design, 1999.
Digest of Technical Papers. 1999 IEEE/ACM International
Conference on , vol., no., pp.500-504, 1999

[21] Lee, C.; Coe, E.; Clark, J.M.; Stepanek, J.; Raghavendra, C.;
Bhatia, S.; Puri, R.; , “Scalable time management algorithms using
active networks for distributed simulation,” DARPA Active
NEtworks Conference and Exposition, 2002. Proceedings , vol.,
no., pp. 366- 378, 2002

[22] Moo-Kyoung Chung; Chong-Min Kyung; , “Improving
Lookahead in Parallel Multiprocessor Simulation Using Dynamic
Execution Path Prediction,” Principles of Advanced and
Distributed Simulation, 2006. PADS 2006. 20th Workshop on ,
vol., no., pp.11-18, 2006

[23] “IEEE Standard for Modeling and Simulation (M&S) High Level
Architecture (HLA)-- Framework and Rules,” IEEE Std 1516-
2010, vol., no., pp.1-38, Aug. 18 2010.

[24] Lee, E.A., and A. Sangiovanni-Vincentelli, “Comparing Models
of Computation,” The IEEE/ACM International Conference on
Computer-Aided Design Digest of Technical Paper,s ICCAD-96,
pp.234-241, 10-14 Nov 1996.

[25] Fujimoto, R.M. and R.M Weatherly, “Time Management in the
DoD High Level Architecture,” The Proceedings of the 1996 10th
Workshop on Parallel and Distributed Simulation, pp. 60-67,
1996.

[26] The MathWorks Corp. www.mathworks.com. 2012.
[27] Franklin, G., J.D. Powell, and A. Emami-Naeini. Feedback

Control of Dynamic Systems, 4th ed. Upper Saddle River, NJ:
Prentice Hall, 2002.

