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ABSTRACT 
Cyber-physical systems challenge distributed simulation techniques 
for reasons of the heterogeneous tools used to model system 
components at different levels of abstraction, each with potentially 
different notions of time. The SimConnect and SimTalk distributed 
cyber-physical system simulation tools meet the synchronization 
challenge of distributed simulation, but also offer dynamic resolution 
among coordinated simulators for tradeoffs in simulation speed 
versus accuracy. This paper discusses the dynamic resolution 
capabilities of SimConnect and SimTalk, and evaluates the tools in 
distributed simulation of a closed-loop motor control system. Results 
show selectable tradeoffs in speedup versus accuracy over non-
dynamic coordination. 

Categories and Subject Descriptors 
I.6.8  [Modeling and Simulation]:  Types of Simulation – 
Combined, Distributed, Parallel. 

General Terms 
Experimentation 

Keywords 
Kahn Process Networks, dynamic distributed hybrid co-simulation, 
heterogeneous co-simulation, co-simulation backplanes, cyber-
physical system simulation, DC motor PID/PWM simulation 

1. INTRODUCTION 
Cyber-physical systems (CPS) are engineered systems that 

integrate computation and physical processes [1]. They inherit 
the field of real-time embedded systems and challenge modern 
electronic design automation [2] as computation elements 
continue to proliferate in quantity, decrease in area and power, 
and increase in system-on-chip (SOC) complexity. 
Heterogeneous by definition, cyber-physical systems are a 
challenge to simulate at the system level because a design may 
include hardware, software, mechanical, or even biological 
components [1]. While individual simulators may specialize in 
modeling some of these components, no single simulator yet 

performs superlatively in modeling all of them, especially as 
the complexity of components continues to grow in the diverse 
range of CPS [3][4][5]. For example, while a Spice 3.0-based 
simulator solution [6] may excel in modeling cyber-physical 
system analog electronics, it may not excel in modeling a 
microcontroller at an instruction-set accurate level of 
abstraction such as the TExaS [7] Freescale 9S12 simulator 
does. Therefore, cyber-physical system simulation can benefit 
from coordinating multiple different simulators, each 
specializing in an engineering domain required by the system.  
 Heterogeneous simulator coordination brings a range of 
challenges, principally the synchronization and causality 
challenge of independent simulators running with local time 
and independent state. Solutions to this challenge are given in 
the field of parallel and distributed simulation (PADS) 
[8][9][10][11]. Once the coordination challenge is overcome, a 
remaining challenge is to reduce the simulation time required, 
since some simulators can increase in simulation time 
exponentially as model complexity increases [12].  

One means of PADS simulated time reduction is through 
dynamic time resolution, a service offered by the SimConnect 
and SimTalk distributed cyber-physical system tools [13][14]. 
In applying dynamic resolution to the distributed simulation of 
a closed-loop motor control system, we find speed up offered 
with the tools with a configurable tradeoff in speed versus 
accuracy.  

2. RELATED WORK 
SimConnect and SimTalk present a backplane based 

[15][16][17] solution to the distributed cyber-physical system 
challenges. The architecture of the tools, how they relate to 
previous backplane techniques, and how they perform among 
both multiple homogenous and heterogeneous simulators is 
covered in [13][14]. One benefit of the tools is the reduction of 
the backplane control structure to the properties of a Kahn 
Process Network (KPN) [18], simplifying implementation and 
enforcing simulation causality by limiting the tokens of the 
backplane KPN to a type defined as “interpolated events” (IEs). 
Interpolated events, covered in [14], provide compliance to the 
local causality constraint [8] in distributed simulation, but also 
enable dynamic time management during the simulation.  

Previous results with SimConnect and SimTalk achieved 
distributed simulation speed up by increasing spatial 
distribution, increasing parallelism in the simulation model 
[12], or relaxing IE resolutions statically configured. In results 
of this paper, however, new speed-ups are obtained by dynamic 
resolution of the IE duration as the simulation proceeds. 
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Infrastructure and support is added to the SimConnect/SimTalk 
tools achieve this capability. With dynamic resolution, time 
segments during the simulation can be “zoomed in” in event 
resolution or “zoomed out” at demand. A higher resolution 
means more synchronization traffic, for increased simulation 
time. Lower resolution means less synchronization traffic, so 
simulators achieve a faster local speed. 

The potential speedup benefit of dynamic time management 
in distributed simulation is discussed in [19], with application 
specific solutions offered in [20][21][22]. However, for cyber-
physical systems, the High Level Architecture (HLA)-based 
[23] techniques discussed in [19] require HLA support among 
cyber-physical system simulators, a development yet to be 
evaluated for the challenges discussed [14]. The 
SimConnect/SimTalk based solution to dynamic time 
management, by contrast, is straightforward through the 
interpolated event data type. Implementation of the service 
added less than 500 lines of C code to the tools from their code 
size given in [14].  

 In regard to interoperating with real-time distributed 
simulation systems (a feature supported by HLA [23] and 
former DIS-like solutions [25]), while SimConnect/SimTalk 
can support real-time interoperability and scaled wall-clock 
time execution, on the other hand, the domain challenge of 
cyber-physical system simulation state complexity currently 
prohibits simulating at speeds anywhere close to real-time or 
wall-clock time. That is, the micro-event focus of CPS 
engineering design, focusing on events and signals in the 
simulation space with kilohertz, megahertz or gigahertz 
frequencies results in simulation times that must run at “as fast 
as possible” speeds. Even simulating as fast as possible on 
current workstation-grade machines, the execution time of 
seconds of simulation time in the systems hosted by 
SimConnect/SimTalk still can take minutes of wall-clock time 
due to the computation time of connected CPS simulators (see 
Figure 16). Therefore, interoperability with real-time 
distributed simulations or systems with “humans in the loop” 
[25] is not yet a feature demanded of SimConnect/SimTalk 
CPS simulations. When the simulation can execute simulation 
time faster than wall-clock time, real-time wall-clock scaling 
can be enforced by the SimConnect backplane. This is a 
difference in domain focus required by CPS engineering 
design, even though it is still a PADS application. Further 
discussion of this domain challenge of CPS in regard to event 
focus is given in [14]. 

3. DYNAMIC RESOLUTION WITH 

INTERPOLATED EVENTS 
  The interpolated event type is defined in [13]. IEs are 3-

tuple set elements (v, tm, tn) from the product set V × T × T, 
where { V } is a set of values, and { T } is a set of tags. This 
extends the value/tag “(v, t)” definition of an event covered in 
[24]. For a given interpolated event (v, tm, tn), the value v is 
defined to be constant on the interval [ tm, tn ) specified in the 
IE, such that the tag set { T } is ordered. { T } is conventionally 
the real number set R1 in timed, event driven simulations, 
representing the simulation time stamp when an event occurs. 
For an interpolated event (v, tm, tn), the range [tm, tn) assigns a 
“stable” time to the signal value v for producers and 
consumers. 

If a simulator consumes an interpolated event (v, tm, tn), it 
may assume the value v is constant on the tag range [tm, tn), and 
not need to input the value again until expiration time tn. So, an 
interpolated event encapsulates both communication (the signal 
value) and synchronization (the start and end time). In terms of 
PADS synchronization, the expiration tn value can be seen as a 
look ahead value [9] and lower bound on the tm  value on all 
future IEs posted on a FIFO. It can also be considered the 
lower-bound time stamp (LBTS) value [19] for input signal IEs 
in the HLA RTI conservative synchronization terminology 
[25]. An IE (v, tm, tn)  can also be considered as the union of 
event (v, tm)  and the set of all Chandy/Misra/Bryant NULL 
messages [9][10] { (ti , NULL) } such that tm < ti < tn. 
Discussions of deadlock, synchrony, and blocking with IEs are 
given in [14]. 

The SimConnect backplane routes interpolated events from 
producer to consumers in a publish/subscribe client/server 
architecture. Signal producers and consumers are 
independently running simulators. Simulators connect to the 
SimConnect server through TCP/IP sockets and publish or 
subscribe interpolated events as they proceed in simulation.  
Mapped to nodes in a Kahn Process Network, simulators 
consume IEs, run, and produce IEs until the expiration tag of 
the last consumed IE. At this time point simulators sample their 
FIFOs again for a new IE. If their input FIFOs are empty, 
simulators block, enforcing the local causality constraint [8] 
because each simulator cannot advance in time beyond the 
expiration tags of IEs on its input FIFOs. Simulators may be 
distributed across any compute/network topology with TCP/IP 
services, and they share no run-time variables or state with 
each other.  They only connect to the backplane through the 
SimTalk protocol and produce IEs to the backplane, or 
consume IEs from it, agnostic to other simulators in the 
distribution.  

Selection of services to implement the networking and 
interoperability requirements of this hierarchy are flexible, but 
TCP/IP and BSD sockets were chosen for simulators offering 
an OS-level programming interface for familiarity and facility. 
The Message Passing Interface (MPI), for example, could be 
used to transport SimTalk IE messages, and the backplane 
could store IEs in a relational database such as MySQL, but 
implementation with socket programming and minimal library 
dependencies in the SimConnect backplane was desired. More 
examples and details of SimConnect and SimTalk 
backplane/simulator based configurations are given in 
[12][13][14].    

Dynamic resolution can be achieved with interpolated 
events through two means. First, a signal producer has 
complete write authority over a posted tn value, the expiration 
time of an IE (v, tm, tn). Therefore, a signal producer may vary 
this value anytime during the simulation based on internal 
knowledge of the signal’s change frequency or some other 
application criteria. Changing the IE tn value will change the 
time the consuming simulator of the IE next queries the 
backplane, there by changing the time of next synchronization. 
As tn increases beyond tm, the IE duration increases, and 
therefore the event resolution relaxes (the time between 
synchronizations on the IE signal increases). As tn approaches, 
but yet is still greater than tm, the IE duration decreases, so the 
event resolution increases (more synchronization events). This 



is similar to dynamically varying an HLA-based LBTS values 
[19], but with implementation simplicity. 

A second method to achieve dynamic resolution with IEs is 
for the backplane, simulation operator, or another simulator to 
command a signal producer to change its (tn – tm) duration for 
future IEs. In this way an agent may externally vary the IE 
duration of a signal producer, there by even throttling the rate 
of its incoming signals. External IE resolution change requests 
are registered to the backplane in the form of (signal_name, 
time, resolution) 3-tuples stored in the backplane. These can be 
entered at any time during the simulation through the SimTalk 
protocol to the backplane by any connected simulation 
participant. 

For a backplane resolution change tuple (signal_name, 
time, resolution), the tuple specifies that for the signal specified 
by string signal_name, all IEs posted by the signal producer for 
which the IE  tn value is greater than or equal the tuple time 
value must have a duration value of  (tn – tm) = resolution.  If a 
series of resolution tuples is entered for a signal, such as the 
series (signal_name, t0, r0), (signal_name, t1, r1), ( 
signal_name, t2, r2), (signal_name, t3, r3), such that t0 <  t1 <  t2 

<  t3 , then for all IEs (v, tm, tn) of signal_name with  t0 <  tn <  
t1, the duration of the IE, (tn – tm) shall be value r0. For all IEs 
(v, tm, tn) on signal_name such that  t1 <  tn <  t2, the duration of 
the IE, (tn – tm) shall be value r1, for all  t2 <  tn <  t3, the 
resolution shall be r2, and so on. Therefore, a string of 
resolution tuples may be registered in the backplane for 
arbitrary IE resolution adjustment. 

Because a signal producer has no idea what resolution 
tuples have been registered in the backplane, the backplane 
notifies the signal producer of a resolution change when its 
broadcasted local time (indicated an IE posted tn value) reaches 
a time greater than or equal to resolution tuple time entry. The 
backplane then sends notification of a resolution change 
through a SimTalk “res” request message in response to the 
posted IE, a SimTalk “res [signal_name] [value]” message. 
Receipt of this message by any agent in the backplane indicates 
that the agent shall adjust the resolution (tn – tm) of future IEs it 
is posting on signal_name to the value given in the [value] field 
of the message until further notice from the backplane.  The 
simulator proceeds to post IEs at the new resolution value until 
its local time reaches another resolution tuple point, indicated 
by an IE tn value. SimTalk “res” messages only occur at points 
of IE resolution change, so “res” messages are infrequent 
relative to IE “get” and “set” messages [13]. 

If a simulator itself posts a “res” message to the backplane, 
versus receiving one, it logs a new resolution tuple. In this way 
simulators may post resolution change requests to signal 
producers (or any broadcasted signal in the simulation), as well 
as adjust resolution on their own outgoing signals.  

4. EXPERIMENT 

4.1  Background and Purpose 
     In [14], a means was needed to evaluate the accuracy of a 
SimConnect/SimTalk hosted distributed simulation against a 
truth condition. The microcontroller-based, software 
PID/PWM controlled DC motor was chosen as the system to 
simulate because it contained sufficient model diversity (a 
microcontroller model, Spice electrical model, and 

Matlab/Simulink electro-mechanical model) to demonstrate 
SimConnect and SimTalk facility with heterogeneous 
simulation while also being a system with known behavior. 
The Matlab/Simulink-only simulation of the PID/PWM 
control system served as a single-simulator truth condition to 
evaluate the accuracy of the more realistic 3-simulator based 
simulation. However, the studies of [14] used static IE 
resolution. For this experiment, dynamic resolution is 
employed. The same system (DC motor control system) is 
chosen as the simulation target to have a means to evaluate 
accuracy. The 2-simulator representation of the system 
(TExaS and Matlab/Simulink) was selected for simplicity, and 
could be evaluated for accuracy against the statically 
controlled 2-simulator based system in [14]. 
     To support dynamic resolution messaging, source code was 
added to the SimConnect backplane to implement resolution 
tuple storage and new SimTalk “res” message passing. 
Support for SimTalk “res” messages was also added to each 
SimTalk software plugin for the TExaS [7] and 
Matlab/Simulink simulators [26].  
     The PID/PWM microcontroller-based DC motor controller 
system in [14] was re-simulated in the 2-simulator case but 
with dynamic resolution. The setup of the model is repeated 
for illustration. For a control condition, the system is first 
modeled in a 1-simulator case with Matlab/Simulink. 

4.2  1-Simulator setup 
The DC motor is modeled in Simulink block-diagram form 

with summing, integrating, and gain blocks in Figure 1. 

 
Figure 1. Simulink DC motor electro-mechanical model 

The model is parameterized for the simulation as follows: 
 
R  motor terminal electrical resistance 1.0 
L  motor terminal inductance 0.001 H 
Kt torque constant 0.1 Nm/A 
Ke electrical constant 0.1 Nm/A 
b  rotor viscous friction coefficient 0.001 Nm ∙ s 
J  rotor moment of inertia 0.01 kg ∙ ሺm/sሻଶ 

Figure 2. DC motor model parameters 



The model is driven with the Simulink PID continuous 
controller block in Figure 3, configured to a set point of half-
speed 23.44 radians/s, 5 Volt output ceiling, with Kp, Ki, and 
Kd coefficients of 8, 2, and 1 respectively, with clamping anti-
integrator windup. The closed-loop transient response is 
plotted in Figure 6. 

 

 
Figure 3. Simulink continuous PID controller 

 

4.3  2-Simulator setup 
For distributed modeling and increased realism, the 

controller is refined to a software-based PID difference-
equation algorithm with PWM actuators hosted on the 9S12 
microcontroller, simulated with TExaS at the cycle-estimating, 
instruction-set architecture (ISA) level. The 
SimConnect/SimTalk signal structure is given in Figure 4. 

 
 

 
Figure 4. 2-Simulator configuration 

 

  The software-based PID algorithm in 9S12 assembly is 
adapted from [7]. Conversion of a continuous-time frequency-
domain specified controller to a digital controller is covered in 
[27]. This refinement uses a free-running 1 kHz sampling rate 
PID main loop of 63 9S12 assembly instructions, and a total 
code length of 158 instructions. The algorithm also 
incorporates anti-integrator windup and output limit checking. 
The refined Simulink model is given in Figure 5. The 
“socket_input” and “socket_output” S-Functions register 
SimTalk signals PortT[0] and PortM[7:0] for exchange with 
the SimConnect server. The PortT[0] digital signal is the 
PWM wave generated by TExaS. The 0/1 signal is amplified 
to 5 Volts for application to the motor terminals. The PWM 
wave and voltage in this configuration is modeled as ideal 
(zero rise/fall time). 

. 

Figure 5. Simulink DC motor model with SimTalk I/O interface 

5. RESULTS 
The 2-simulator model is conducted first at a static 100 µs 

IE (tn – tm) resolution on signals PortT[0] and PortM[7:0]. The 
transient response is plotted against the Simulink-only 
classical continuous and cases in Figure 6 to verify the 
functionality of the distributed modeling of the digital 
PID/PWM microcontroller-based simulation versus the 
Simulink continuous-time 1-simulator controller.  

 
Seconds 

Figure 6. Model output speed versus time with Simulink-only and 
2-simulator PID control model cases 

In Figure 6, there is some departure from the continuous 
model because the applied terminal signal is a PWM wave 
from the 9S12 microcontroller in a software PID loop. 
However, the control profile shows set point agreement. The 
static 100 µs 2-simulator Case A is used as a baseline for 
checking dynamic resolution experiments, with simulation 
times given in Figure 16. In Case B, the static simulation 
localized to one machine to demonstrate the effect of network 
latency as a distribution cost. In Case C, the IE resolution is 
dynamically changed early in the simulation. The resolution 
begins at 100 µs IE resolution to set initial conditions, and is 
relaxed to 10 ms at simulation time 1 ms. 

 

 
Seconds 

Figure 7. Case C model output speed versus time 
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Figure 7 shows set point approach, but steady state 
instability as Simulink and TExaS only receive signal updates 
every 10 ms (the relaxed IE duration). However, the 
simulation time decreases significantly, as shown in Figure 16.  

 

 
Seconds 

Figure 8. Case D model output speed versus time 
 

 
Seconds 

Figure 9. Case D dynamic IE duration change 
 

In Case D, coarse resolution (10 ms IE) is used in the motor 
run-up phase (0 to 0.5) seconds, then finer resolution (100 µs 
IE) during the set point approach phase (0.5 to 1.5 seconds), 
then coarse resolution again in the steady state phase (1.5 to 5 
seconds). The control profile matches the static high-
resolution case up to 1.5 seconds, where the controller is 
unstable again in the error due to relaxed resolution (10 ms IE 
signals). The simulation time is still decreased (Figure 16). 

 

 
Seconds 

Figure 10. Case E model output speed versus time 
 

 
Seconds 

Figure 11. Case E dynamic IE duration change 

In Case E, coarse resolution IE (100 ms) is used to 0.5 
seconds in the simulation, then finer resolution (1 ms IE) as 
the set point approaches, and then 5 ms IE resolution in the 
steady state after 3 seconds. The instability around the set 
point is reduced over the Case D 10 ms IE resolution after 3 
seconds, but variance persists due to controller only getting 
samples once in every five PID loops (5 ms IE with a 1 kHz 
PID loop). 

 

 
Seconds 

Figure 12. Case F model output speed versus time 
 

 
Seconds 

Figure 13. Case F dynamic IE duration change 

In Case F, we suppose coarse resolution might apply during 
the run-up and set point approach phases. Coarse resolution IE 
(100 ms) from 0 to 0.75 seconds is applied, medium resolution 
(50 ms IE) from 0.75 to 1.5 seconds, and then 5 ms IE 
resolution after 1.5 seconds. Figure 12 shows that although the 
control oscillates coarsely under low resolution, the oscillation 
decreases significantly when the resolution increases around 
controller steady state set point.  
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Seconds 

Figure 14. Case G model output speed versus time 
 

 
Seconds 

Figure 15. Case G dynamic IE duration change 

In Case G, coarse resolution IE (100 ms) is used from 0 to 
0.5 seconds, finer resolution IE (7 ms) approaching the set 
point, and then 1 ms IE resolution after 3 seconds. The steady 
state oscillation decreases significantly as the PID controller 
receives IE updates ever 1 ms.  Noise still exists due to 1 ms 
IE sampling of the PortT[0] PWM wave that has a higher duty 
cycle resolution than 1 ms. However, Case F shows that we 
can arbitrarily bring down the error term around the set point 
by increasing the resolution, while using coarse resolution in 
the run-up and approach phases.  

In Figure 16, simulation runtime counters and the speed up 
multiplier of each experiment (A through G) is plotted against 
the static resolution simulation time of Case A.  The maximum 
percent error of measurement around the set point value after 3 
seconds for each experiment is also plotted, with Cases A and 
B considered the truth condition. Figure 16 shows that percent 
error of around the set point can be reduced arbitrarily while 
decreasing simulation time by dynamic resolution. In the best 
trial, Case G, there is a maximum 0.21 percent error of 
measurement around the set point but with a 6.14 times faster 
simulation time than the static resolution Case A. 

In regard to IE token communication cost, Figure 16 shows 
that distribution (2 machines versus 1 machine in Cases A and 
B) affects simulation time, since IEs must travel over a local 
area network. However, even with this cost, dynamic 
resolution still decreases simulation time in Cases C through G 
over the static resolution cases. The SimConnect server in all 
cases but B ran on GNU/Linux 2.6.16 kernel Intel Xeon 2.93 
GHz machine. The TExaS and Matlab/Simulink simulators ran 
on a Windows 8 OS Intel Core i5 2.50 GHz laptop computer.  
 

 
 

 
Column Legend 

 

A Experiment case and distributed simulators : Simulink(S), 
TExaS(T),  SimConnect server(I) 

B Static IE resolution, or (dyn) if dynamic resolution 
C Number of instantiated SimTalk connectors 
D Number of SimTalk messages (times 103) 
E Number of 9S12 cycles (times 106) 
F Number of 9S12 instructions (times 106, rounded 105) 
G Simulated Time (seconds) 
H Simulation Execution Time (minutes: seconds) 
I Number of host machines 

 Figure 16. Simulation times, configurations and traffic 

In regard to scaling, generally, SimConnect can service 
connections from simulators hosted anywhere on the Internet. 
As the number of connected, coordinated simulators increases, 
the latency of servicing SimTalk messages in the SimConnect 
backplane increases, since it must maintain and service more 
socket connections. SimConnect presently services socket 
states in a serial, cyclic loop. This latency does not include 
SimTalk message delivery latencies, which depend on the 
network. The scaling profiles of simulation time versus 
number of connected simulators is under study, but in the 
experiments of [13], which coordinated up to 128 independent 
Ngspice simulators, the latency of simulation was dominated 
by the execute time of individual simulators as they ran in 
each time slice specified in an IE. In [12], the message 
servicing and delivery cost of the simulation latency was still 
less than one percent of the total latency from one IE 
consumption to the next measured in a consuming simulator. 
Therefore, scaling is presently a function of the compute time 
of individual simulators. We have not yet found an inflection 
point where the backplane message servicing latency 

3.88

3.46

1.15

1.15
0.21

1.00

2.38

5.60

2.60

5.28

5.32

6.14

0

2

4

6

8

A B C D E F G

Maximum Percent Error of Measurement
Simulation Speedup Factor

A B C D E F G H I 

A. S,T,I 100 µs 3 4000 20 11.8 5.0 13:35 2 

B. S,T,I 100 µs 3 4000 20 11.8 5.0 5:51 1 

C. S,T,I (dyn) 3 4.8 20 11.8 5.0 2:29 2 

D. S,T,I (dyn) 3 800 20 11.8 5.0 5:21 2 

E. S, T,I (dyn) 3 24 20 11.8 5.0 2:38 2 

F. S,T,I (dyn) 3 6.5 20 11.8 5.0 2:37 2 

G. S, T,I (dyn) 3 19.7 20 11.8 5.0 2:16 2 

IE
 d

ur
at

io
n 

in
 m

ill
is

ec
on

ds
 

P
ct

. E
rr

or
 o

f 
M

ea
s.

 o
r 

S
pe

ed
up

 F
ac

to
r 

R
ad

ia
ns

 p
er

 s
ec

on
d 



dominates the simulation, but from the results of [13] we 
anticipate it will require many hundreds of simulators. This 
estimate does not include pathological cases where a network 
fault or distribution abnormality introduces an asymmetrical 
message delivery delay.  

 
5.1  Interpretation of Results 
     Figure 16 emphasizes the simulation speed up potential 
offered by dynamic resolution, essentially relaxing resolution 
during periods of infrequent inter-simulator signaling, and 
increasing resolution during frequent signaling. While speed up 
with dynamic resolution control is not unique to this study, the 
benefit of the SimConnect/SimTalk approach is that dynamic 
resolution is straightforward to implement using the KPN/IE 
dataflow dynamics that SimConnect/SimTalk strictly adheres 
to, as long as a blocking-API can be applied to connected 
simulators through a SimTalk connector.  
     A limitation, however, is that the interpolated event (IE) data 
token incurs similar limitations and accuracy tradeoffs of an 
ideal sample-and-hold based analog-to-digital converter. That is, 
the IE is a sample-and-hold, piecewise-constant based 
representation of the underlying signal. Primarily this results in 
delay of signal change information that is at minimum the 
duration of the IE. The cost of delay inaccuracies are seen in 
[12]. The cost of quantization error in control systems with 
sample-and-hold signal converters is covered in [27]. Therefore, 
whether IEs are varied statically with repeated simulations, or 
varied dynamically in one simulation per this study, there is an 
unavoidable, inversely proportional speed-versus-accuracy 
tradeoff with the KPN/IE approach. The effect of this may be 
negligible for some systems, particularly if the IE resolution is 
on the order of the minimum clock period of the simulated 
system, or it may be completely determinable based on 
bandwidth and gain parameters for control systems [27]. 
However, the approach currently does not have a means to 
guarantee a metric of accuracy that is independent of the system 
being simulated. That is, the accuracy effects of IE resolution 
are highly tied to the coupling interface of the system under 
simulation where the signal couple is represented by an IE. 
Fortunately, analog-to-digital converters are a common coupling 
point in CPSs, lending to IE representation. However, if a 
clocked digital gate or storage element is represented by an IE, 
the IE duration can introduce a delay of the circuit change state, 
or completely mask the change state. So, speed-versus-accuracy 
tradeoffs are presently system-by-system determined. 
     Another limitation is that the system requires connectable 
simulators to offer an OS-level programming interface for the 
SimTalk connector. Fortunately, preeminent simulators in CPS 
simulation offer this.  

6. SUMMARY AND CONCLUSIONS 
Two independent simulators, TExaS and Matlab/Simulink, 

were coordinated with the SimConnect/SimTalk tools to model 
a closed loop, software-based PID/PWM control system with 
Freescale 9S12 microcontroller ISA and 2nd order DC motor 
model realism. Dynamic resolution demonstrated up to 6.14 
times speed up over the non-dynamic case, with configurable 

tradeoffs in speed up versus accuracy. Dynamic resolution 
implementation in the SimConnect/SimTalk tools was straight 
forward with the interpolated event (IE) data type and SimTalk 
“res” messages. In the space of simulated software-based PID 
control, these results show that more coarse resolution is 
tolerable while the PID error value is high, while a higher 
resolution is required as the controller settles around the set 
point. As an application specific result, this can speed up 
PID/PWM-based simulations in cyber-physical systems by 
relaxing resolution when a new controller set point is ordered, 
then increasing resolution through steady state of the simulated 
controller. 

For future work, adaptive control of the simulation resolution 
is being developed for the SimConnect backplane. Because the 
backplane services all SimTalk messages in the system, it can 
monitor any signal or groups of signals consting of streams of 
IEs. Any numerical metric can be applied to these, such as finite 
differences applied to the { v } values of IEs evaluated at their { 
tm } time points, for numerical differentiation of the IE signal. 
Similarly the IEs can be integrated at their { v, tm } values using 
standard numerical integration techniques. The backplane can 
calculate combinations of metrics on IE signals and adjust the 
simulation resolution (through res messages described here) 
based on preset thresholds. The most simple adaptive control 
would be to relax resolution as an IE signal stream stabilizes 
(measured by a such as a numerical derivative applied the IE 
stream), and to increase resolution dynamically as the signal 
changes more frequently. Alternatively, resolution can change 
when the backplane moniters an event on a specific signal, such 
as an interrupt pin in the system represented as SimTalk singal 
stream, causing the backplane to employ high resolution during 
the interrupt service routine in the simulated software. There are 
many possibilities for adaptive control in the SimConnect 
backplane, and work is underway on these features.  
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