
Host-Compiled Simulation of Multi-Core Platforms

Andreas Gerstlauer

Electrical and Computer Engineering

University of Texas at Austin

Austin, Texas, 78712

Email: gerstl@ece.utexas.edu

Abstract—Virtual platform models are a popular approach
for virtual prototyping of multi-processor/multi-core systems-on-
chip (MPCSoCs). Such models aid in system-level design, rapid
and early design space exploration, as well as early software
development. Traditionally, either highly abstracted models for
exploration or low-level, implementation-oriented models for
development have been employed. Host-compiled models promise
to fill this gap by providing both fast and accurate platform
simulation and prototyping. In this paper, we aim to provide
an overview of state-of-the-art host-compiled platform modeling
concepts, techniques and their applicability and benefits.

I. INTRODUCTION

In recent years, virtual platform models have gained tremen-

dous popularity for early and rapid prototyping of embed-

ded system designs. With inherent and continuously growing

complexities, such models enable system-level design space

exploration to derive optimized system architectures for a

given application (or set of application scenarios) under tight

performance and real-time constraints. At the same time,

virtual platform prototypes can serve as the basis for early

software development, validation and debugging before the

physical hardware is available.

To facilitate design space exploration and application de-

velopment, designers require models that simulate fast yet

can provide accurate feedback about platform effects. Tra-

ditional models for exploration at high levels of abstraction

provide fast evaluation but rely on inaccurate, coarse-grain

estimation or worst-case static analysis. By contrast, models

for actual software and application development tend to be

at low, implementation-oriented levels using relatively slow

instruction-set simulation (ISS) or even cycle-accurate micro-

architecture and register-transfer level (RTL) hardware de-

scriptions.

An active area of research is the search for modeling

solutions that can fill the gap in between high-level exploration

and low-level implementation models. Most recently, a large

number of solutions that can generally be classified as host-

compiled models have begun to emerge. These approaches

pair a high-level functional model with back-annotation of

statically determined low-level timing estimates in order to

achieve fast and accurate simulation. An open question that

is not yet well understood, however, is the right choice of

granularity that achieves the best balance between the capa-

bility to accurately analyze tight static bounds and to model

all necessary dynamic effects with little to no overhead.

Network-on-Chip (NoC)

Fig. 1. MPCSoC platform architecture.

In this paper, we aim to provide an overview of host-

compiled platform modeling concepts, benefits and challenges.

The remainder of this paper is organized as follows: after a

brief introduction to platform target architectures and general

modeling concepts, we will provide an overview of virtual

platform modeling and related work in Section II. Section III

will further detail host-compiled processor modeling tech-

niques, and Section IV will show an industrial-strength case

study to demonstrate the benefits of host-compiled approaches.

Finally, we will conclude the paper with a summary in

Section V.

A. Platform Architectures

Driven by ever increasing application demands and techno-

logical advances, we have entered an era where complex multi-

processing platforms beyond a single CPU are integrated on a

single chip. Various approaches aim to manage complexities

and provide high performance in a scalable fashion through

regular, homogeneous structures adapted from general-purpose

computing, including Network-on-Chip (NoC) or multi- and

many-core architectures. However, the need for optimization

will continue to push for specialization, and architectures are

likely to be highly heterogeneous, hybrid and hierarchical in

nature, such as homogeneous single- or multi-core processors

as part of heterogeneous, bus-based subsystems that are inter-

connected via a homogeneous or heterogeneous backbone on-

or off-chip network (Fig.1).

Such Multi-Processor and Multi-Core Systems-on-Chip

(MPCSoCs) provide a mix of homogeneous, symmetric and

heterogeneous, asymmetric multi-processing (SMP and AMP).

We can generally define an MPCSoC to be a hierarchical com-

position of shared-memory multi-core (i.e. SMP) processors

that are components in an overall distributed-memory multi-

17072/10 $25.00 (C) 2010 IEEE DOI 10.1109/RSP_2010.SS3

������
Fig. 2. System-level design.

processor (i.e. AMP) system. As such, each processor has one

or more cores that share a common subset of resources, such as

bus interfaces, local memory and a single real-time operating

system (RTOS). On the other hand, different single- or multi-

core processor are each run their own, independent software

stack and are loosely connected via networks of busses or

other communication structures.

B. Modeling Levels

At the system level, the design process is a mapping, i.e.

partitioning and scheduling of application computation and

communication onto a target platform consisting of processing

elements (PEs) and communication media (busses) (Fig.2).

The result is a structural system model of application processes

and channels running on the platform architecture. Platform

modeling is concerned with capturing such structural system-

level descriptions at various levels of detail and abstraction.

Approaches can generally be classified according to the

level of granularity at which target functionality and timing is

modeled. Based on an orthogonalization and separation of con-

cerns, we generally distinguish between the computation and

communication side. As shown in Fig.3, we can furthermore

separate computation and communication functionality into

layers with well-defined interfaces. A model is then defined

by the amount of implementation detail, i.e. by the amount

of target-specific computation and communication layers ex-

plicitly included. Any implementation layers below a certain

interface are abstracted away and replaced by an abstract

model of the underlying target functionality and timing.

Functionality is usually modeled by mapping elements at the

chosen interface directly into equivalent code on the simulation

host. For example, an instruction-set simulation (ISS) model

will translate target assembly code into functionally equivalent

host instructions. Matching timing models are constructed

through back-annotation of interface objects, such as instruc-

tions, with estimated timing information. In the simplest case,

estimates are derived through a static table lookup (or ignored

for a purely functional simulation). Especially at higher levels,

however, timing data is often obtained by statically emulating

and estimating execution on a detailed target model that

Protocol

Driver

Networking
Messages

µArch

Assembly code

Algorithm
Functions

Bus cyclesPipeline

Application

RTLIS
S

H
o
s
t-
c
o
m
p
il
e
d

Blocks/stmnts.

Instructions

Packets

Words P
-T
L
M

N
-T
L
M

Computation Communication

Fig. 3. Modeling layers.

may reach all the way down to the lowest RTL layer. Since

estimation and back-annotation is performed before runtime,

simulation speeds do not suffer but accuracy is limited by any

static assumptions made about dynamic effects. Alternatively,

back-annotation can happen dynamically, or in a hybrid static

and dynamic fashion by running a more or less detailed timing

model next to the abstracted functional simulation. This allows

for tradeoffs between speed and dynamic accuracy, where

parallelism and hardware acceleration in the simulation host

can be exploited [1].

There exist a variety of static analysis approaches that

abstract the system at the granularity of complete applications

based on static models of process [2], channel and system-level

interactions [3], [4]. Such high-level analysis is necessarily

based on static estimation or pre-characterization, e.g. of task

execution times on a given processor under average- or worst-

case conditions. At lower levels, restricted sets of operations,

well-defined interactions and limited dynamic dependencies

make a static analysis and worst-case operation feasible

and desirable. However, flexibility in applications, complex

system-wide interactions and wide variations under different

dynamic operation conditions often result in sub-optimal or

overly conservative static analysis at the system level.

For these reasons, simulation-based evaluation and explo-

ration solutions are popular. Similar to purely static analysis,

a class of solutions for early and fast exploration simulates

application processes and channel interactions at the granu-

larity of functions and messages [5], [6]. Such approaches

utilize back-annotation through similar static estimation or

pre-characterization of target-specific function and message

timing. As such, they suffer from corresponding inaccuracies

in determining worst- or average-case bounds. Furthermore,

while dynamic interactions (e.g. through scheduling or arbitra-

tion) can be simulated, their accuracy is limited by the coarse

granularity of the model itself. Nevertheless, such models can

provide very rapid feedback to drive initial pruning of the

design space of clearly infeasible solutions.

At the other end of the spectrum, low-level, implementation-

oriented platform models have traditionally been constructed

using RTL simulations at the micro-architecture and bus pro-

tocol level. However, while being cycle-accurate, such models

are clearly too slow for full-system simulation of increas-

ingly complex platforms. On the computation side, afore-

mentioned binary translating ISS approaches have replaced

or complemented traditional cycle-accurate micro-architecture

simulators [7], [8], [9], [10]. Such simulators can provide

significant speedups (reaching simulation speeds of several

hundred MIPS), but often focus on functionality and speed

at the expense of limited or no timing accuracy.

On the communication side, Transaction-Level Modeling

(TLM) has become tremendously popular and almost univer-

sally accepted as a vehicle for acceleration of platform model

integration. TLM allows orders of magnitude faster simula-

tions by abstracting away pin- and wire-level protocol details

into an interface at the level of bus read/write transactions

[11], [12], [13], [14] (protocol TLM, P-TLM) or complete data

packets (network TLM, N-TLM) [15], [16]. Internally, bus

TLM descriptions realize an abstracted, yet accurate model of

the functionality and timing of such bus transactions. With the

exception of dynamic effects such as arbitration or preemption,

the predictability of bus protocol timing enables TLM-based

descriptions with little to no loss in accuracy. For dynamic

effects, accuracy is inherently linked to the granularity, i.e. the

level at which the TLM simulation is realized. Note, however,

that several techniques have been developed that implement

principles of optimistic timing prediction and subsequent cor-

rection of dynamic disturbances in an attempt to enable fast

yet accurate simulations at higher levels [17], [18].

Following the success of TLM concepts, the idea of host-

compiled modeling is to similarly push computation modeling

to higher abstractions above the level of instructions. The

idea is to define a level below the granularity of complete

functions where all major dynamic effects can be simulated

but simulation speeds remain close to the native execution of

functionality on the simulation host. For this purpose, host-

compiled approaches model computation at the source code

level (typically in C-based form). This allows a functional

model to be natively compiled onto the host for fastest possible

execution of given algorithms. Timing information is added by

prior back-annotation of the source code.

In order to accurately capture dynamic data dependencies

while minimizing overhead, back-annotation is usually per-

formed at the basic block level [19], [20]. Several nearly iden-

tical approaches [21], [22] use a standard compiler frontend

to first bring the code down to an intermediate representation.

This allows typical source-level compiler optimizations to be

accurately considered. In all cases, back-annotation is based on

static emulation of basic block execution on a timing model of

the target processor. In some cases, this may be as complex as

using the target tool-chain to compile and simulate each block

on a cycle-accurate target model. Since back-annotation is

performed off-line on a block-by-block basis, each block only

needs to be analyzed once. As such, complexities of timing

estimation are deferred to a pre-processing step while time-

critical simulation of repeated block executions is performed

with statically back-annotated values. Several host-compiled

approaches also support hybrid static and dynamic timing

models and back-annotation, either by including dedicated

simulation models of critical dynamic micro-architecture fea-

tures, such as caches or branch predictors [19], [21], [23],

or by toggling between host-compiled and ISS-based models

dynamically at simulation time [24], [25].

�����	
���	��������
�� ������������ �� � ��!���"#$%&&'($)�� *	��+��� ���,�- Drv

OS
App��

.//01234567893:0;9<=>?4567 82@5A2@467
BCD

Fig. 4. Platform modeling.

II. PLATFORM MODELING

To assemble a complete platform model, computation and

communication descriptions at specific levels are combined

into PE models that are integrated into a common platform

simulation framework. Most commonly, the simulation frame-

work is provided through a standardized TLM backplane [26]

that sits on top of a system-level design language (SLDL),

such as SystemC [27]. To allow integration and simulation of

application computation and communication at a certain level

of abstraction, a platform model has to provide the necessary

execution environment on top of the basic SLDL kernel and

TLM backplane1. Specifically, this requires processor and

bus models that abstract all target functionality and timing

not explicitly included in the description of the application

implementation itself (Fig.4).

In a traditional ISS-based PE model (Fig.4 on the right),

an instruction set simulator emulates execution of a cross-

compiled target binary that includes instruction-level imple-

mentations of all application, OS and driver code. The ISS

kernel is integrated into the overall TLM backplane through

a thin wrapper that relays all I/O and interrupts between

the simulated processor and the external TLM environment

[28], [29]. Internally, the ISS kernel can include a separate

scheduler that simulates processor-internal parallelism, e.g.

when modeling a SMP CPU with multiple cores. In the

process, the ISS can also integrate and co-simulate models

of processor peripherals or other external hardware. Note that

most ISS frameworks also allow for stand-alone simulation of

complete multi-processor platforms exclusively assembled on

top of the proprietary ISS kernel [30].

By contrast, in a host-compiled PE model (Fig.4 on the

left), an application implementation is provided in the form of

C code for each process. C code is back-annotated with target-

specific execution timing and simulated on top of abstract

models of the operating system (OS) and processor hardware

(HW) that integrate into the TLM and SLDL backplane [31].

Some of the earliest host-compiled approaches were centered

around accurate models of OS effects [32], [33]. On top of the

concurrency model provided by the basic SLDL kernel, the

OS model simulates dynamic real-time scheduling of applica-

tion processes on a given number of processor cores. More

1A common simulation backplane thereby allows for mixed-level co-
simulation of PE models at different abstraction levels.

EFEG HIJG KKLMNOPQ RSPT LMNOPURVIJ WXYZ [\]̂
_J`abcd abce abcRfN g_hiTjkl amno

pqrstquvwuvwfNg_hiQ xtyz{q|r}~
jkl amnS ����t {̂�t�

Fig. 5. Host-compiled processor model.

recently, OS modeling approaches have been extended into

full processor models that include abstract descriptions of the

processor hardware [34], [35]. Hardware models integrate with

OS models to accurately describe hardware timing effects, e.g.

due to processor suspension and interrupt handling [36]. In ad-

dition, processor hardware models interface with the external

TLM environment. Depending on the level of communication

abstraction, the application may provide implementations of

networking, driver and interrupt handler code, while any

remaining external communication is abstracted into calls to

the corresponding bus TLM channel interface (e.g. at the

network or protocol level)2.

Lastly, note that a host-compiled model of a software

processor is essentially the most general case that covers any

type of PE. Specifically, a model for a custom hardware PE

(Fig.4 middle) becomes a special case of a host-compiled PE

that does not include OS and hardware interrupt models. In

a hardware PE model, the given application code is back-

annotated with timing information and co-simulated with the

rest of the system through a SLDL-based description of the

bus interface implementation that integrates into the TLM

backplane.

III. PROCESSOR MODELING

In the following, we will present some more details about

host-compiled modeling of processors to be integrated into

an overall TLM-based platform simulation environment. Fig.5

shows an example of a host-compiled processor model [34].

The model is constructed in a layer-based fashion following

the general organization of application and modeling levels

outlined in the previous section. This allows processor models

at varying feature and abstraction levels to be easily composed

and generated.

The Application is described as a set of back-annotated, C-

based processes that describe basic algorithmic functionality

and execution timing. Application processes run on top of

2Note that if there is a mismatch in communication abstractions of different
PEs, the TLM backplane can provide necessary transactors that transparently
translate between different levels and interfaces.

. . .

a [i] [j] += sum ;

/∗ BA : enqueue cache a c c e s s ∗ /

a l i s t [i dx] = A BASE + 4∗ (i ∗A WID+ j) ;

/∗ ∗ /

. . .

/∗ BA : accumu la t e d e l a y s ∗ /

c a ch e de l a y = cache . upd (a l i s t , i dx) ;

os . wa i t (BASE DELAY + cache de l a y) ;

/∗ ∗ /

Fig. 6. Application code back-annotation.

a model of the operating system that adds realizes dynamic

scheduling as described previously. In addition, the OS layer

also includes code for any networking and driver stacks

provided with the application. A Hardware Abstraction Layer

(HAL) then provides canonical interfaces for translating all

external communication into appropriate calls to the TLM-

based platform environment. The HAL also includes imple-

mentation code or models for low-level interrupt handlers.

Finally, the HW layer contains accurate models of logic for

processor suspension and handling of interrupt service requests

in conjunction with an externally provided interrupt controller

model.

In a hybrid between static and dynamic timing back-

annotation, the processor model may include runtime mod-

els of advanced dynamic microarchitecture features, such as

caches or branch predictors. Fig.5 shows an example of a

behavioral cache model integrated into the processor hardware

layer [23]. As part of the back-annotation process, application

code is instrumented at the basic block level with both best-

case execution time estimates and additional calls to the cache

model (Fig.6). The cache model is driven by information about

cache lines being accessed in each block, which is obtained by

deriving base addresses of each variable in the code from the

symbol table of the application compiled into a target binary3.

Internally, the purely behavioral cache model maintains line

tags according to a specified associativity and replacement

policy. On each call, the cache model updates its internal

state and returns the number of cache misses. In this way, the

cache model can simulate effects of data locality based on the

dynamic code execution sequence. Cache miss information is

dynamically added to the static timing annotations in order

to simulate the effect of miss penalties. Results show that

integration of models of dynamic target behavior significantly

increases accuracies. However, simulation overhead is simi-

larly incurred with each additional dynamic feature, up to the

point where a complete cycle-accurate timing model is run

next to the host-compiled functional simulation.

3In case of array accesses, address information is computed at runtime
based on the array index and the array base address.

DCT

T
X

ARM7

M1Ctrl

I/O4

HW

DSP56k

MBUS

BUS1 (AMBA AHB) BUS2 (DSP)

A
rb

it
e

r1

IP Bridge

DCTBus
I/O3I/O2I/O1

DMA

M1

Enc Dec
Jpeg

Codebk

SI BO BI SO

DCT

v1

C2

C
1

C3

C4

C
5

C
6

C
7

C
8

C0

0x0C50,intC

MP3

Fig. 7. Cellphone baseband MPCSoC example.

IV. CASE STUDY

We have applied host-compiled platform modeling concepts

to a cellphone MPCSoC that combines an MP3 decoder and

a JPEG encoder running on an ARM7 processor with a

GSM voice encoder/decoder running on a Motorola DSP6600

(Fig.7) [34]. The cellphone system was modeled at various

levels of computation and communication abstraction. On the

computation side, models with and without inclusion of the

OS layer were constructed. On the communication side, N-

and P-TLMs were compared against a pin-accurate model

(PAM) at the RTL level. Subsystems were exercised with 55

MP3 frames, 30 116 × 96 pictures and simultaneous encod-

ing/decoding of 163 frames of speech, respectively. Accuracy

was measured as the average absolute error in simulated

frame/picture delays when compared to a cycle-accurate ISS-

based reference model.

Fig.8 shows speeds and accuracies for various models

in a simulation of 3 s real time with 180million DSP and

300million ARM cycles. For single processor systems, simu-

lation speeds of 2000MIPS peak and 600MIPS sustained can

be achieved. For the full system cellphone simulation, the P-

TLM runs at 300MIPS. To isolate modeling from estimation

errors, back-annotation of average execution timing at the

function level was performed using perfect ISS measurements.

Resulting timing errors of models at various levels range from

12.5% down to less than 3%. In all cases, however, models

exhibit 100% fidelity across various explored architectures.

In general, results confirm expected speed and accuracy

tradeoffs with increasing abstraction. On the computation side,

models at the highest application level are grossly inaccu-

rate due to a mismatch in concurrency models. Moving to

the function level with subsequent inclusion of OS models

significantly increases accuracy with practically no overhead.

Further refinement of communication from messages down to

packet or protocol levels (paired with corresponding inclusion

of bus drivers and interrupt models) results in additional

accuracy gains at moderately decreased simulation speed.

Finally, switching to RTL modeling of communication and

finally computation leads to exponential growth in simulation

times with only minor reduction in modeling errors.

0

5

10

15

20

25

30

35

40

45

App. OS NTLM PTLM PAM ISS

A
v

e
ra

g
e

 E
rr

o
r

[%
]

0.1

1

10

100

1000

10000

100000

S
im

u
la

ti
o

n
 T

im
e

 [
s

]Avg. Error

Sim. Time

Fig. 8. Cellphone MPCSoC modeling results.

V. SUMMARY AND CONCLUSIONS

Platform models are at the core and form the basis of

any system design methodology. Following a layer-based ap-

proach, host-compiled models at various levels of abstraction

can be constructed in a systematic manner. Experimental

results on an industrial-strength case study demonstrate the

benefits of host-compiled modeling at the N- or P-TLM level.

Models are fast and accurate for rapid, early design space

exploration and software development. However, all models

are Pareto-optimal and none clearly outperforms any other.

Thus, ideally a variety of models is desired to support a design

flow with gradual design space pruning while successively

converging down to more and more accurate solutions.

Traditionally, system models are manually written, which

is a tedious, error-prone and time-consuming process. This

makes it infeasible to explore a large number of design

alternatives at varying levels within a given time-to-market

window. However, based on sound layer-based model defi-

nitions, tools for automatic model generation can be devel-

oped. Furthermore, well-defined TLMs and PAMs support

automatic synthesis down to final hardware and software

implementations at the RT or ISS level. Using such tools [37],

all models shown for the cellphone example were generated

within seconds. Furthermore, tools can easily create models

at varying levels of abstraction. If done manually, writing and

debugging of equivalent models would take months. Overall,

automatic model generation paired with fast and accurate

simulation are the key to unlocking significant productivity

gains in system-level design.

ACKNOWLEDGMENTS

The author would like to thank all former colleagues at the

Center for Embedded Computer Systems (CECS) at UC Irvine,

where many of the concepts presented here were originally

developed.

REFERENCES

[1] D. Chiou, D. Sunwoo, J. Kim, N. Patil, W. Reinhart, E. Johnson,
J. Keefe, and H. Angepat, “FPGA-accelerated simulation technologies
(FAST): Fast, full-system, cycle-accurate simulators,” in MICRO, Dec.
2007.

[2] G. C. Buttazzo, Hard Real-Time Computing Systems. Kluwer, 1999.

[3] D. Ziegenbein, K. Richter, R. Ernst, L. Thiele, and J. Teich, “SPI — a
system model for heterogeneously specified embedded systems,” IEEE
TVLSI, 2002.

[4] E. Wandeler, L. Thiele, M. Verhoef, and P. Liverse, “System architecture
evaluation using modular performance analysis: A case study,” Journal
on Software Tools for Technology Transfer (STTT), vol. 8, no. 6, pp.
649–667, Oct. 2006.

[5] C. Erbas, A. D. Pimentel, and S. Polstra, “A framework for system-level
modeling and simulation of embedded systems architectures,” EURASIP
JES, vol. 2007, no. 82123, 2007.

[6] M. Streubühr, C. Haubelt, and J. Teich, “System level performance sim-
ulation for heterogeneous multi-processor architectures,” in Workshop
on Rapid Simulation and Performance Evaluation: Methods and Tools

(RAPIDO), Jan. 2009.

[7] F. Bellard, “QEMU, a fast and portable dynamic translator,” in USENIX,
2005.

[8] M. Reshadi, P. Mishra, and N. Dutt, “Hybrid-compiled simulation:
An efficient technique for instruction-set architecture simulation,” ACM
TECS, vol. 8, no. 3, Apr. 2009.

[9] G. Braun, A. Nohl, A. Hoffmann, O. Schliebusch, R. Leupers, and
H. Meyr, “A universal technique for fast and flexible instruction-set
architecture simulation,” IEEE TCAD, vol. 23, no. 12, pp. 1625–1639,
2004.

[10] W. S. Mong and J. Zhu, “DynamoSim: a trace-based dynamically
compiled instruction set simulator,” in ICCAD, San Jose, CA, 2004.

[11] L. Cai and D. Gajski, “Transaction level modeling: An overview,” in
CODES+ISSS, Newport Beach, CA, Oct. 2003.

[12] F. Ghenassia, Transaction-Level Modeling with SystemC: TLM Concepts
and Applications for Embedded Systems. Springer, 2005.

[13] S. Pasricha, N. Dutt, and M. Ben-Romdhane, “Fast exploration of bus-
based communication architectures at the CCATB abstraction,” ACM
TECS, vol. 7, no. 2, pp. 22:1–22:32, Feb. 2008.

[14] M. Coppola, S. Curaba, M. Grammatikakis, and G. Maruccia, “IPSIM:
SystemC 3.0 enhancements for communication refinement,” in DATE,
Munich, Germany, Mar. 2003.

[15] G. Schirner and R. Dömer, “Quantitative analysis of the speed/accuracy
trade-off in transaction level modeling,” ACM TECS, vol. 8, no. 1, pp.
4:1–4:29, Dec. 2008.

[16] A. Gerstlauer, D. Shin, R. Dömer, and D. D. Gajski, “System-level
communication modeling for network-on-chip synthesis,” in ASPDAC,
Shanghai, China, Jan. 2005.

[17] G. Schirner and R. Dömer, “Result Oriented Modeling a Novel Tech-
nique for Fast and Accurate TLM,” IEEE TCAD, vol. 26, no. 9, pp.
1688–1699, Sep. 2007.

[18] R. S. Khaligh and M. Radetzki, “Efficient parallel transaction level
simulation by exploiting temporal decoupling,” in IESS. Langenargen,
Germany: Springer, Sep. 2009.

[19] J. Schnerr, O. Bringmann, A. Viehl, and W. Rosenstiel, “High-
performance timing simulation of embedded software,” in DAC, Ana-
heim, CA, Jun. 2008.

[20] R. Dömer, “Transaction level modeling of computation,” Center for
Embedded Computer Systems, University of California, Irvine, Tech.
Rep. CECS-06-11, Aug. 2006.

[21] Z. Wang and A. Herkersdorf, “An efficient approach for system-level
timing simulation of compiler-optimized embedded software,” in DAC,
San Francisco, CA, Jul. 2009.

[22] Y. Hwang, S. Abdi, and D. Gajski, “Cycle approximate retargettable
performance estimation at the transaction level,” in DATE, Munich,
Germany, Mar. 2008.

[23] A. Pedram, D. Craven, and A. Gerstlauer, “Modeling cache effects at
the transaction level,” in IESS. Langenargen, Germany: Springer, Sep.
2009.

[24] L. Gao, K. Karuri, S. Kraemer, R. Leupers, G. Ascheid, and H. Meyr,
“Multiprocessor performance estimation using hybrid simulation,” in
DAC, Anaheim, CA, Jun. 2008.

[25] M. Krause, D. Englert, O. Bringmann, and W. Rosenstiel, “Combination
of instruction set simulation and abstract RTOS model execution for fast
and accurate target software evaluation,” in CODES+ISSS, Atlanta, GA,
Oct. 2008.

[26] Transaction Level Modeling Library, Release 2.0, Open SystemC Initia-
tive (OSCI), Jun. 2008.

[27] T. Grötker, S. Liao, G. Martin, and S. Swan, System Design with
SystemC. Kluwer, 2002.

[28] M. Gligor, N. Fournel, and F. Petrot, “Using binary translation in
event driven simulation for fast and flexible MPSoC simulation,” in
CODES+ISSS, Grenoble, France, Oct. 2009.

[29] F. Fummi, M. Loghi, M. Poncino, and G. Pravadelli, “A co-simulation
methodology for hw/sw validation and performance estimation,” ACM
TODAES, vol. 14, no. 2, pp. 23:1–23:32, Mar. 2009.

[30] L. Benini, D. Bertozzi, A. Bogoliolo, F. Menichelli, and M. Olivieri,
“MPARM: Exploring the multi-processor SoC design space with Sys-
temC,” Journal of VLSI Signal Processing, vol. 41, no. 2, pp. 169–184,
2005.

[31] T. Kempf, M. Dörper, R. Leupers, G. Ascheid, H. Meyr, T. Kogel,
and B. Vanthournout, “A modular simulation framework for spatial and
temporal task mapping onto multi-processor SoC platforms,” in DATE,
Munich, Germany, Mar 2005.

[32] A. Gerstlauer, H. Yu, and D. D. Gajski, “RTOS modeling for system
level design,” in Design, Automation and Test in Europe: The Most
Influential Papers of 10 Years DATE, R. Lauwereins and J. Madsen,
Eds. Springer, 2008.

[33] H. Posadas, J. A. Adamez, E. Villar, F. Blasco, and F. Escuder, “RTOS
modeling in SystemC for real-time embedded SW simulation: A POSIX
model,” Design Automation for Embedded Systems, vol. 10, no. 4, Dec.
2005.

[34] G. Schirner, A. Gerstlauer, and R. Dömer, “Fast and accurate processor
models for efficient MPSoC design,” ACM TODAES, vol. 15, no. 10,
Feb. 2010.

[35] A. Bouchhima, I. Bacivarov, W. Yousseff, M. Bonaciu, and A. Jerraya,
“Using abstract CPU subsystem simulation model for high level HW/SW
architecture exploration,” in ASPDAC, Shanghai, China, Jan. 2005.

[36] H. Zabel, W. Müller, and A. Gerstlauer, “Accurate RTOS modeling and
analysis with SystemC,” in Hardware-dependent Software: Principles
and Practice, W. Ecker, W. Müller, and R. Dömer, Eds. Springer,
2009.

[37] R. Dömer, A. Gerstlauer, J. Peng, D. Shin, L. Cai, H. Yu, S. Abdi, and
D. D. Gajski, “System-on-Chip Environment: A SpecC-based framework
for heterogeneous MPSoC design,” EURASIP JES, vol. 2008, no.
647953, p. 13, 2008.

