
Learning-based Analytical Cross-Platform
Performance Prediction

Xinnian Zheng, Pradeep Ravikumar, Lizy K. John, and Andreas Gerstlauer
The University of Texas at Austin, Austin, TX, USA

xzheng1@utexas.edu, pradeepr@cs.utexas.edu, {ljohn, gerstl}@ece.utexas.edu

Abstract—As modern processors are becoming increasingly
complex, fast and accurate performance prediction is crucial dur-
ing the early phases of hardware and software co-development.
To accurately and efficiently predict the performance of a
given software workload is, however, a challenging problem.
Traditional cycle-accurate simulation is often too slow, while
analytical models are not sufficiently accurate or still require
target-specific execution statistics that may be slow or difficult to
obtain. In this paper, we propose a novel learning-based approach
for synthesizing analytical models that can accurately predict the
performance of a workload on a target platform from various
performance statistics obtained directly on a host platform using
built-in hardware counters. Our learning approach relies on a
one-time training phase using a cycle-accurate reference of the
chosen target processor. We train our models on over 15,000
program instances from the ACM-ICPC programming contest
database, and demonstrate the prediction accuracy on standard
benchmark suites. Result show that our approach achieves on
average more than 90% accuracy at 160× the speed compared
to a cycle-accurate reference simulation.

I. INTRODUCTION

Under ever increasing time to market pressures, software is
often designed in parallel with the processor hardware during
early development stages. Being able to predict performance
of software running on a target processor that does not yet
physically exist is a necessary component to enable such co-
development of software and hardware. However, due to the
increasing complexity of processors, modeling and predicting
the performance of programs is a difficult task.

Simulation-based approaches, such as cycle-accurate in-
struction set simulators (ISSs) are widely used in obtaining
accurate estimates of program performance on a given target.
However, simulation speeds are typically very slow. By con-
trast, traditional analytical performance models in the form of
closed-form expressions or functions are efficient to compute.
However, they are typically not accurate enough or still
require at least a partial execution model (such as a functional
ISS) of the target processor to collect target-specific traces
or execution statistics, such as instruction counts, memory
traces, or branch statistics. This can still be slow, and even
partial target models may not be available to the software
developers. By contrast, we aim to perform true cross-platform
performance prediction purely based on measurements directly
taken from native execution on a host.

Although collecting performance of a program on an ISS is
slow, executing the same program on some existing platform
can be done at native speeds. Hence, if we are able to

Statistical
Learning

Algorithm

Cycle Accurate
Simulator

Performance
Feature Vectors

Performance
References

Predictive
Model

Performance
Feature Vector

Predicted
Performance

Prediction

Training

Host Machine

App. 1

App. 2

App. N

App. New Host Machine

.

.

.

Fig. 1. Cross-platform performance prediction framwork.

generate accurate analytical models that associate performance
of programs on a target with execution statistics efficiently
obtained on an existing platform, performance prediction can
be achieved without speed penalty. This motivates the need
for constructing analytical models that are capable of cross-
platform and/or cross-ISA performance prediction.

In this paper, we introduce an approach for learning-based
analytical cross-platform performance prediction between dif-
ferent architectures. From basic intuition, we know that there
exists some latent relationship between the execution of a
program on one platform and the performance of the same
program on another. Consider the simple scenario of a program
A that takes t seconds to finish its execution on a particular
machine. We can then expect A to run longer on a less
powerful machine. Conversely if we instead execute A on a
more powerful machine, we are likely to expect it to finish
quicker. For the remainder of the paper, we use “target” to
denote the platform for which we want to predict performance,
and “host” to denote the platform on which various execution
statistics are collected. The goal of our work is to provide a
systematic way of extracting the relationship between target
and host, and use it for inferring the performance of programs
running on the target by executing them on the host. Note
that target and host do not necessarily have to be of similar
architectures. In fact, as our results will show, it is possible to
establish accurate prediction models between targets and hosts
that are of vastly different hardware micro-architectures and
even different instruction set architectures (ISA).

We employ a statistical, learning-based formulation, as

shown in Figure 1. Our approach belongs to the supervised
learning category and consists of a training and test phase.
During the training phase, a large amount of sample programs
(which we denote as the “training set”) are collected and
executed on the host. Various execution statistics are obtained
using built-in hardware performance counters. The programs
in the training set are then simulated on an cycle-accurate
simulator to obtain the reference execution times on the
target. The learning model takes the training data consisting
of the hardware performance counter measurements and the
simulated reference execution times to synthesize a model that
maps host hardware performance counter data into execution
times on the target. Note that the training process, is a one-
time effort. Once the predictive model is constructed, we can
use this model to make a prediction of the performance of
a program running on the target given counter measurements
efficiently obtained on the host.

The remainder of the paper is organized as follows: Section
II provides a discussion on the construction of our training set.
Section III introduces the profiling procedures on the host and
target processors to collect the training data. This is followed
by discussion of our learning model in Section IV. Section V
presents empirical results for our cross-platform performance
prediction as applied to the prediction of performance on an
ARM processor from execution statistics observed on an x86
host. Finally, Section VI surveys the related work and Section
VII concludes with a summary of the key contributions and
results of this work.

II. TRAINING SET

The validity of any learning-based approach is crucially
dependent upon the choice of the training set. An ill-formed
or insufficient training set affects the statistical model, causes
over-interpretation of the data during the training phase and
produces a model that overfits the data. A good training set
should satisfy the following properties:
• Each workload inside the training set should individually

be a good representative of the programs encountered
during the later prediction phase.

• The variety of the workloads in the training set should be
sufficiently large to cover the application space of interest.

• The overall number of program instances in the training
set should be large enough to avoid overfitting problems
in general.

For the purpose of our targeted cross-platform performance
prediction, we are in need of a diverse variety and sufficient
number of programs which contain algorithms that are used
as typical building blocks in real-life software applications.

For our performance prediction approach, we utilize the
programs from the ACM-ICPC (International Collegiate Pro-
gramming Contest) [1] database. The ACM-ICPC is the largest
and most prestigious programming contest, where hundreds of
programming problems are created for the ICPC regional com-
petitions every year. These programming problems are aimed
at testing participants’ knowledge on algorithms, programming
as well as the ability to create new software applications.

TABLE I
BREAKDOWN OF THE TRAINING SET.

Application Domains Number of Programs
Simulation 14
Enumeration 16
String Manipuation 30
Graph Algorithm 26
Dynamic Programming 21
Geometry 25
Recursion 13
Miscellaneous 12

Solutions to all problems are made public in open source form.
As such the ACM-ICPC database provides a great resource for
large-scale program mining. More specifically, we chose 157
programs from the programming contests. Table I shows the
breakdown of the programs in the training set with respect to
their related application domains.

Programs in the simulation category perform step-wise
traversal of the given input sequence and produce correspond-
ing outputs (e.g, a replay of a chess game, a trace of a discrete
event simulation, etc.) Enumeration programs often involve
searching for some solutions to a problem through enumer-
ation of all possible candidate solutions. String manipulation
problems typically consist of tasks such as parsing, translation,
encryption and decryption. Various graph algorithms (shortest
path, graph search, connected components, network flow, etc.),
dynamic programming and geometry related programs form a
vast majority of our training set. Finally, problems that realize
recursive solutions and other miscellaneous types complete the
rest of the training set.

The large variety of programs in the ACM-ICPC database
resolves the representativeness and diversity requirements of
the training set. However, the overall number of program
instances is still far from sufficient for training any statistical
model. Since all problems were once used for the contest,
input specifications are well documented and include many
examples. Using this information, we generated approximately
one hundred randomized inputs for each program in the
training set for a total of about 15,700 program instances. In
order to maintain a reasonable time for executing and profiling
the entire training set, we restricted the size of each random
input to complete in 1 to 20 seconds on the host machine.

III. FEATURE EXTRACTION

In this section, we give an overview of the profiling and fea-
ture extraction procedure performed on the target instruction
set simulator as well as the host machine. On the target side,
all workloads are first cross-compiled and then simulated on a
cycle-accurate instruction set simulator of the target platform
to obtain the reference timings of the workloads executing on
the target.

On the host side, the goal of profiling is to accurately and
concisely capture and represent the execution of programs as
sets of features. In our approach, we utilize various hardware
performance counters as representative program features. For
each workload in the training set, we obtain a feature vector

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

C
o

rr
e

la
ti

o
n

 C
o

ef
fi

ci
e

n
t

Hardware Performance Events

Fig. 2. Correlation of hardware performance events with reference target
timing (Intel Core i7 920).

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

C
o

rr
e

la
ti

o
n

 C
o

ef
ic

ie
n

t

Hardware Performance Events

Fig. 3. Correlation of hardware performance events with reference target
timing (AMD Phenom II X6 1055T).

which consists of selected hardware performance counter
measurements. We perform profiling of the training set on
two different host machines configurations: an Intel Core i7
920 processor with 24 GB of memory, and an AMD Phenom
II X6 1055T processor with 8GB of memory. All hardware
performance counter measurements were carried out using the
PAPI [20] tool set.

Figure 2 shows the 14 hardware performance events that
we collect on the Intel host machine, and the correlation
coefficients between each individual events measured on the
host and the target timing obtained from the cycle-accurate
simulator. The number of CPU cycles, together with the
number of instructions, the total number of L1 cache accesses
and the number of floating point operations appears to be
highly correlated with the target timing. Other events (i.e,
number of unconditional branches and L2 cache related events)
also influence the target timing substantially, whereas the rest
of the events have relatively low impact on the target timing.

Similarly, Figure 3 shows the 8 hardware performance
events we collected on the AMD host machine and their
correlation coefficients. Note that due to the underlying dif-
ference in the implementation of the two host processors,

some hardware performance counters available on the Intel
i7 processor are not present on the AMD platform. Hence,
only 8 out of the original 14 hardware performance events
are measured on the Phenom II processor. Nevertheless, as
indicated in Figure 3, the majority of the 8 hardware events
continue to show strong correlation with the target timing.

A. Latent Semantics Extraction

As the various features measured on a host machine are
multi-dimensional vectors, it is difficult to simultaneously look
at all of their components and draw useful conclusions. Thus,
we use dimensionality reduction techniques known as principal
component analysis (PCA) [23] based on the Singular Value
Decomposition (SVD) to analyze and extract latent semantics
from the data. Formally, the SVD of any real matrix A ∈
Rm×n is a factorization of the form:

A = UΣV T ,

where U ∈ Rm×m is a unitary matrix with its columns
being the eigenvectors of AAT , Σ ∈ Rm×n is a rectangular
diagonal matrix with positive real numbers on its diagonal, and
V ∈ Rn×n is also a unitary matrix with its columns being the
eigenvectors of ATA. The columns of U and V are called the
left-singular vectors and right-singular vectors. The non-
zero diagonal entries, the singular values, of Σ are the square
roots of the non-zero eigenvalues of both ATA and AAT .

Furthermore, for each column ai ∈ Rm in A, its k-
dimensional projection a′i ∈ Rk(k < m) is given by,

a′i = ÛT × ai, (III.1)

where columns of Û ∈ Rm×k are the left-singular vectors
corresponds to the largest k singular values. This transfor-
mation achieves dimensionality reduction by projecting the
original m-dimensional input vectors onto a k-dimensional
space, where k < m. The more dominant the largest k singular
values are in comparison to the rest of the singular values, the
more information the approximation retains.

In our case, we form input matrices D by placing each fea-
ture vector measured on the host as one column. Di7 ∈ R14×N

and Dph ∈ R8×N (N is the size of the training set) from
the data obtained on the Intel i7 host and the AMD Phenom
host, respectively. We normalize both data matrices Di7 and
Dph with respect to their columns and then perform the SVD
to obtain Ûi7 and Ûph. In both cases, we choose to keep 3
columns (k = 3) for the Ûs, where in all cases, the sum
of the largest three singular values covers more than 90%
of the sum of all the singular values of the normalized data
matrix Di7 and Dph. Hence, the rank-3 projection of Di7 and
Dph is computed as shown in (III.1). Shown in Figure 4
are the 3D projection of the 14-dimensional feature vectors
obtained by executing all program instances in the training
set on the Intel i7 host. Note the axes of such projection are
also commonly known as the principal components (PCs). The
projection points form various clusters, which is likely due
to the inherent similarities between program instances. Across
different clusters, some are close to others due to their inherent

Fig. 4. Projection of the 14-dimensional hardware performance counter
feature vectors (Intel Core i7) into three principal components.

Fig. 5. Projection of the 8-dimensional hardware performance counter feature
vectors (AMD Phenom II) into three principal components.

similarities. These notions of closeness (or similarity) are
obtained by the latent semantic extraction during the SVD and
the k-rank approximation operations. Similar results, in Figure
5, are seen for the 8-dimensional feature vector projections
obtained by executing the training set on the AMD Phenom
II machine. The same clustering behavior appears.

IV. TRAINING AND PREDICTION

Given the feature vectors obtained from the host machines
and the corresponding reference timing information from the
cycle accurate simulator of the target, our essential goal is to
extrapolate mappings between the two, such that for any new
feature vectors obtained on the same host machine, we may
use such mapping to make a prediction of the target’s timing.

Formally, for any given pair of a d-dimensional performance
feature vector x ∈ Rd obtained on the host and its correspond-
ing reference timing y ∈ R obtained on the target, such a
mapping (or model) is a function F : Rd → R, such that,

F(x) ≈ y. (IV.1)

In this section, we discuss the choice of “F” and the rationale
behind it. We focus the discussion here at a conceptual level.
A quantatitive evaluation will appear later in Section V.

A. Lasso Linear Regression

Linear regression is a widely used data fitting technique. It
assumes an underlying linear relationship between the input
and output, and seeks to find the solution that minimizes the

sum of squared residuals. The residuals are the discrepancies
between the observed and fitted values produced by the model.

In previous work, Joseph et al. and Lee et al. [11], [16] used
linear models as effective ways of measuring processor perfor-
mance based upon various micro-architectural parameter, such
as cache sizes, associativities, branch predictor configuration,
pipeline depth and so on. We adopt similar assumptions and
use linear models and their variants to fit our data.

Formally, given a data set consisting of n data points
(xi, yi), for i = 1, . . . , n, the ordinary linear regression
problem is formulated as follows:

minimize
θ

J(θ) = ‖Xθ − Y ‖22, (IV.2)

where the rows of matrix X ∈ Rn×d are the d-dimensional
feature vectors xi, and Y ∈ Rn is a column vector consisting
of all the yi corresponding to each xi, and θ ∈ Rd are the
vector of coefficients of the model. The model F in this case
is linear (i.e. F(x) = xT θ). Such an optimization problem is
also known as the ordinary least squares problem, for which
an analytical solution exists as,

θ = (XTX)−1XTY.

Although, ordinary linear regression is applicable in our case,
it is known to be sensitive to measurement noise and suffers
from overfitting. Instead we consider a regularized version,
the linear regression with l1-regularization (also known as
LASSO) [25], for a more robust fit. Different from the least
square formulation in (IV.2), the lasso linear regression has a
slightly different objective function:

minimize
θ

J(θ) =
1

2n
‖Xθ − Y ‖22 + λ‖θ‖1, (IV.3)

where the rows of matrix X ∈ Rn×d are the d-dimensional
feature vectors xi, and Y ∈ Rn is a column vector consisting
of all the yi corresponding to each xi. The function F also
remains linear. Thus, the only difference between the ordinary
linear regression is the l1-penalty term applied to parameter
θ. This penalty restricts the vector θ to be sparse. It allows
the linear model to generalize better based on the principle
of parsimony [5]. The variable λ ∈ R+ is known as the
tuning parameter, which controls the degree of the l1-penalty.
Roughly speaking, the bigger the λ, the sparser θ becomes.

Due to the linearity assumption placed on F, lasso linear
regression is expected to have good performance when the
underlying relationship between inputs and outputs is in fact
linear. By contrast, if the relationship is non-linear, the perfor-
mance of a linear model will suffer.

B. Constrained Locally Sparse Linear Regression (CLSLR)

To deal with potential non-linearity problems, we relax
the global linearity of F to a local linearity assumption
where F(x) is assumed to be continuous and differentiable
everywhere. Such an assumption relaxes F to a point such
that it may no longer be expressed as a linear function. Yet,
the differentiability of F can still be leveraged. For any target
input vector xt, base on our local linearity assumption, we can

now use a first-order linear approximation F̂ around a close
neighborhood of xt to approximate the true F. For a more
robust fit, we impose the l1-penalty terms for finding a sparse
solution of the parameters θ. This is known as a constrained
locally sparse linear regression (CLSLR).

Before introducing the problem formulation of CLSLR, we
first define the distance d between any two input feature points
xi and xj as follows:

d = ‖ xi
‖xi‖2

− xj
‖xj‖2

‖2. (IV.4)

The distance is essentially the Euclidean distance between the
unit vector in the direction of xi and xj .

With this we can introduce the CLSLR formulation. For-
mally, let Fxt denote the true function value near an input
point xt, and let Nxt be the set of the m pair of points
(x1, y1), . . . , (xm, ym) in the training set that are closest to
the input point xt according to (IV.4). Then,

Fxt ≈ F̂(xt) = xTt θxt (IV.5)

is the approximated model at target point xt. where θxt
∈ Rd

is the parameter of the model at the target point of interest.
The CLSLR near the input point xt solves the following
optimization problem,

minimize
θxt

J(θxt
) =

1

2m
‖Xxt

θxt
− Yxt

‖22 + λxt
‖θxt
‖1

subject to θxt
≥ 0,

(IV.6)
where each row xi of the matrix Xxt

and each row yi of
the column vector Yxt

corresponds to the points (xi, yi) in
the neighborhood set Nxt

with respect to the input vector
xt. The positivity constraint placed upon θxt arises from
the correlation between the input features and the output
timing in Section III. As indicated in both Figure 2 and
Figure 3, the features are all positively correlated to the target
timing. In other words, the inputs positively contribute to the
output. Thus, we restrict the fitting parameter θxt

to be strictly
non-negative. Notice that the optimization problem in (IV.6)
does not have an analytical solution. In fact, it belongs to
a particular type of convex optimization problems where the
the objective function can be decomposed into a convex and
smooth function (the least-square term) plus a convex but
non-smooth function (the l1-regularizer). The solution can be
computed efficiently by first-order iterative algorithms, such
as proximal gradient method [2], [21].

By solving (IV.6), we obtain a linear approximation to a
non-linear function at input point xt. As such, the CLSLR
provides a powerful tool for modeling any generic non-linear
function using a first-order local approximation. In principle,
if the neighborhood is chosen to be close enough to the input
point of interest, such techniques would give good prediction
accuracy. However, if a close neighborhood does not exist, i.e.
if all points are far way compared to the point of interest, the
smoothness assumption breaks down (i.e. Fxt 6≈ F̂(xt)) and
the CLSLR is likely to give erroneous predictions.

Fig. 6. Average cross-validation error.

C. Prediction and Parameter Tuning

To perform the prediction at any target point xt of interest,
we perform the following three steps in order:

1) Identify the m-nearest neighbors of xt.
2) Solve the optimization problem in (IV.6) and obtain θxt

.
3) Compute the prediction,

ŷt = xTt θxt
. (IV.7)

Notice that in the process of CLSLR, we need to choose
two tuning parameters, namely, the sparsity penalty λxt

and
the number of nearest neighbors m to consider. We employ
a standard technique known as cross-validation to determine
their values. In particular, we divide the data set into a training
set and a test set. We train using only data from the training set,
and we use data from the test set to test how well we performed
via computing the average prediction error percentage. We
iteratively repeat this process applying different values for λxt

and m until the cross-validation error (CV error) is sufficiently
small. Figure 6 shows the trade-off surface between the cross-
validation error, the number of nearest neighbors considered
and the size of λ. As λ becomes larger, the sparsity of the
fitted linear model (θ) increases, the degree of freedom of the
model decreases with respect to the number of parameters in
the model, and the data becomes more and more difficult to
fit (CV error increases).

As m grows bigger, more and more neighbors from further
away are included in the computation of θ, which causes the
local linearity assumption to breakdown.

Therefore, λ is chosen to be 5 × 1017 such that the local
linear model produced by CLLLR is neither too complex nor
too sparse, and m is chosen to be 80 such that the local
linearity of the model is still maintained.

0%

5%

10%

15%

20%

25%

30%

LASSO CLSLR

C
V

 E
rr

o
r

Intel i7

AMD Phenom II

Fig. 7. Cross-validation error among different statistical models.

V. EMPIRICAL RESULTS

We perform feature extraction of programs in the training
set on both the Intel i7 and AMD Phenom hosts. On the target
side, we use the default five-stage in-order version of the ARM
CPU model in the gem5 simulator [3] to obtain the reference
timings. For each x86 host, we generate models predicting
the execution time of a program on the ARM target given
hardware counter features obtained on the host. We evaluate
the proposed approach from two aspects: the accuracy of the
statistical models in terms of cross-validation error, and the
overall accuracy of the approach on unseen programs.

A. Cross-Validation Error

We employ 10-fold cross-validation [15] of the training
set used during the training phase as an estimate for the
generalization error of different regression techniques. The
comparison is shown in Figure 7. A Lasso Linear Regres-
sion method results in more than 15% cross-validation error,
whereas CLSLR yields an 1% average prediction error. The
fact that the non-linear CLSLR technique performs an order
of magnitude better than the linear model strongly suggests
that the underlying function “F” between the input hardware
performance counters on the host and execution timings on the
ARM target is likely to be non-linear. The accurate prediction
of CLSLR provides us insights into the inherent nature of
the training set. It reassures us that the assumption about
the smoothness of the target function “F” is indeed valid
empirically.

B. Prediction Accuracy

To demonstrate the accuracy of our approach, we test on
15 programs from standard benchmark suites that are not
encountered in the training set. We use seven programs (aes,
crc, dijkstra, fft patricia, qsort, sha) from the MiBench
suite [9] and eight programs (disparity, localization, mser,
multi ncut, sift, stitch, svm, tracking) from the San Diego
Vision Benchmark Suites (SD-VBS) [26]. These fifteen pro-
grams are first profiled on the Intel and AMD machines to
obtain their 14-dimensional and 8-dimensional hardware per-
formance counter feature vectors respectively. As mentioned
earlier, the performance counter measurements are obtained
using the PAPI tool set. These feature vectors then become

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

0

2

4

6

8

10

12

P
re

d
ic

ti
o

n
 E

rr
o

r

Ti
m

e
 [

s]

Simulated (Gem5)
ARM Prediction Based on Intel Core i7
ARM Prediction Based on AMD Phenom II
Error on Intel Core i7
Error on AMD Phenom II

Fig. 8. Prediction accuracy of CLSLR on selected benchmarks.

0

50

100

150

200

250

300

Sp
e

e
d

u
p

 [
1

x]

ARM Prediction Based on Intel Core i7

ARM Prediction Based on AMD Phenom II

Fig. 9. Speedup over cycle-accurate ISS on selected benchmarks.

0

10

20

30

40

50

60

70

80

R
u

n
ti

m
e

 [
s]

Profiling Time on Intel Core i7

Profiling Time on AMD Phenom II

Prediction Time

Fig. 10. Runtime on selected benchmarks.

inputs to the CLSLR algorithm which predicts performance
of each benchmark on the ARM target. Finally, we compare
the predictions with the actual simulated timing obtained from
the cycle-accurate simulator for the ARM processor. Note that
we only use the CLSLR method here. As we have shown in
Section V-A, our target function F is almost surely non-linear.

Performance prediction results for the 15 benchmark pro-
grams are shown in Figure 8. In general, for many of the test
programs, the accuracy is only slightly worse than the perfor-

mance during the cross-validation. Except for programs sha,
multi ncut, localization and svm whose prediction errors are
more than 10%, performance of all benchmarks is predicted
with an average error of less than 5% for both the Intel Core
i7 as well as the AMD Phenom II host. As shown in Figure
11 and 12, the projected 2D features of 7 of the Mibench
and 8 of the SD-VBS programs are indeed embedded in the
“cloud” of the training data points. The principal component
(PC) axes in Figure 11 and 12 are linear projections of the
counter features obtained via PCA as described in Section III.
As highlighted in Figure 11 and Figure 12, the projection
of the feature vectors of program instances sha, multi ncut,
localization and svm all falls in a region somewhat isolated
from the projected feature vectors of the training data. In other
words, these programs behave differently from the programs
inside the training set. All these programs had greater than
10% prediction error.

On the other hand, program instances such as aes, dijkstra,
fft, qsort, mser and so on, all obtained very accurate predic-
tions from CLSLR. As shown in both Figure 11 and 12, we
notice that majority of these test programs are surrounded by
an abundant number of neighboring points in the training set.
This suggests that there exists some program instances inside
the training set that resemble the behavior of these test pro-
grams. It is not surprising that ACM-ICPC contest questions
does aim to cover a broad range of algorithms similar to, for
example, the Dijkstra’s shortest path algorithm, and sorting.
Many string manipulation contest programs perform similar
operations as the encryption and decryption algorithms we use
in the test programs such as aes and crc.

In Figure 9, we compare the speedup of our approach over
cycle-accurate simulation. The total runtime of our approach,
as shown in Figure 10, consists of the profiling time and
the prediction time. The profiling time is the time needed to
collect various hardware performance counters on the host.
Due to hardware limitations and differences in the the number
of counters collected, this requires 5 separate runs of each
program on the Intel host and 3 runs each on the AMD. The
prediction time is the runtime for solving the optimization
problem in (IV.6). Since solving (IV.6) scales mainly with
the neighborhood size m, which in our case is a constant,
the predictions take less than 1 second in all cases. Overall,
the runtime is lower and hence the speedup is greater on the
AMD host than on the Intel one. This is mainly due to the
difference in the number of performance counters and hence
profiling runs on the different hosts.

Overall, the proposed approach is accurate when there is a
sufficient amount of data in the feature space that lies close to
the input point of interest (i.e. for programs such as aes and
dijkstra). Conversely, if the existing data lies far away from
the input points (i.e. for programs such as localization and
multi ncut), the statistical model may not be able to capture
the underlying structure of the non-linear target function,
which directly leads to inaccuracies in the prediction. Such
inaccuracies due to lack of data exist in all statistical learning
problems.

Fig. 11. Principal components (PC2 vs. PC3) of selected MiBench (�) and
SD-VBS (�) programs (Intel Core i7).

Fig. 12. Principal components (PC2 vs. PC3) of selected MiBench (�) and
SD-VBS (�) programs (AMD Phenom II).

VI. RELATED WORK

Early analytical approaches [8], [22], [24] for processor
performance prediction date back to decades ago, where
the focus was evaluating effects of micro-architectural vari-
ations on pipeline and instruction level parallelism. More
recently, in [13], Karkhanis et al. adpated and extended this
approach to superscalar processors. It was not until recent
years, however, that statistical learning and regression-based
methodologies started to thrive. Lee and Brooks proposed a
predictive modeling and spatial sampling method [16], [17]
for efficient microarchitecture design space exploration. They
employed linear regression models to characterize different
microarchitectures, navigate a huge design space and identify
all Pareto-optimal candidate architectures. In [12] and [11],
Joseph et al. also utilized regression-based approaches to con-
struct processor performance models, where an iterative error
minization technique is applied to find the optimal fit. Similar
ideas were also introduced by Ipek et al. [10] using artifical
neural networks instead of regression. Lee et al. [18] and Khan
et al. [14] extended and generalized the predictive modelinges
approach from uni-processor to multi-processor and multi-core
systems, respectively. Our objective is fundamentally different
from all these existing approaches. Instead of trying to obtain
statistical performance models for some target architecture
of interest from measurements performed on the same base
architecture, we aim to provide cross-platform performance

prediction by establishing statistical models that correlate two
distinct architectures.

In the simulation domain, approaches that estimate per-
formance of a program running on slow but cycle-accurate
ISS models [3], [19] of a target processor are widely used.
Alternative approaches, such as source-level, host-compiled
and transaction level modeling (TLM) solutions [4] have
recently been proposed to improve the simulation speed while
aiming to maintain accuracies close to an ISS. When including
accurate cache simulation, such approaches can achieve 200-
500 MIPS simulation throughput at more than 90% accuracy.
However, they typically involve cumbersome static and dy-
namic analysis to back-annotate program code with abstracted
target performance estimates. Often times, this requires a sub-
stantial amount of code injection and intrusion into the original
source code (or some form of intermediate representation).
In many cases, this is not a trivial task due to various re-
sitrictions such as the effects of compiler optimizations, which
inherently limits their accuracy. Furthermore, back-annotation
is required for every new test program, which can be a lengthy
process. Pure profiling approaches [6] use various information
extracted directly from the source to predict performance
of an application across platforms. However, they still re-
quire source code modifications and, owing to their high-
level nature, are usually limited to simplistic very inaccurate
target performance models. By contrast, our approach treats
the code execution of a program as a “blackbox”, and only
requires a one-time training to construct a statistical model
that can predict performance across arbitrary, unmodified test
programs. Our approach is fast (820 - 1200 MIPS on average,
depending on counter support in the host architecture), while
providing similar accuracies as detailed, back-annotation based
approaches. However, our training process has to be repeated
for every change of the target platform. This inherently limits
retargetability compared to other approaches [7].

VII. CONCLUSIONS AND FUTURE WORK

This paper proposes a novel learning-based analytical cross-
platform performance prediction methodology. In particular,
we use hardware performance features obtained from a pro-
gram executing on a host processor to predict the execu-
tion time of the same program running on a distinct target
processor. We have shown that even when the host and the
target are of vastly different microarchitectures and ISAs, the
inherent relationship between executing the same program on
one platform versus another can be accurately captured. The
learning problem is formulated in a constrained optimization
setting and we demonstrate its effectiveness on a set of 15
benchmark programs. The prediction achieves an average
accuracy of 90% for test programs. Overall, results of this
work motivate the use of learning based methods in computer
system performance modeling and evalution. In future work,
we aim to improve prediction accuracy by reducing model
granularity, increasing the representativeness and completeness
of the training set, and incorporating other workload and
platform features that also aid in better retargetability.

ACKNOWLEDGMENTS

This work has been supported by SRC grant 2012-HJ-2317.
We would also like to thank the anonymous reviewers for their
helpful suggestions to improve the paper.

REFERENCES

[1] The ACM-ICPC International Collegiate Programming Contest. http:
//icpc.baylor.edu/.

[2] A. Beck and M. Teboulle. A fast iterative shrinkage-thresholding
algorithm for linear inverse problems. SIAM Journal on Imaging
Sciences, 2(1):183–202, 2009.

[3] N. Binkert, B. Beckmann, G. Black, S. K. Reinhardt, A. Saidi, A. Basu,
J. Hestness, D. R. Hower, T. Krishna, S. Sardashti, R. Sen, K. Sewell,
M. Shoaib, N. Vaish, M. D. Hill, and D. A. Wood. The gem5 simulator.
SIGARCH Computer Architecture News, 39(2):1–7, 2011.

[4] O. Bringmann, W. Ecker, A. Gerstlauer, A. Goyal, D. Mueller-
Gritschneder, P. Sasidharan, and S. Singh. The next generation of virtual
prototyping: Ultra-fast yet accurate simulation of HW/SW systems. In
DATE, 2015.

[5] K. P. Burnham and D. R. Anderson. Model selection and multimodel
inference: A practical information-theoretic approach. Springer, 2002.

[6] L. Cai, A. Gerstlauer, and D. Gajski. Retargetable profiling for rapid,
early system-level design space exploration. In DAC, 2004.

[7] S. Chakravarty, Z. Zhao, and A. Gerstlauer. Automated, retargetable
back-annotation for host compiled performance and power modeling.
In CODES+ISSS, 2013.

[8] P. G. Emma and E. S. Davidson. Characterization of branch and data
dependencies on programs for evaluating pipeline performance. IEEE
Transactions on Computer, 36(7):859–875, July 1987.

[9] M. R. Guthaus, J. S. Ringenberg, D. Ernst, T. M. Austin, T. Mudge, and
R. B. Brown. MiBench: A free, commercially representative embedded
benchmark suite. In IISWC, 2001.

[10] E. Ipek and S. A. Mckee. Efficiently exploring architectural design
spaces via predictive modeling. In ASPLOS, 2006.

[11] P. Joseph, K. Vaswani, and M. Thazhuthaveetil. Construction and use
of linear regression models for processor performance analysis. 2006.

[12] P. J. Joseph. A predictive performance model for superscalar processors.
In MICRO, 2006.

[13] T. S. Karkhanis and J. E. Smith. A first-order superscalar processor
model. In ISCA, 2004.

[14] S. Khan, P. Xekalakis, J. Cavazos, and M. Cintra. Using predictive mod-
eling for cross-program design space exploration in multicore systems.
In PACT, 2007.

[15] R. Kohavi. A study of cross-validation and bootstrap for accuracy
estimation and model selection. In IJCAI, 1995.

[16] B. C. Lee and D. M. Brooks. Illustrative design space studies with
microarchitectural regression models. In HPCA, 2007.

[17] B. C. Lee and D. M. Brooks. A tutorial in spatial sampling and
regression strategies for microarchitectural analysis, 2007.

[18] B. C. Lee, J. Collins, H. Wang, and D. Brooks. CPR: Composable
performance regression for scalable multiprocessor models, 2008.

[19] P. S. Magnusson, M. Christensson, J. Eskilson, D. Forsgren, G. Hållberg,
J. Högberg, F. Larsson, A. Moestedt, and B. Werner. Simics: A full
system simulation platform. IEEE Computer, 35(2):50–58, 2002.

[20] P. J. Mucci, S. Browne, C. Deane, and G. Ho. PAPI: A portable interface
to hardware performance counters. In DoD HPCMP, 1999.

[21] Y. Nesterov. Smooth minimization of non-smooth functions. Mathemat-
ical Programming, 103:127–152, 2005.

[22] D. B. Noonburg and J. P. Shen. Theoretical modeling of superscalar
processor performance. In MICRO, 1994.

[23] J. Shlens. A tutorial on principal component analysis. CoRR,
abs/1404.1100, 2014.

[24] D. J. Sorin, V. S. Pai, S. V. Adve, M. K. Vernon, and D. A. Wood.
Analytic evaluation of shared-memory systems with ILP processors. In
ISCA, 1998.

[25] R. Tibshirani. Regression shrinkage and selection via the Lasso. Journal
of the Royal Statistical Society, Series B, 58:267–288, 1994.

[26] S. Venkata, I. Ahn, D. Jeon, A. Gupta, C. Louie, S. Garcia, S. Belongie,
and M. Taylor. SD-VBS: The San Diego vision benchmark suite. In
IISWC, 2009.

