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Abstract—With the growing complexity and scale of future
Internet of Things (IoT) applications, there is a need for
effectively exploring associated design spaces. IoT applications
make use of inherently distributed processing. In such networks-
of-systems (NoS), computation and communication is tightly
coupled. Traditional design of networks and systems in isolation
ignores how choices in one influence the other, and approaches for
joint network/system co-exploration are lacking. In this paper, we
propose a novel prototyping platform to enable comprehensive
NoS design space exploration. Fast and accurate host-compiled
system models are combined with a standard network simulator
to provide a unified network/system co-simulation framework.
Furthermore, detailed models of network interfaces and pro-
tocol stacks are integrated into host-compiled system and OS
models to allow accurately capturing of network and system
interactions. We apply our NoS simulator to two case studies
from smart camera and healthcare application domains, and
we demonstrate benefits and opportunities for exploration and
optimization in network/system co-design. Results indicate that,
depending on application, network and system configurations,
application throughput can vary by an average of 26%, while
device core utilization can vary by as much as 130%. These
results confirm strong network and system interactions that could
not be observed or optimized without novel co-simulation tools.

I. INTRODUCTION

In the Internet of Things (IoT), physical objects are em-
bedded with electronic systems and network connectivity.
This novel computing paradigm is inherently characterized
by dynamic distribution of data collection, aggregation and
processing tasks among networked devices [1], [2]. As a
result, computation and communication workloads are tightly
coupled, which brings new challenges and opportunities for
the co-design of both the system devices themselves and
the networks composed out of them. In such a network-of-
system (NoS) environment, the overall performance is not
only influenced by individual factors such as available appli-
cation parallelism, system resource constraints and network
communication capabilities alone, but also by the interac-
tions between them. During execution, computation and com-
munication can be dynamically parallelized or serialized at
intra- or inter-device level. In order to accurately estimate
application performance, the potential overlap among each
data processing and communication tasks need to be carefully
considered. This is in turn a function of their realistic exe-
cution durations, dependencies and concurrency available in
the underlying computation platform. There exist non-obvious
tradeoffs, where determining how to optimally partition and
offload application tasks among an appropriately designed NoS
architecture requires a comprehensive consideration of design
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Fig. 1. Network/system co-design flow.

parameters from applications, processing platforms all the way
to network configurations.

Exploring such design spaces requires novel approaches for
systematic and joint network/system co-design that currently
do not exist. An overview of such an envisioned NoS design
process is shown in Fig. 1. Starting from an application specifi-
cation and network and system constraints, the goal is to derive
an optimal NoS architecture and application-to-architecture
mapping. This is inherently an iterative process that requires
fast and accurate methods for NoS validation and prototyping.
Due to the complex and dynamic nature of NoS, a seamless
co-simulation of networks and systems will need to be a
key method, where computation and communication delays
are accurately simulated and their interactions are properly
emulated. A flexible NoS simulation platform can instantiate
different NoS configurations and generate corresponding sim-
ulation models, where systems, networks and their interactions
can be simultaneously simulated. Simulation results are then
feed back for performance analysis, after which corresponding
design decisions for specific optimization targets such as
performance, utilization or cost can be explored.

In this paper, we propose a novel virtual NoS prototyping
platform. Our NoS simulator integrates an advanced source-
level, host-compiled system simulation with a state-of-art
network simulator and accurate models of network inter-
faces and OS-level protocol stacks to enable fast, flexible
and comprehensive network/system co-simulation. Using our
simulator, interactions of system and network configurations
and their influence on various performance metrics for dif-
ferent applications can be investigated. We demonstrate the
capabilities of our co-simulation platform on two case studies
of real-world IoT application scenarios from camera vision
and healthcare domains in a wireless NoS setup. During
exploration, key parameters such as the number of clients,
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Fig. 2. Host-compiled NoS simulation platform.

application offloading levels, the number and configuration
of processor cores, devices and radio/network interfaces are
explored simultaneously. Results show non-obvious trade-offs
coming from the interactions of parameters at various design
levels, which can not be discovered from existing isolated
network or systems simulations.

The rest of this paper is organized as follows: In Section II,
related works on system and network simulation and IoT
application trends are discussed. Section III then describes
details of our NoS simulator. IV introduces IoT applications
used in our case studies, results and observations of which are
summarized in Section V. Finally, we conclude the paper with
a summary and outlook on future work in Section VI.

II. RELATED WORK

Contemporary IoT applications are shifting from simple tra-
ditional wireless sensor networks (WSN) to more sophisticated
scenarios featuring more powerful embedded systems, widely
distributed data and a higher level of mobility. For example, in
smart camera networks, computer vision methods are deployed
on a set of distributed mobile cameras equipped with high-
performance computing and communication architectures for
video stream capturing, processing, and communication [3],
[4]. Another example are healthcare systems. With the help
of wearable mobile devices, biosignals can be easily col-
lected and forwarded to gateways and servers for real-time
monitoring and analysis [5], [6]. Such applications require a
more comprehensive design method to simultaneously explore
parameters from both system and network sides.

Existing approaches for simulation-based exploration of
WSNs and networked systems are limited in their support for
modeling possible interactions between systems and networks
and their effects on application metrics, such as performance.
Traditional network simulators model system devices as sim-
ple traffic generators or analytical models without considering
internal details of system architectures [7], [8]. On the system
side, a large body of work has recently investigated better
abstractions for fast and accurate virtual platform prototyp-
ing of system architectures [9], using advanced techniques
for transaction-level modeling (TLM) together with so-called
source-level and host-compiled hardware/software simulation
on top of standard system-level design languages, such as
SystemC. Such approaches have been extended to include

consideration of network effects [10], [11], but existing WSN-
oriented simulators typically combine simple state-machine
based system models with an overly simplified model of net-
work protocols and channels [12], [13], [14], [15]. This leaves
IoT design space exploration mainly focused on application
partitions and device configurations [16], where optimization
opportunities of communication and computation interactions
in complicated NoS environments are not investigated.

III. NOS SIMULATOR

An overview of the proposed NoS simulator is shown in
Fig. 2. We base our simulator on the open-source, SystemC-
based host-compiled system simulator from [17], which we
extend and integrate with the OMNeT++ network simulator [7]
to provide a comprehensive, flexible and fast co-exploration
platform. Our co-simulation platform is designed to provide an
easily reconfigurable modeling setup that allows instantiating
different NoS application and architecture configurations to
evaluate both functional and non-functional metrics, such as
quality-of-service (QoS), performance or utilization.

Inside the host-compiled device models, system-wide inter-
actions between applications tasks, the underlying OS and var-
ious hardware components communicating through a hardware
abstraction layer (HAL) and device bus TLMs are captured.
One host-compiled system model is instantiated for each NoS
device on top of a SystemC simulation kernel. The SystemC
kernel is further integrated into an overall OMNeT++ simu-
lation backplane, which includes channel and communication
models that capture the interactions between different system
devices in a given network topology.

For accurate co-simulation, TCP/IP models in OMNeT++
are replaced by detailed TCP/IP protocol stacks integrated
into the host-compiled device models. Networking service
processes are instantiated as kernel mode tasks, which com-
municate with user application tasks using an OS-provided
mailbox. A network interface card (NIC) hardware model is
added to the simulated device, which is internally an empty
stub that interfaces with a detailed model of the NIC’s media
access (MAC) and physical (PHY) layer realization in the
OMNeT++ backplane. On the system side, the NIC model
communicates with the protocol stack through interrupts and
bus transactions using accurate models of generic interrupt
controllers (GICs) and OS-level NIC drivers.
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Fig. 2 highlights the data transmission path in dark orange
while interruption propagation is in dark green. Upon arrival of
a new network data packet, the NIC model in OMNeT++ will
communicate with the NIC interface stub in SystemC system
model through OMNeT++ messages, after which the NIC stub
will buffer the data packet and generate an interrupt signal that
is further distributed by the GIC model. The protocol stack
process will then be triggered by the OS model’s interrupt
handling services and read the data packet through the TLM
bus model from the NIC stub. For outgoing network data
packets, the protocol stack can directly write into the NIC stub
through the TLM bus, from where the packet will be forwarded
to the OMNeT++ NIC through OMNeT++ message. In such
a way, a SystemC device model can communicate with other
device instances in an overall OMNeT++ network topology.

A. Network Simulation Model

We employ OMNeT++ together with the INET package [7]
as our network simulation backplane. The OMNeT++/INET
combination provides a flexible network simulation platform
supporting rich choices of network protocols and topologies
through an easy configuration process. In our setup, only
the lower media access and physical layers are provided by
OMNeT++ as part of the NIC models, which communicate
with other OMNeT++ modules through wired or wireless
channel models on the one side and forward network packets
into/out of the simulated NIC stub on the other system side.

OMNeT++ natively provides a co-simulation with SystemC
that integrates the two simulation kernels at the basic discrete-
event level in a master-slave arrangement (with the OM-
NeT++ kernel serving as the master). During co-simulation,
SystemC models are scheduled and synchronized globally
by the OMNeT++ event scheduler. Through the NIC stubs,
SystemC devices send and receive raw Ethernet packets to the
OMNeT++ wrapper and invoke corresponding behaviors in
the OMNeT++ network simulation. Conversely, the network
simulator can access SystemC methods to notify occurrence
of network events to the system model and NIC stub.

B. System Simulation Model

Existing host-compiled system simulators follow a layer-
based organization to model the behavior and performance
of complete multi-processor and multi-core systems-on-chip
(SoCs) [17]. In such approaches, application source code is
first instrumented with back-annotated performance metrics

and then natively compiled and executed on the simulation
host. This provides fast and accurate source-level simulation
of raw application functionality and performance. Application
task models are then mounted on top of a lightweight, abstract
OS and processor model. OS and processor layers replicate a
typical multicore OS and hardware architecture to emulate the
execution of application tasks on a parallel hardware platform.
Finally, host-compiled processor models are integrated with
other CPU and hardware models using a standard TLM co-
simulation backplane on top of an underlying SystemC kernel.
In our NoS simulation setup, we extend such existing host-
compiled simulators by integrating a lightweight TCP/IP stack
in order to mount our IoT applications and allow integration
within an overall network simulation.

1) Application Task Model: Source code of IoT application
tasks is first annotated with estimated execution time metrics
and then converted into task models that run on top of the
host-compiled OS simulator. The approach in [17] requires
this to be done manually. We developed a customized LLVM
pass to perform automatic back-annotation and conversion
(Fig. 3). Our approach applies a function-level instrumentation
by extract profiling metrics from running the application code
on an existing hardware platform. Application source code
is first converted into intermediate representation (IR) form.
Profiling calls are inserted into the entry and exit points of each
function to collect function-level performance metrics. The
instrumented IR is then converted into an object file, linked
with a profiling library, and the resulting binary is executed
on the target platform under an input data set to collect cycle
counts for all application functions. This profiling data is then
used to back-annotate average per-function execution time
estimates into the application code. Finally, application tasks
are mapped onto a simulated system device by wrapping them
into host-compiled task models that run on top of the OS API
provided by the simulator.

2) Network Stack Model: In order to allow integration with
network simulation while accurately accounting for associated
system impact and overhead, we implemented a realistic model
of the network stack and external network interfaces as part
of the host-compiled system model. We ported a real network
stack, lwIP [18], which is a widely-used, embedded and
open-source TCP/IP stack, to our simulator and integrated
it with host-compiled OS and hardware models, as shown
in Figure 4. During integration, global variables from lwIP
libraries are encapsulated in a context object, and all related
lwIP function interfaces are modified to include a context
object parameter representing corresponding system states,
shown as the blue box in Figure 4a. Such context objects also
include pointers to the corresponding OS and driver model.
During simulation, the lwIP stack can then be instantiated as
multiple copies along with different OS/device instances inside
the NoS simulation environment. In our setup, the lwIP stack
is also back-annotated with our profiling framework in order
to estimate its core execution time.

lwIP provides a set of Netconn APIs for application process
to create network connections and transfer data, as shown in
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the AppTask task model in Figure 4a. A multi-threaded con-
figuration of the lwIP stack is ported onto the host-compiled
simulator, where a protocol thread (tcpip_thread) is cre-
ated for network packets processing, and a network interface
thread (ethernet_thread) is created as an interrupt-driven
task to read incoming network packets. The input and output
data flows between different threads are highlighted in Fig-
ure 4a. The incoming raw network packets are transferred from
the ethernet_thread to the tcpip_thread through a
tcpipmbox, and from there processed and further delivered
to application tasks through the netconnmbox. For outgoing
networking data, the Netconn API will notify and deliver
a message to the tcpip_thread, which will perform the
protocol processing and ultimately send out packets using a
low-level output function.

For porting to a new OS and hardware architecture, the lwIP
stack relies on two thin OS and Ethernet adapter files that need
to be implemented on top of existing OS and NIC driver APIs,
respectively. We developed a custom driver for our NIC and
customized the lwIP adapter files to port the stack onto our
host-compiled OS, driver and NIC device models.

The lwIP OS adapter requires services for dynamic
task creation and synchronization to be provided,
which we implemented internally using host-compiled
SystemC, OS and semaphore APIs. We rely on the
sc_core::sc_spawn SystemC API and an OS task
wrapper function, OSModelTaskWrapper, to provide the
adapter’s sys_thread_new function for dynamic task
creation, as shown in the code snippet in Figure 4b. On
every call to sys_thread_new, a new OS task wrapper
is spawned dynamically as a SystemC simulation process

by sc_core::sc_spawn. Inside the wrapper, OS model
APIs are invoked to first register and mount the new SystemC
process as application task on top of the OS model, and then
execute the actual application task code (AppTask).

The lwIP Ethernet adapter includes all necessary low-level
I/O functions to interface with the NIC hardware. With point-
ers provided by the context object, such I/O functions are able
to access the related OS-level driver and interrupt services. We
implemented a NIC driver that provides interrupt notification
through an interrupt service routine (ISR) as well as APIs
for exchanging packets with the NIC hardware over the TLM
bus on top of host-compiled HAL and OS models. When the
Ethernet adapter’s low_level_output function is invoked,
data is directly written out into the NIC model through the
driver and bus, while invocation of the low_level_input
function will cause the caller process to wait for an interrupt
notification from the ISR before further reading the incoming
data from the NIC model through the driver.

IV. IOT APPLICATION CASE STUDIES

To demonstrate benefits and capabilities of our NoS simu-
lation platform for network/system co-design and exploration,
we apply our simulator to two case studies of vision graph
discovery and ECG arrhythmia detection as representative
IoT applications. These two applications have different com-
putation/communication ratios, and in turn expose various
patterns and sensitivities under system and network configu-
ration changes. We map these applications onto different NoS
architectures with one server and multiple client devices. The
applications are augmented with tunable offloading parameters
to formulate realistic usage scenarios for our case study.

A. Vision Graph Discovery
In a network of smart cameras, estimating their position

and orientation relative to each other and to their environment
is an essential operation and key challenge [3]. This type of
relationship is defined as vision graph [19]. In a vision graph,
each camera is represented by a node, and an edge appears
between two nodes if the two cameras share a sufficiently
large part of a view. Our formulation of different vision graph
discovery scenarios is demonstrated in Fig. 5. Computation
is divided into four stages, along which we define three
offloading levels:
Image Capture (0) A stream of images is captured on each
camera. In our case, we assume that enough images are already
captured and buffered in the device memory.
Keypoint Extraction (1) For each image, a set of key
locations (such as corners, blobs) that describe the image
context for further scene analysis is extracted. In our setup,
we use a Scale-Invariant Feature Transform (SIFT) algorithm
to detect and describe such local image features [20].
Feature Matching (2) Keypoints between two images cap-
tured by different camera nodes are matched by identifying
their nearest neighbours. The nearest neighbors are defined
as the keypoints with minimum Euclidean distance from the
corresponding keypoint descriptor vector.
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Graph discovery (3) The numbers of matched points between
every image pair are collected by the server, and a certain
threshold is set for deciding the existence of view overlap
between smart cameras. Based on this information, the server
node can globally update the vision graph.

Possible offloading levels and corresponding task mappings
for the vision graph application are shown in Fig. 5. Note
that feature extraction requires image information from other
nodes. Thus, when keeping stage 2 on the client nodes
(offloading level 0), the server needs to first collect the output
of stage 1 from all clients and then properly distribute the
information. In our setup, we make a client node perform
feature matching only with its adjacent client, and the server
is responsible for matching all other possible image pairs.

We have implemented the vision graph application using
OpenCV library. Video sequences from the Freiburg-Berkeley
Motion Segmentation Dataset [21] are used as our input data.

B. ECG Monitoring and Diagnosis
In the healthcare domain, networked wearable devices pro-

viding continuous personal monitoring services are increas-
ingly used to support early disease detection and improve
the quality of healthcare. We formulate a case study in this
domain using recent work on IoT-based ECG diagnosis opti-
mization [16]. ECG signals are used to detect heart arrhythmia,
i.e. irregularly fast or slow heart beats, which may lead to
strokes or heart failure. As shown in Fig. 6, the detection flow
is divided into four stages with four possible offloading levels:

Filtering and Heartbeat Detection (0) Raw ECG signal are
captured by wearable devices, processed with a band-pass FIR
filter to remove baseline wander and power line noise, and
examined in a window to locate the R peak.

Heartbeat Segmentation (1) The detected R peak is used as
the start of a new segment, and the ECG signals are segmented
into single heartbeats for further analysis.

Feature Extraction (2) Feature extraction of the heart beat is
performed through a Discrete Wavelet Transformation (DWT).
Diagnosis (3) A Support Vector Machine (SVM) classifier is
used to determine whether the processed heart beat exhibits
any signs of arrhythmia.

The ECG processing flow is implemented in C. Data from
the MIT-BIH Arrhythmia Database [22] is used as input.

V. EXPERIMENTS AND RESULTS

We demonstrate and validate our NoS simulator on the two
IoT case studies presented in Section IV. For our experiments,
we set up different NoS configurations in a wireless local area
network (WLAN) client-server topology. The server device
is configured as a dual-core system, with one core dedicated
for networking-related service processes and another core for
application tasks. Each edge node device is set up as a single-
core system. Realistic execution time information is obtained
using a Raspberry Pi 3 (RPi3) with a 1.2 GHz ARM Cortex-
A53 and a Raspberry Pi 0 (RPi0) with a 1 GHz ARM11 as ref-
erence platforms for profiling and back-annotation. To extract
timing information from the physical Raspberry Pi devices,
we record cycle counters using PAPI. Network-related timing
information is provided by the INET/OMNeT++ library.

The final NoS simulation setup is shown in Fig. 7. The
ported lwIP in the host-compiled platform model replaces
OMNeT++ TCP/IP models with an equivalent SystemC re-
alization, and is back-annotated at the function level to ac-
curately model its timing as well as the workload it incurs
on the processor. In the OS model, lwIP service processes
are instantiated as kernel mode tasks, which communicate
with user application tasks using a mailbox protected by OS
semaphores. The lwIP stack reads arrived network packets
from the NIC data buffer driven by the OS model’s interruption
handling services. The lower media access and physical layers
remain in OMNeT++ as part of a local NIC model. In the
system node, the NIC interface stub (NIC Stub) is used to
interact with the OMNeT++ NIC model through OMNeT++
events, and further configured to communicate with the lwIP
driver through the bus model and interrupt services of the OS
model. Finally, the whole SystemC system model is wrapped
into an OMNeT++ node object to be synchronized globally
by the OMNeT++ event scheduler.

A. NoS Design Space Exploration

We explore IoT applications under different implementation
configurations. Scenarios with 2-10 clients are investigated.
As detailed in Section IV, three possible offloading levels are
defined for vision graph discovery (O-0, O-1 and O-2), and
four for ECG diagnosis (O-0, O-1, O-2 and O-3).

We chose network configurations with three different MAC
protocols and physical layer bandwidths from the 802.11
family, namely mode ’g’ at 9Mbps or 54Mbps and mode ’b’
at 11Mbps. The 802.11g and 802.11b protocols use different
modulation schemes (OFDM and DSSS, respectively) with
reduced protocol overhead and higher effective throughput
in the ’g’ mode. We further explore various client/server
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Fig. 8. Output-to-output delay of IoT applications.

configurations. Besides a single-core client/dual-core server
setup (SD), a single-core client/single-core server setup (SS) is
investigated. We use 0 and 3 indices to indicate the use of RPi0
or RPi3 cores, respectively. We introduce an additional virtual
core type (denoted as 4) that assumes double the performance
of a RPi3 core. In this naming convention, a single-core RPi0
client/dual-core RPi3 server setup will be represented as S0D3.

With this set of parameters, we examined different IoT
performance metrics used for design space exploration. For the
applications under study, all performance metrics are measured
as an average among a fixed input stream window.

1) Throughput: We define throughput as the inverse of the
output-to-output delay between successive data sets from all
client devices, e.g., each newly detected heartbeat or captured
image frame. Such a metric is a function of both communica-
tion/computation durations and dependencies. We investigated
the interactions of parameters across different design levels
and their effects on throughput. As results in Fig. 8 show,
different application configurations show various sensitivities
to system and network parameters. For both applications
under study, scenarios with 2 to 6 client nodes are shown
as representative cases. In both applications, computation and
communication requirements and hence output delays increase
with the number of clients. At the same time, delays generally
decrease as a function of available network bandwidth and
system processing power. However, relative ratios depend on
the application, client count and offloading level.

The vision graph example (Fig. 8a) is generally
computation-dominated, and network bandwidth has an overall
smaller impact on performance than client/server configura-
tions. Furthermore, server computation scales faster (quadrat-
ically) with client counts than communication and per-client
demands (which grow linearly or are constant, respectively).
As such, the application becomes server-bound for large num-
bers of clients and higher offloading levels. At 6 clients and
offloading level O-2, neither network nor client configurations
will significantly affect overall performance. With the domi-
nance of computation, available server-side parallelism is also
limited, which results in a relatively small benefit when going
from a single-core (SxS3) to a double-core (SxD3) server. By
contrast, a twice as powerful single-core server (S3S4) shows a
more than 40% output delay reduction. With lower offloading
levels, network and client configurations start to have a higher
impact. Due to the need for centralized server coordination,
both client computation and total communication demands
increase with lower offloading in the vision graph example.
At level O-0 with 6 clients, the server is mostly performing
communication and coordination between clients, and through-
put is noticeably affected by both client and network param-
eters. However, optimal balancing varies with the offloading
level and depends on the specific interactions between client,
server and network configurations. As the number of clients
decreases, server and communication demands shrink, and the
application becomes client-bound, especially at low offloading



(a) Vision graph discovery. (b) ECG diagnosis.
Fig. 9. Core utilization of IoT applications.

levels. Thus, powerful client devices (S3Sx/S3Dx) can reduce
the output delays by an average of more than 50% in the 2-
client O-0 case. Effects otherwise depend on the application-
specific ratios of server, client and communication demands
as a function of offloading and client count.

In the ECG example, both computation and communication
demands scale linearly with the number of clients, where
communication overhead is more dominant and roughly con-
stant, independent of the offloading level. As such, throughput
generally varies with both network and system parameters
at all offloading and client levels. In the case of O-3, O-2
and O-1 offloading, throughput is bounded by communication
and server-side computation resources. As a result, network
protocols can significantly affect overall output delay, and, in
contrast to the vision graph case, a double-core server (SxD3)
can reduce output delay by hiding server computation behind
the communication overhead. In the O-0 case, throughput
mainly depends on the client device configurations. However,
as more clients are introduced, per-client computation remains
constant, but communication overhead can dominate especially
with slower communication protocols (b@11Mbps), where the
effects of system device configurations become negligible.

2) System Core Utilization: Core utilizations for the S3D3
setup of our case studies are shown in Fig. 9, where Fig. 9a
and Fig. 9b show the contribution of application and lwIP
processing times to both client and total server load for vision
graph and ECG applications, respectively.

In general, higher offloading levels will result in lower client
and higher server utilization. For the ECG example, stage 3 is
the most computation-intensive task with the largest relative
impact when offloaded in levels higher than O-0. By contrast,
stage 0 of the vision graph example adds negligible load when
running as the only client task in O-2 offloading. With more
clients, computation per client will remain the same while
total throughput will decrease given larger communication and
server overhead. As such, client utilization reduces as clients
are added. By contrast, server utilization either remains con-
stant or, in case of the vision graph example with quadratically
scaling server demands, increases.

An interesting observation is that besides offloading levels
and client counts, different network configurations can also

Fig. 10. Design trade-offs (6 client devices).

have a significant impact on core utilization due to their
effect on communication overhead and thus throughput. On the
client, the average core utilizations for vision graph discovery
among different client counts and offloading levels range from
11.5% to 19.5% with various protocols. For ECG diagnosis
they range between 13.7% to 31.6%.

Network stack overhead can contribute up to 20% core
utilization depending on communication demands. In the
vision graph case, communication decreases with increasing
offloading level, with corresponding effects on lwIP overheads.
In the ECG case, one server core is fully utilized by application
computations at offloading levels above O-0, where the setup
benefits from the second core to execute protocol functionality.
Overall, this confirms the need to accurately model network
stacks and their system impact.

3) Design Trade-offs: We further examine trade-offs be-
tween throughput and client device utilization. Fig. 10 shows
the design points of a 6-client SD setup with different system
and network parameters. In the graphs, colors indicate protocol
choices, icon shapes represent different client core types, and
offloading levels are distinguished by differences in shading.

As shown before, offloading influences client core utiliza-
tion, with lower offloading levels (lighter shades) on the left.
However, offloading also affects throughput, and other param-
eters affect both throughput and utilization in non-uniform
ways, where design spaces can not be easily predicted without
detailed exploration. Note that the Pareto front in both design
spaces mainly consists of configurations with a S3D3 setup.
This is because faster clients will improve throughput, but less
than client computation time, thus also decreasing utilization.
However, such a configuration will also have the highest cost,
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Fig. 11. Simulation wall-clock time and speed.

which will result in additional tradeoffs when considering
other evaluation metrics and optimization objectives.

As these case studies show, IoT design space exploration
involves multi-dimensional parameters at application, mapping
and architecture levels with non-obvious interactions between
each other. Fast NoS co-simulation for rapid prototyping
at early design stages enables joint exploration across such
application, network and system design spaces.

B. Simulation Speed and Accuracy

Fig. 11 shows the wall-clock time and speed of our simula-
tions for different client numbers and offloading levels, aver-
aged over all network and system configurations, which have a
negligible effect on actual speed. Wall-clock time is shown as
the average simulation runtime per input data set, normalized
against the number of clients. The average simulation speeds
for vision graph discovery and ECG diagnosis are 0.39 and
0.18 simulated seconds per wall-clock second, respectively.
Vision graph discovery is about twice as fast since it is
more computation-dominated, which requires relatively fewer
OMNeT++ and SystemC communication and synchronization
events to be simulated. For both examples, per-client wall-
clock time is increased and speed is dropped with more
clients, which is caused by extra synchronization and context
switch overhead. In the vision graph example, server-side
computation increases quadratically with more clients. This
negatively affects per-client wall-clock time but not speed.
On the contrary, due to the application becoming even more
computation-dominated, speed can increase. Offloading gen-
erally does not affect total computation, but may influence the
amount of communication to be simulated. In the vision graph
example, higher offloading levels require less communication,
which results in faster simulation speed and lower wall-clock
time. In the ECG case, both computation and communication
are constant or slightly increased with higher offloading, with
corresponding effects on speed and wall-clock time.

Overall accuracy of our NoS co-simulation platform is
determined by the accuracy of underlying system and network
simulators. The system simulator in [17] is reported to be
more than 95% accurate using an equivalent (and in their case
manual) function-level back-annotation approach. Accuracy of
the OMNeT++ network simulator depends on a wide range
of factors, such as propagation and channel models, which
are out of the scope of this paper to verify and validate.
Nevertheless, for the purposes of exploration, relative accuracy
is most important, where OMNeT++ has been widely used in
academia and industry to perform corresponding studies.

VI. SUMMARY AND CONCLUSIONS

In this paper, we propose a comprehensive host-compiled
NoS simulation infrastructure, in which system and network
parameters at different design levels such as number of cores,
network configurations and application offloading levels can
be explored simultaneously. Two state-of-art IoT scenarios
from typical application domains are investigated in a case
study to show the capabilities of our proposed platform.
Non-obvious interactions and dependencies demonstrated by
our case studies motivate and confirm the need for system-
atic network/system co-design and development of associated
tools. Unlocking associated optimization opportunities will
require research into future co-design approaches. Towards
these goals, we have released our NoS simulator and IoT case
studies for download in open-source form at [23]. Future work
includes further verifying simulator accuracy against a wider
variety of real-world NoS design setups.
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