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Abstract—Reducing power consumption and increasing effi-
ciency is a key concern for many applications. How to design
highly efficient computing elements while maintaining enough
flexibility within a domain of applications is a fundamental
question. In this paper, we present how broadcast buses can
eliminate the use of power hungry multi-ported register files
in the context of data-parallel hardware accelerators for linear
algebra operations. We demonstrate an algorithm/architecture
co-design for the mapping of different collective communication
operations, which are crucial for achieving performance and
efficiency in most linear algebra routines, such as GEMM,
SYRK and matrix transposition. We compare a broadcast bus
based architecture with conventional SIMD, 2D-SIMD and flat
register file for these operations in terms of area and energy
efficiency. Results show that fast broadcast data movement
abilities in a prototypical linear algebra core can achieve up to
75x better power and up to 10x better area efficiency compared
to traditional SIMD architectures.

I. INTRODUCTION

Application-specific design of hardware accelerators can
provide orders of magnitude improvements in power and
area efficiency [14]. However, full-custom design is costly in
many aspects. As we are entering the era of heterogeneous
computing, a key question therefore becomes how to design
specialized cores that maintain the efficiency of full custom
hardware while providing enough flexibility to execute whole
classes of coarse-grain operations.

Data-parallel and streaming processors, such as GPUs, have
received widespread attention as an integral component for
heterogeneous architectures. There, matrix operations, which
are at the core of many high-performance computing problems,
are often a prime target for acceleration. Matrix operations
exhibit ample computational parallelism that can be relatively
easily exploited. However, a crucial concern and often limiting
factor is the efficient realization of data movements on a
communication architecture that is able to optimally exploit
locality, minimize overhead, effectively overlap computation
with communication and hide communication latencies.

Linear algebra computations can be efficiently reduced
down to a canonical set of Basic Linear Algebra Subroutines
(BLAS), such as matrix-matrix and matrix-vector operations
[7]. In previous work [34], [35], we examined the design of
a proposed Linear Algebra Core (LAC). The LAC is based

on broadcast communication among a 2D array of PEs. In
this paper, we focus on the LAC’s data-parallel broadcast
interconnect and on showing how representative collective
communication operations can be efficiently mapped onto
this architecture. Such collective communications are a core
component of many matrix or other data-intensive operations
that often demand matrix manipulations.

We compare our design with typical SIMD cores with
equivalent data parallelism and with L1 and L2 caches that
amount to an equivalent aggregate storage space. To do so,
we examine efficiency and performance of the cores for data
movement and data manipulation in both GEneral matrix-
matrix multiplication (GEMM) and SYmmetric Rank-K up-
date (SYRK) operations. SYmmetric Rank-K and Rank-2K
update (SYRK and SYR2K) are level-3 BLAS operations that
we demonstrate because they need matrix transposition. The
SYRK operation computes C := C±AAT with a rectangular
matrix A ∈ Rn×m, updating only the lower triangular part of
the symmetric matrix C ∈ Rn×n. To implement SYRK, an
architecture must be able to transpose matrices efficiently.

Our results show that the 2D architecture with broadcast
interconnect is able to significantly reduce overhead for data
movement. This leads to increased utilization, and hence
performance and efficiency. We estimate the area and power
consumption of key components of the LAC’s broadcast
interconnect architecture. Compared to a flat register file, a 30x
better power and a 10x better area efficiency is achieved. Com-
pared to data-centric SIMD architectures, a 75x gain in power
efficiency should be possible when mapping communication-
sensitive SYRK operations.

A. 1D vs. 2D Architectures

Existing solutions for multimedia and matrix operations
mostly focus on 1D [15] and 2D [3] arrangements of process-
ing elements [16]. In this section, we use matrix multiplication
to give a perspective of differences between 1D and 2D
arrangement of PEs for matrix computations.

In early FPGA designs with limited logic blocks on the
chip, most of the approaches targeted an array arrangement
of PEs that pipelines the data in and out of the PEs [22],
[48]. Nowadays, with sufficient area on the chip, the design



choice between a 1D or 2D arrangement of PEs becomes
again valid. There are three major benefits of a 2D versus
a 1D solution: scalability, addressing, and data movement.
The 2D arrangement is proven to be scalable with regard to
the ratio of problem size to local memory size for BLAS
level operations [9]. Furthermore, address computations and
data accesses in local stores of PEs become simpler with
fewer calculations as compared to a 1D arrangement. This
is especially true for more complicated algorithms. Finally,
with 2D arrangements, different types of interconnects can
be explored, yielding various types of algorithms for BLAS
operations. A 2D arrangement of PEs facilitates operations
like vector and matrix transpose that are used in matrix-vector
multiplication and many other routines like SYRK, LU, and
Cholesky factorization.

A taxonomy of matrix multiplication algorithms on 2D grids
of PEs and their interconnect requirements is presented in [29].
The algorithms for matrix multiplication are based on three ba-
sic classes: Cannon’s algorithms (roll-roll-multiply) [5], [31],
Fox’s algorithm (broadcast-roll-multiply) [11], [6], [29], and
SUMMA (broadcast-broadcast-multiply) [2], [43]. Cannon’s
algorithm shifts the data in two of the three matrices circularly
and keeps the third one stationary. Required initial and final
alignment of the input matrices needs extra cycles and adds
control complexity. In addition, a torus interconnect is needed
to avoid data contention. Fox’s algorithms and its improve-
ments broadcast one of the matrices to overcome alignment
requirements. However, a shift operation is still required and
such algorithms may show poor symmetry and sub-optimal
performance. Finally, the SUMMA algorithm does not need
any initial or post-computation alignment. The broadcast is a
simple and uniform, single communication primitive. It does
not have any bandwidth contention as in circular shifting. In
addition, SUMMA is much easier to generalize to non-square
meshes of processing units.

The flexibility of the SUMMA algorithm has made it the
most practical solution for distributed memory systems [43]
and FPGAs [8]. The SUMMA class of algorithms becomes
the basis for our design. A broadcast operation is an efficient
way of data movement to achieve high performance in other
BLAS and LAPACK operations. Furthermore, our cores are
designed such that the cost and latency of broadcast operation
does not add extra overhead.

B. Related Work

Matrix computations on general-purpose machines [12]
and in recent years on GP-GPUs [46] have been studied
extensively. Modern general-purpose GPUs (GP-GPUs) can
be effectively used for matrix computations [40], [46] with
throughputs of more than 360 double-precision GFLOPS when
running many level-3 BLAS for large matrices, utilizing
around 30-70% of the theoretical peak performance. However,
in all cases, instruction handling, in core data movement and
register file overheads limit efficiency.

Adding vector units to conventional processors has been a
solution to increase efficiency of CPUs [10], [36]. Energy-

efficiency potentials of vector accelerators for high perfor-
mance computing systems are discussed in [28]. Three main
limitations of conventional 1D vector architectures are known
to be complexity of the central register file, implementation
difficulties of precise exception handling, and expensive on-
chip memory [20]. A detailed review of SIMD multimedia
extensions and their bottlenecks are presented in [15], [39].
Associated costs are amplified by the fact that in each step a
complete vector has to be transferred through multiple ports
of a register file, wide wires, and complex point-to-point
interconnects such as crossbars. The details of scalar operand
network and bypass paths are discussed in [41], [13].

Over the years, many other parallel architectures for high-
performance computing have been proposed and in most cases
benchmarked using GEMM as a prototypical application. Sys-
tolic arrays were popularized in the 80s [23], [24]. Different
optimizations and algorithms for matrix multiplication and
more complicated matrix computations are compared and
implemented on both 1D [42], [21] and 2D systolic arrays [42],
[16], [30]. In [18], the concept of a general systolic array and a
taxonomy of systolic array designs is discussed. Systolic arrays
pipeline data and have one-sided interfaces. As discussed
earlier, the broadcast concept performs better for GEMM types
of algorithms.

With increasing memory walls, recent approaches have
brought the computation units closer to memory, including
hierarchical clustering of such combined tiles [38], [19].
Despite such optimization, utilizations for GEMM range from
60% down to less than 40% with increasing numbers of
tiles. Instead of a shared-memory hierarchy, the approach
in [45] utilizes a dedicated network-on-chip interconnect with
associated routing flexibility and overhead. It only achieves
around 40% utilization for matrix multiplication. Other 2D
architectures [4], [37] introduce a more complex, fully con-
nected interconnect network between the register files and PEs.
However, for most matrix operations like GEMM, flexible
dataflow facilities in the interconnect are an overhead. More
details about trade-offs of various interconnect options for
coarse-grained architectures based on a 2D arrangement of
ALUs can be found in [26]. Finally, ClearSpeed CSX700 is an
accelerator that specifically targets scientific computing with
BLAS and LAPACK library facilities. It delivers up to 75
DGEMM GFLOPS at 78% of its theoretical peak [1].

As utilization numbers indicate, inherent characteristics of
data paths and interconnects coupled with associated instruc-
tion inefficiencies in general-purpose architectures make it
difficult to exploit fully all available parallelism and locality.
By contrast, while we will build on the SIMD and GPU
concept of massive parallelism, we aim to provide a natural
extension that leverages the specifics of matrix operations.

Finally, specialized realizations of matrix computation rou-
tines on FPGAs have been explored, either standalone [47]
or in combination with a flexible host architecture [25]. Such
approaches show promising results [33], [17], but are limited
by inefficiencies in area, performance, and power due to
programmable routing and logic overheads.
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II. ARCHITECTURES

In the following, we describe our proposed architecture and
briefly review three other models that we will explore in this
paper: a flat register file with full access flexibility, a 1D wide
SIMD, and a 2D array of SIMD units.

A. LAC Architecture

The LAC proposed in [34] and illustrated in Fig. 1 consists
of a 2D array of nr × nr processing elements (PEs), each of
which has a MAC unit with a local accumulator, local storage,
simple distributed control, and bus interfaces to communicate
data within rows and columns.

Details of the PE-internal architecture are shown in Fig. 1-
(left). At the core of each PE is a MAC unit to perform the
inner dot-product computations central to almost all level-3
BLAS operations. Apart from preloading accumulators with
initial values, all accesses to elements of a nr × nr matrix
being updated are performed directly inside the MAC units,
avoiding the need for any register file or memory accesses.

We utilize pipelined MAC units that can achieve a through-
put of one MAC operation per cycle [44]. Local storage in each
PE consists of a bigger single-ported and a smaller dual-ported
memory. An extensive study of memory size trade-offs for the
core was presented in our previous work [35]. Typically in
dense linear algebra problems, access patterns are predictable
and in most cases sequential, and there is no need for complex
caching schemes. LAC control is distributed and each PE has

a basic state machine that drives a predetermined, hardcoded
sequence of communication, storage and computation steps for
each supported BLAS operation. The basic state machine in
each PE requires two address registers, one loop counter and
less than 10 states per BLAS operation.

In our design, we connect PEs by horizontal and vertical
broadcast buses. The interconnect is realized as simple, data-
only buses that do not require overhead for address decoding
or complex control. This interconnect is specifically designed
to efficiently realize all collective communications, such as
broadcast or transposition, necessary to support the execution
of level-3 BLAS operations. While other architectures waste
cycles and instruction to move data to their desired destination,
the LAC architecture can inherently and transparently overlap
computation, communication, and transposition. Our power
and delay analysis shows that we can maintain a one cycle
bus latency for LAC sizes up to 16×16 PEs. This limits the
maximum number of PEs in the architecture. However, our
results also indicate that cores with larger PE counts are not
well utilized.

B. Register File Architectures

In the following, we discuss details of flat, 1D SIMD, and
2D SIMD register file organizations with L1 and L2 data
caches that we will use to compare with the LAC in terms
of efficiency. In all cases, we only consider data movement
between the memory hierarchy on the core.
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a) Flat register file: A flat register file architecture
(Fig. 2(a)) uses a typical multi-ported register file. All ALUs
are connected via dedicated ports and can access any of the
registers. At the expense of power consumption and area, this
allows for complex data movement between different ALUs
through the common register file. However, this flexibility
is not necessary for a typical matrix multiplication. For this
operation, either 1D or 2D SIMD solutions can be applied
directly. The benefit of a flat register file is in its flexibility for
data handling of more complex operations like SYRK, matrix
transpose, and matrix-vector multiplication.

b) 1D SIMD: A 1D-SIMD organization (Fig. 2(b)) per-
forms the same operation for all ALUs with wide vector inputs
and outputs. The number of ports is independent of the SIMD
width or the number of ALUs. As such, data movement for
complex matrix manipulations is not simple. Typical SIMD
architectures provide special shuffling instructions that make
the transposing of matrices possible [27]. But this incurs
penalties of several instructions and CPU clock cycles.

c) 2D array of SIMD units: A 2D SIMD array (Fig. 2(c))
contains a few shorter 1D-SIMD units, each having its own
register file connected to a central load/store unit. Having
a larger number of shorter SIMD units provides more flex-
ibility for performing different operations in the different
SIMD units. The data movement flexibility depends on the
architecture of the bypass network. There might be a global
interconnect and bypass network between the register files of
different SIMD units. This facilitates data movement and is
ideal for blocked algorithms.

III. ALGORITHM MAPPING

In the following, we will describe the mapping of GEMM,
SYRK and matrix transposition operations onto the four
considered architectures. These algorithms are representative
of the communication complexity of level-3 BLAS operations.
It is important to observe that other level-3 BLAS operations
require similar computations and data movements [12].

A. GEMM

a) LAC: A matrix multiplication can be performed iter-
atively as a sequence of smaller steps that can be efficiently
mapped onto our hardware core. Let C, A, and B be nr×nr,
nr × kc, and kc × nr matrices, respectively, then C += AB
can be computed as a loop of so-called rank-1 updates
C +=

∑kc

p=0ApBp, where C is repetitively updated with
the product of a column of A, Ap, and a row of B, Bp,
respectively. Let us assume that the nr × kc matrix A and
kc × nr matrix B are distributed to the local PE memories
in a 2D cyclic round-robin fashion, much like distributing
matrices on distributed memory architectures. In other words,
elements αi,j and βi,j of matrices A and B are assigned to
PE (i mod nr, j mod nr). Also, element γi,j of matrix C
is assumed to reside in an accumulator of PE (i, j). Then, a
simple and efficient algorithm for performing this operation
among the PEs is: For p = 0, . . . , kc − 1, broadcast the pth
column of A within PE rows and the pth row of B within
PE columns, after which a local MAC operation on each PE
updates the local element of C. The operation of the LAC for
one iteration of the GEMM algorithm is highlighted on the
left in Figure 1. Overall, this setup allows the LAC to keep
elements of C at all times only resident in the accumulators,
amortizing movement of C in and out of the core over a large
number of updates. By contrast, matrices A and B are only
read, and their distributed storage enables efficient broadcasts
in each iteration.

In accordance with the blocking at the upper memory levels
(Fig. 3), we assume that each core locally stores a larger mc×
kc block of A, a nr × nr sub-block of C and a kc × nr
panel of B (replicated across PEs). GEMM computations for
larger matrices can be mapped onto our LAC by multiplying
successive nr × kc panels of A (mc × kc block of A) by
the same kc × nr panel of B to update successive nr × nr
blocks (for a complete kc×nr panel) of C. A complete mc×
kc block of A is stored distributed among the PEs. At the
next level, with n being the dimension of original matrix C,
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n/nr successive panels of B are multiplied with the same,
resident mc × kc block of A to update successive kc × nr
panels of a larger mc×n panel of C. While individual updates
are running, we overlap computation with communication to
stream the next panels of B and C into the LAC. Higher
levels of blocking for memory hierarchy and details about the
mapping of GEMM onto the LAC can be found in [34].

b) Register file architectures: Here we use the same
notation as was used for describing the mapping of GEMM
on the LAC. Matching the blocking at upper memory levels
in the LAC, the larger mc× kc block of A is stored in the L2
cache. Except for block sizes as indicated in Fig. 3, the GEMM
algorithms are almost the same as the one described for the
LAC. Inner kernels perform successive rank-1 updates on a
block of C stored in the register file. However, since the FPUs
incur latency in performing accumulations/additions (Fig. 4),
block sizes are increased. This allows FPUs to hide addition
latencies and alternate between performing accumulations on
different elements of C.

Three major factors determine the dimensions of a g × f
block of C held in the register file and, accordingly, the width
f of the panel of B stored in the L1 cache. Depending on the
architecture, as shown in Fig. 3, these factors are the width w
and height h of the SIMD array and the number of pipeline
stages dA in the floating-point adder (Fig. 4). While the LAC
has a native broadcast mechanism, SIMD architectures need to
perform explicit move instructions. This is done by replicating
each element of A into a wide SIMD register to multiply it
by different elements of B using a single SIMD instruction.

Following the same algorithm as in the LAC, GEMM com-
putations for larger matrices can be performed by multiplying
successive g × kc panels of A (mc × kc block of A) by the
same kc×f panel of B to update successive g×f blocks (for
a complete kc× f panel) of C. A complete mc× kc block of
A is stored in the L2 cache. At the next level, n/f successive
panels of B are multiplied with the same, resident mc × kc
block of A to update successive kc × f panels of a larger
mc × n panel of C.

B. SYRK

a) LAC: The SYRK operation computes C := C+AAT

with a rectangular matrix A ∈ Rn×m, updating only the
lower triangular part of the symmetric matrix C ∈ Rn×n.
To compute the SYRK of a nr × nr submatrix of C stored
in the accumulators of the LAC from a nr × kc sub-matrix of
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A, three different operations take place in the same cycle in
each iteration. Fig. 5 illustrates the second (i = 1) iteration of
a SYRK operation.

The ith column of PEs broadcasts the values of the ith
column of A, ai, across the row busses, where the PEs in each
row keep a copy of these values in their register file for use
in the next iteration. At the same time, the values ai−1 from
the previous iteration are transposed along the diagonal PEs
by broadcasting them over the column busses. Hence, all PEs
now have copies of elements of ai−1 and aTi−1, and a rank-1
update is performed to compute C := C + ai−1 × aTi−1. The
aTi−1 is also kept in (i− 1)th row of PEs to store AT . This is
repeated for i = 0, . . . , kc cycles.

A bigger SYRK problem for C of size mc × mc and A
of size mc × kc can be blocked into smaller subproblems
using a lower order SYRK to update the diagonal nr × nr
lower triangular blocks of C and produce transpose of the
corresponding nr × kc panels of A in a single iteration. As
before, the complete mc × kc block of A is stored distributed
among the PEs. As shown in Fig. 6, after computing the
diagonal block Cii = AiA

T
i , the produced panel AT

i and
the remaining row panels Ak>i of A are used to update
other blocks Cki = AkA

T
i of C with k > i. Most of the

computations are thereby cast into GEMM operations using
the produced panel of AT and the remaining panels of A.
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TABLE I
GEMM MEMORY HIERARCHY REQUIREMENTS.

Flat Register 1D SIMD Array of SIMD

Regs for A 2(dA) 2wdA (h + 1)wdA
Regs for B 2(w) 2w 2w(dA)
Regs for C 2(wdA) 2wdA 2w(hdA)
Regs Total 2(wdA + w + dA) 4wdA + 2w 3wdA(h + 1)

RF access A 2 2w hw(1 + 1/dA)
RF access B w + w/dA w(1 + 1/dA) 2hw
RF access C 2w(1 + 1/kc) 2w(1 + 1/kc) 2hw(1 + dA/kc)

Ports for A 2 R-W 2w R-W 2hw R-W
Ports for B 2w R-W 2w R-W 2hw R-W
Ports for C 3w R-W-D 3w R-W-D 3hw R-W-D
Ports Total 5w+2 7w 7hw

L1 access A * 1+1 h/da(1 + 1)
L1 access B * w + w/kc hw(1 + 1/kc)
L1 access C * 2w/kc 2hw/kc

L2 access A * 1 + w/n w/kc

L2 access B * w/kc hw/kc

L2 access C * 2w/kc 2hw/kc

TABLE II
SYRK REQUIREMENTS.

Flat Register 1D SIMD Array of SIMD

Regs for A l2(1 + dA) 2w2 2hw2

Regs for AT 0 w2 + w hw2 + hw

Regs for C l2(1 + dA) w2 hw2

Regs Total 2l2(1 + dA) 4w2 + w 4hw2 + 4hw

RF access A 2l 3w + w 3hw + hw

RF access AT 2l 2w 2hw
RF access C 2w 2w + 1 2hw + 1
RF access Total 4l + 2w 8w + 1 8hw + 1

Ports for A 2l:R-D 4w:2R-2W 4hw:2R-2W
Ports for AT 2l:W-D 2w:R-D 2hw:R-D
Ports for C 2w:R-W 2w:R-W 2hw:R-W
Ports Total 4l + 2w 8w 8hw

L1 access A 2l w2/(l(w logw)) hw2/(l(w logw))

L1 access AT 2l w2/(l(w logw)) hw2/(l(w logw))
L1 access C 2w/kc 2w/kc logw 2hw/kc logw

L2 access A 2l 1/l(w logw) h/l(w logw)

L2 access AT 2l 1/l(w logw) h/l(w logw)
L2 access C 2w/kc 2w/kc logw 2hw/kc logw

b) Register file architectures: In the same way as for the
LAC, SYRK problems can be blocked using a lower order
SYRK to update the diagonal lower triangular blocks of C
and produce a transpose of the corresponding panels of A
(see Fig. 6). Here, a row panel of matrix Ai is brought into
the L1 cache and being replaced by its transpose while also
computing Cii = AiA

T
i and subsequently updating all Cki =

AkA
T
i , k > i. As before, each step in a SYRK computation

maps down to a matrix transposition and a series of matrix
multiplications. The transpose operation is straightforward in
a flat, multi-ported register file due to full flexibility of data
exchange and register access. It can provide transposed data
for a certain small block size that fits into the register file
without wasting FPU cycles, where the transpose is done by
directly routing data from different places to the right FPU.
Other SIMD organizations have to waste core cycles to arrange
the data in the desired order without using the FPUs by using
special shuffling and move instructions [27].

IV. EXPERIMENTS AND RESULTS

In previous work, we have developed both cycle-accurate
simulation and analytical power and performance models of

TABLE III
MAXIMUM (MINIMUM) CYCLE COUNTS OF COMMUNICATIONS ON LAC.

Configuration
Point to Point
2n

Broadcast
2n

Transpose
n× n

Rank-1
Update

Broadcast 2n(2n/nr) 2n(2n/nr + n) n2/nr 1
Mesh 2n(n/nr) 2n(2n/nr + n) n2/2nr 1

the LAC. In this work, we develop similar analytical models
for selected register file organizations of SIMD units [36].

To provide a fair comparison, we chose similar system
configurations for LAC and register file architectures. In all
cases, the number of FPUs is 16 and the aggregate storage
size is over 256 KBytes of space. We chose the size of L1
caches to be 32 Kbytes, which is a typical L1 size for state
of the art cores. This size is also sufficient for the blocking
of matrix operation algorithms that we target. The L2 cache
is chosen to be 256 Kbytes. This is equal to the aggregate on-
chip memory size of PEs in the LAC and matches L2 sizes in
recent architectures.

The studied architecture configuration are: a 1 × 16 wide
SIMD, a 16-FPU flat register file, a group of 4×4-wide SIMD
units, and a 4× 4 LAC. We assume that all architectures use
the same type of FPUs and we can hence ignore the power
and area consumption of FPUs. We compare the storage, area,
and power requirements of these architectures for GEMM and
SYRK operations. We chose GEMM to profile the coarse-grain
data movement capabilities of an architecture, while SYRK
indicates their fine-grain data manipulation abilities.

A. Design Space Exploration

We performed an analytical study to derive the required
memory and register file storage sizes, number of register file
ports, accesses and bandwidth requirements for best possible
performance of a given architecture. To do so, we used the
proposed algorithms in Section III and calculated the register
file, L1 and L2 configurations. We assume that there are no
restrictions in the core architecture or the load/store unit that
limit the amount of data that can be transferred between L1
cache and the core. We also assume that the inner kernel hides
all cache access latencies, and that the problem fits into L1 and
L2 caches. With these assumptions, we aim for peak possible
performance in GEMM and SYRK.

The system parameters include the SIMD width ’w‘, accu-
mulator delay ’dA‘, SIMD array height ’h‘ and the L1 cache
line size ’l‘. Analytical results include the number of floating-
point registers required to store the necessary elements of
each input matrix. The number of accesses for each of the
input matrices shows the average number of floating-point
words read or written from/to the register file, L1 or L2
cache per clock cycle. The port types ’R‘, ’W‘, and ’D‘ stand
for ”Read“, ”Write“ and ”Dual R/W“, correspondingly. For
SIMD architectures, each entry in the table shows the number
of single floating-point word registers, accesses or ports.
However, all accesses happen over wide ports for transfers of
complete SIMD vectors with w words each. To determine the
number of wide vector registers, accesses or ports, the entries
in the table have to be divided by ’w‘.
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Fig. 7. Different platforms performing GEMM with 16 FPUs: Register file based platforms with 256KB L2 and 32KB L1 caches, LAC with 288KB SRAM.
Left: Inverse power efficiency, Right: Total area.
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Fig. 8. Different platforms performing SYRK with 16 FPUs: Register file based platforms with 256KB L2 and 32KB L1 caches, LAC with 288KB SRAM.
Left: Inverse power efficiency, Right: Total area.

Results summarized in Tables I and II indicate what an
ideal, minimum configuration of each architecture should be
for achieving peak performance with the least overhead, e.g.
for shuffling instructions. For example, if one designs an
architecture with the goal of achieving high utilization in
linear algebra applications like GEMM, the parameters of
all memory layers and requirements for utilizing the FPUs
efficiently are shown in Table I.

a) Matrix Multiplication: We used the algorithm de-
scribed in Section III-A for mapping of GEMM on all four
different architectures. The details of the memory subsystem
are presented in Table I. The flat register file can be configured
to implement either the 1D-SIMD or 2D-SIMD solution. We
used the wide 1D-SIMD solution.

b) SYRK: The SYRK operation can be viewed as com-
bination of the GEMM and transpose operations. Most of the
operations are cast in terms of GEMM kernels, but the SYRK
part needs fine-grain data manipulation for transposing the
input matrix in its critical path. We assume that the behavior of
the GEMM part of SYRK can be estimated from the GEMM
studies above. In SIMD solutions, the problem is compute
bounded. Since the cores do not transpose matrices efficiently,
the overall SYRK performance is limited by the matrix trans-
position behavior. With SIMD units, it takes ”w logw” cycles
to transpose a w ×w block of data with a bypass network as
in current SSE architectures. By contrast, the LAC’s broadcast
buses facilitate very efficient transposition with nr cycles for
a nr × nr input matrix.

c) Other collective communication operations: Table III
shows the cycle count for representative collective commu-

nications on the LAC. Based on the location of source and
destination PEs, we derived minimum and maximum cycle
counts for these operations. We can improve the performance
of these communication operations by modifying the intercon-
nect and adding mesh-like peer-to-peer connections. As shown
in Table III, this modification could double the performance
of matrix transpose and point-to-point communications.

B. Area and Power Estimation

To estimate power and area of different parts of the memory
subsystem, we applied the analytical configurations derived
in the previous section to CACTI-6.5 [32]. Cache line sizes
are chosen to be 64 bytes, which is equal to eight double-
precision floating-point numbers. We set the associativity to
four, which is less power hungry than current 8-way state of
the art caches. We use an inverse power efficiency metric of
(W/GFLOP) to show a power breakdown of different parts of
the memory subsystem. The operation frequency is assumed
to be 1 GHz, and for simplicity, we assumed that adder latency
dA is 1 cycle. We also neglected the power consumption of
the bypass network for register file based architectures.

We assumed a fixed maximum power consumption for L1
and L2 caches. The register file organization is designed to
sustain the core data transfer requirements, but there are no
extra ports beyond that. For this study, we examined multiple
possible configurations for caches and register files and chose
the most efficient one. According to CACTI, the optimum
configuration turned out to be a single-banked cache.

Fig. 7 demonstrates that SIMD architectures can very effec-
tively reduce the power consumption compared to flat register
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files. The 1D SIMD consumes the least power among the other
two configurations, but the 4×4-wide array of SIMD requires
less area. The flexibility of flat register files is of no use for
GEMM.

Fig. 8 presents the SYRK case at the other end of the
spectrum, where flexibility becomes an important factor. Even
when considering a bypass network that is able to shuffle
words, a wide SIMD architecture requires a large number of
cycles and instructions to complete the transpositions. The
4×4-wide array of SIMD performs much better than both
1D SIMD and flat register file. This is because transposing
a smaller array turns to be simpler and faster than a wide
SIMD. Also, the array of SIMD consumes much less power
compared to a flat register file.

In all cases, the LAC removes the overhead of L1 and L2
caches and has less power and area consumption while it is
more effective to perform broadcast and transpose operations
necessary for GEMM and SYRK.

V. CONCLUSION

This paper presents the algorithm/architecture co-design of a
linear algebra core, with an emphasis on data movement and
memory subsystem. We presented detailed analysis of four
different architectures. We presented power estimations and
compared our core with the other register file organizations
for selected matrix operations. Power estimation results show
that our core can provide orders of magnitude improved effi-
ciencies compared to other architectures. Our analysis clearly
shows the fundamental architectural tradeoffs for efficient
execution of linear algebra computations.
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